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Abstract—Emergency Medical Dispatch (EMD) defines the
healthcare task concerning the assignment of paramedic re-
sources (equipment and people) to emergencies in the community.
Due to the random and unpredictable nature of such tasks,
EMD is highly dynamic. Research exists using Machine Learning
to automatically learn heuristics for EMD via the Genetic
Programming Hyper Heuristic (GPHH) technique. This project
seeks to improve upon such existing research, reducing training
time through engineering optimisations and implementing multi-
fidelity techniques, in particular by training GPHH models on
city networks (graphs) of varying fidelity. We produce lower-
fidelity graphs by subdividing a source graph into boxes, and
quantising locations within each box to a single location. The
fidelity of graphs is then dictated by the size of the subdi-
vided boxes. We evaluate our multi-fidelity models against pre-
existing models on two real-world graphs, the Wellington and
Christchurch ambulance coverage areas to investigate the impacts
of applying multi-fidelity techniques to EMD. We find that
the computation savings afforded by multi-fidelity techniques
decrease model training time on graphs generated from real-
world ambulance coverage areas by up to 51.3%, whilst not
significantly impacting training or test performance. In addition,
we find that per-generation training times are reduced by over
90% at the lowest fidelity levels, and so further speedup may
be achieved through sustaining lower fidelity levels throughout
training.

Index Terms—Emergency Medical Dispatch, Genetic Program-
ming, Hyper-Heuristic, Caching.

I. INTRODUCTION

IN the execution of the emergency response services, a crit-
ical concern is the decision-making process by which med-

ical resources (such as ambulances and medical personnel) are
dispatched to emergencies in a community. Emergency Medi-
cal Dispatch (EMD) encapsulates this problem, efficiently dis-
patching medical resources to randomly occurring emergencies
within a geographical coverage area in realtime. The dispatch
decisions made in EMD can have a significant impact on the
wait time of patients in emergency situations. Research has
shown that the wait time of patients is positively correlated
with patient mortality, and so it is imperative that wait times
are minimised to maximise patient health outcomes [1], [2]. A
common heuristic used in many real-world ambulance services
is the “closest-idle” heuristic, where emergent emergencies
are immediately paired with the closest idle ambulance (one
not already attending to an emergency). However, intuitive
approaches to EMD, such as the aforementioned “closest-idle”
heuristic have been shown to be suboptimal [3]. Therefore,
more sophisticated decision-making processes and heuristics
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stand to significantly improve dispatch performance and thus
health outcomes if effective processes and heuristics can be
found. Since EMD is a highly dynamic problem in which new
information can invalidate prior solutions, a priori scheduling
via traditional optimisation techniques is infeasible. Instead,
the decision-making process must be able to make dispatch
decisions in a dynamic environment in realtime.

This research project extends upon existing research con-
ducted by MacLachlan et al. on using Genetic Programming
(GP) to train heuristics for key decisions made in a typi-
cal EMD execution, known as Genetic Programming Hyper
Heuristic (GPHH) [4], [5]. GPHH is well suited to EMD due
to its inherent model interpretability [4]. Model interpretability
(the ability to reason about the behaviour of the produced
model) is critical for audit and liability purposes, and we
expect that a GPHH approach is more feasible to implement
in real-world EMD than other contemporary approaches such
as Reinforcement Learning (RL) for this reason. In GPHH,
an initial population of individuals representing heuristics are
evolved through genetic operators (such as crossover and
mutation) and evaluated to ascertain their fitness, dictating
their likelihood for reproduction into the next generation. In
the GPHH for EMD implementation by MacLachlan et al.,
fitness evaluation is achieved by simulating the individual on
a “day” of randomly occurring emergencies, spread out over
a geographical coverage area represented by a graph. The
graph operations used in the fitness evaluation of individuals
constitutes the majority of training time, and as such, our re-
search aims to reduce model training time through engineering
optimisations such as caching and improved multithreading, as
well as implementing multi-fidelity training techniques adapted
from research on GPHH for Dynamic Flexible Job Shop
Scheduling (DFJSS). This is achieved by simplifying the graph
to a lower “fidelity” in order to reduce the computational
cost of route-finding queries. Since simplifying the graph to a
lower fidelity will ultimately result in less precise simulations,
the fidelity level is changed throughout training to vary the
balance between accuracy and speed, resulting in a multi-
fidelity approach.

A. Motivations

As a service that directly protects and saves the lives of
a municipality, ambulance services play a crucial role in
society. Ambulances service demand has steadily increased for
a variety of reasons such as population growth and ageing,
pricing and availability, and reduced access to traditional
healthcare services [6]. In addition, recent extreme events such
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as the COVID-19 pandemic have placed yet more pressure
on ambulance services [7]. Our research aims to decrease
the training time of the GPHH for EMD ambulance services
through multi-fidelity techniques, making more effective uti-
lization of limited computing resources. Doing so reduces the
technical computing resource requirements, reducing costs and
increasing the feasibility of an implementation at scale, with
the ultimate goal of real-life adoption and thus improvement
in real world EMD.

B. Key Findings

We find that our application of multi-fidelity techniques to
the baseline GPHH for EMD implementation reduced mean
training time by between 41% and 51.3%, while not signif-
icantly impacting final train and test performance. Learning
effectiveness (fitness reduction per generation) is reduced
slightly at low fidelity levels, but per-generation training time
is reduced by up to 93% at the lowest fidelity levels. However,
fidelity levels above 250 did not provide any significant per-
generation training time reduction. Our multi-fidelity imple-
mentation does not impact the generalisability of the learned
heuristics from one geographical coverage area to another
– no significant difference in test performance was found
when policies learned through the baseline were compared to
policies learned with our multi-fidelity implementation.

II. RELATED WORK

A. Learning Emergency Medical Dispatch Policies via Ge-
netic Programming

As discussed in Section I, this project builds upon research
conducted by MacLachlan et al. on using GP to train heuristics
for decisions made in EMD [4]. The GP process described
by Koza et al. [8] involves: (1) Randomly creating an initial
population of individuals consisting of functions and terminals,
(2) Iteratively performing the sub-steps to create each sub-
sequent generation: (a) Executing each program (individual)
in the population to ascertain its fitness, (b) Performing
genetic operations on units or pairs of individuals to form
the next generation. Finally, when some termination criterion
is satisfied, (3) The single best program in the population
produced during the run is chosen as the result of the run. In
the existing GPHH for EMD implementation by MacLachlan
et al., the initial population is built using the ramped half-
and-half initialisation scheme [4]. In ramped half-and-half
initialisation, trees are built to a maximum depth using, with
equal probability, the GROW and FULL algorithms [9]. To
ascertain their fitness, individuals are tested on n simulated
“days”, known as instances, where a simulated day is a number
of randomly occurring emergencies within a coverage area on
a particular 24-hour day. Individuals within this context consist
of five policies (implemented as GP trees, where internal nodes
are functions and leaf nodes are terminals) that determine a
set of key decisions in the execution of EMD:

• D1: Dispatch now (to emergency)? – Choose whether to
dispatch an ambulance to a new emergency

• D2: Choose Ambulance – Choose the ambulance to
dispatch to the emergency

• D3: Dispatch (idle ambulance) now? – Choose whether
to dispatch a newly idle ambulance to an emergency in
the emergency queue

• D4: Choose emergency – If a newly idle ambulance is to
be dispatched, choose which emergency to attend to

• D5: Choose facility – If a new idle ambulance is not to
be dispatched, choose which facility to return to

The training fitness of an individual on a particular instance
is an average of response times, weighted by an urgency level
(Level 1, 2, 3, or 4, in decreasing order of urgency). The final
calculated training fitness of an individual is then the average
fitness of the individual over the n training instances.

The geographical coverage area is represented by a graph,
which defines the road network and associated geometry,
and facilitates route-finding queries via the OpenRouteService
library, which uses highly optimised Contraction Hierarchies
algorithms based on work in [10] for route finding. The heuris-
tics learned by MacLachlan et al. already perform significantly
better than the baseline model designed alongside Welling-
ton Free Ambulance (WFA) that approximates their human
decision-making logic. However, this work has been tested
exclusively on synthetic node-based graphs, which do not
replicate the scale of real-life coverage areas. Lately, further
work has been completed to enable the use of coordinate-
based graphs that fully replicate real-world geographical areas
using the OpenRouteService library. However, these graphs
are significantly larger and more complex than the synthetic
graphs used prior, and as graphs get larger and more com-
plex, training time increases exponentially. As a result, while
training on graphs of small cities (such as those used in this
project, Wellington (WLG) and Christchurch (CHC)) remains
feasible, larger cities such as London or Chicago would pose a
significant challenge for training time. In addition, since each
training run starts with a randomised initial population, the
first few generations are spent to simply bring the best fitness
values below that of the manually-designed rules. While this
is not a significant issue on small graphs where generations
may only take minutes, it may be troublesome on large graphs
where generations can take many hours.

B. Multi-Fidelity Genetic Programming

While Evolutionary Computation (EC) techniques such as
GP and GPHH are powerful tools for global optimisation
with a wide variety of applications, it is also computationally
expensive, due to the large number of fitness evaluations
required in the training process to produce an acceptable
solution [11], [12]. As such, a number of fitness approximation
techniques have been developed to facilitate learning with
reduced computational cost (resources/time). Usually, these
approximation techniques trade increased computational effi-
ciency for decreased accuracy relative to the true fitness [13],
[14].

Fitness approximation techniques for EC can be broadly
categorised into three categories: problem approximation,
function approximation, and evolutionary approximation [11].
Problem approximation, replaces the original problem with
a surrogate problem that is easier to solve. Approaches to
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problem approximation vary, from using simplified equations
in simulation to reducing the size of the problem solved [11].
Functional approximation avoids the expensive evaluation al-
together, instead using an alternate approximated expression
for the fitness function based on a set of sample points on the
original problem [15]. Evolutionary approximation estimates
fitness for similar individuals, such as an individuals parents or
other individuals deemed similar as a result of some clustering
algorithm. In [16], Esparcia-Alcázar et al. combine problem
approximation and evolutionary approximation to evolve bots
in the game Unreal Tournament 2004™, running individuals
on a simplified test versions of the game and estimating an
individuals’ fitness based on individuals with similar outputs
in the test games. This phenotypic characterisation, in which
the behaviour of an individual is encoded to compare similar
individuals is also used in [17], in which a nearest-neighbour
regression is used to predict the fitness of an individual based
on a vector of numerical values representing the behaviour of
the individual. Hildebrandt et al. also use this vector to remove
individuals with duplicate vectors, reducing the number of
fitness evaluations required [17].

While fitness approximation reduces the computational cost
of obtaining fitness values, a single surrogate means that
training is highly sensitive to the accuracy of that surrogate
model [12]. Instead, a multi-fidelity approach means that a
number of surrogate models are used in training, reducing the
sensitivity of training on any particular surrogate’s accuracy.
Multi-fidelity techniques have been applied to a number of
problems, including wind farm layout design [18], antenna
design [19], as well as Dynamic Job Shop Scheduling (DJSS)
and DFJSS. At present, there are no applications of surro-
gate fitness approximation or multi-fidelity training for EMD.
However, there is existing work on single and multi-fidelity
surrogates for DJSS and DFJSS.

In DJSS, a number of jobs must be assigned to a set of
heterogenous machines, where each job can only be completed
by a particular machine of the set. Because jobs arrive in
the “shop” over time without prior information, jobs must be
assigned dynamically rather than following an a priori sched-
ule. DFJSS expands upon DJSS by loosening the constraint
that each job can only be completed by a particular machine,
instead allowing each job to be completed by some subset of
the machines. In both DJSS and DFJSS, the goal is to optimise
the machine resources to achieve some objective, such as the
minimising the overall makespan or max-flowtime [20]. Since
the DFJSS problem shares similarities with EMD, such as the
heterogeneity of workers and the highly dynamic nature of
the problem, it is likely that learnings from single and multi-
fidelity for DFJSS can be applied to EMD. There are various
single and multi-fidelity surrogate approaches that have been
applied to DJSS.

In [21], Nguyen et al. use problem approximation to evolve
dispatching rules for DJSS, scaling the original problem by
reducing the number of machines and operations arriving at
the shop to produce a fitness estimate f ′ (∆i). These fitness
estimates are then used to build the population of the next
generation from a candidate pool P ′, the result of apply-
ing genetic operations to the prior generations’ population

P . Nguyen et al. also reduce the number of replications
(equivalent to instances in our usage) to produce a fitness
fg (∆i), used to decide the best performing individual ∆∗

g

of a population P at generation g. Finally, full evaluation
is performed on ∆∗

g to find the true training fitness f
(
∆∗

g

)
,

allowing it to be compared to the best performing individual
of other generations. An equivalent problem approximation
for producing an estimate f ′ (∆i) in our GPHH for EMD
implementation would be to reduce the number of agents
and the size of the coverage area. However, there are various
complications when reducing coverage area size, such as route
finding complications if arterial roads are cut off in the process.

C. Surrogate-assisted GP For Dynamic Flexible Job Shop
Scheduling

Our multi-fidelity approach is inspired by research con-
ducted on surrogate-assisted GP for DFJSS by Zhang et
al. [20], as the fidelity strategy aligns well with our aim
of simplifying the original coverage area graph to a variety
of fidelity levels to vary the balance between approximation
accuracy and training speed. To train GP models for the DFJSS
problem, Zhang et al. use an approach described by Yska
et al. [22], in which both routing and sequencing rules are
evolved simultaneously. Similarly, in the GPHH for EMD re-
search [4] which forms the basis of this research, MacLachlan
et al. evolve all five key EMD rules D1-5 simultaneously with
GP.

In [20], Zhang et al. use problem approximation, where an
approximated, simplified surrogate problem is used in place
of the original problem. Then, the fitness value obtained
through evaluation on the simplified problem is used as an
estimator for the fitness value of an individual on the original
problem [20]. In [20], the problem is simplified by reducing
the number of jobs in the DFJSS problem. Thus, a low-fidelity
surrogate has fewer jobs than a high-fidelity surrogate. An
equivalent problem approximation method for EMD would be
to reduce the number of occurring emergencies and the length
of simulation time. However, we did not use this method
of problem approximation, as our problem approximation
design (discussed in Section IV) targets more directly the
performance bottleneck – the number of times that unique
route requests are made.

Naturally, low-fidelity surrogates will have some fitness
approximation error, but Zhang et al. assert that this does not
necessarily harm training performance. Instead, Zhang et al.
hypothesise that these lower fidelity surrogates may positively
contribute to the evolutionary search than the original problem,
as the problem simplification is capable of smoothing the mul-
timodal/noisy landscape of a complex problem [20]. Based on
the assumption that the surrogate fidelity and the performance
of the surrogate fitness values as estimators for the true fitness
values are positively correlated, Zhang et al. use simple (low-
fidelity) surrogates early in training, and increase the surrogate
fidelity as training progresses. Zhang et al. propose two
multi-fidelity surrogate strategies in [20]: Adaptive Surrogate
Genetic Programming (ASGP) and Generation-Range-Based
Surrogate Genetic Programming (GSGP).
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In ASGP, the surrogate fidelity is increased continually
throughout training. In [20], the number of jobs increases
linearly: Njob,i = Njob × max(i,1)

maxGen−1 , where Njob,i is the number
of jobs for the surrogate at a particular generation i, maxGen
is the maximum (last) generation, and Njob is the number of
jobs in the original problem.

In GSGP, the generations are split into ranges, each of
which is assigned a particular fidelity level. The fidelity
levels are non-decreasing as the generation i increases towards
maxGen. GSGP is well suited to our problem approximation
design (Section IV), as graphs can be built with varying fidelity
levels at runtime. In testing, Zhang et al. found that ASGP
and GSGP reduced computation time by 25.7% and 34.4%
respectively, and achieved similar or better test performance
compared to the full-fidelity training. ASGP is not feasible
for our method of problem simplification – since the first gen-
eration of training/evaluation performed at each fidelity level
must be performed at full-fidelity for data collection (discussed
in Section V-B), fidelity cannot be increased continuously. As
such, we use a multi-fidelity strategy based on GSGP.

III. IMPROVEMENTS TO ORIGINAL GPHH FOR EMD
IMPLEMENTATION

As implemented by MacLachlan et al., the original GPHH
for EMD implementation is a multithreaded application writ-
ten in Java 8 using the ECJ library. ECJ is a popular and
well-established EC toolkit first released in 1999, offering
optimised performance and support for parallel computation
in a unified framework [23]. Whilst our multi-fidelity design
aims to improve execution speed by reducing the accuracy
of estimates within the simulation, we first seek to exhaust
optimisation efforts that do not have a tangible impact on
training. As such, a number of engineering improvements have
been made to the original GPHH for EMD implementation to
form a baseline from which the multi-fidelity implementation
can be compared to.

A. Maven & Java Version Update

The original implementation was built using the IntelliJ
build system using local .JAR dependencies on a particular
machine, making it difficult to transfer to other development
environments. In order to ease onboarding for new contributors
using local development environments, we replaced this with
the Maven build system, enabling access to updated depen-
dencies through the Maven Central Repository.

The original implementation was run on OpenJDK 8. Since
non-commercial support for Java 8 ended in March 2022, we
upgraded to Java 17, the latest LTS version of Java in March
2023, the start date of this project [24]. Java 17 has premier
support until “at least” 2026. We also changed runtime to Azul
17, which we found to reduce training time by approximately
50% in local testing.

B. Multithreading Improvements with ForkJoinPool

Within a single generation of GP training, we evaluate
1000 individuals to ascertain their fitness. The GP training

evaluation process is described in Section II-A. Because
evaluation is independent between individuals, the workload
is split across multiple cores using multithreading. We use
a compute cluster with 256 cores, and the multi-threading
implementation built into ECJ yields a significant speedup over
single-threaded execution. However, the ECJ implementation
splits the workload before execution. Since we do not have a
priori knowledge of how long evaluating any given individual
(and evaluation times between individuals vary significantly)
will take, threads are inevitably assigned unequal workloads.
No further processing can be completed until all individuals
are fully evaluated, and thus a few long-running threads
assigned particularly heavy workloads will prevent the next
stage (building the population for the next generation) from
executing.

To minimise workload inequality, we integrate an up-
dated multi-threading implementation into the existing ECJ
evaluation framework, using the Java ForkJoinPool, a
thread pool that implements “work stealing” [25]. Using the
ForkJoinPool, each individual is considered a “task”,
distributed to the thread pool. Threads in the pool then
attempt to find and execute tasks submitted to the pool
when underworked, thereby allowing the computational load
to be distributed in a dynamic (rather than a purely static)
manner. Under profiling, we have found the ForkJoinPool
to distribute workload more evenly, reducing the variance in
workload between physical threads reducing the overall time
to evaluate all individuals within a generation by 7.5% on
average.

Start & Initialise 
Population

Thread 1 Thread 2 … Thread n

Evaluation Results

Population for 
Generation #g

Genetic Operators

End

Increment Generation #

Calculate Fitness – Simulation

Fig. 1: Flow diagram showing the fan-out, fan-in nature of
multithreaded computation within training.

Aside from evaluation, all other computations are done in a
single-threaded context on the main thread, though a number
of multi-fidelity computations are partially executed during
evaluation and thus in a multithreaded context. These multi-
fidelity computations are discussed in Section V-B. Figure 1
shows the overall training flow and multithreaded execution.
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C. Caching & hashCode Optimisations

Because the routes returned from route queries must be
stored in order for quantised routes to prevent recalculation for
similar endpoints, caching is a pre-requisite for multi-fidelity.
However, caching can also improve the performance of the
original implementation. Since route queries with identical
endpoints will always return the same route, stored routes can
be returned for future queries with the same endpoints.

As discussed in Section III-B, evaluation is executed in
parallel, the cache must support multithreaded operation with
minimal locking. We considered three implementations of a
parallel key-value cache in Java:

1) java.util.concurrent.ConcurrentHashMap<K,
V> from the Java Standard Library,

2) com.google.common.cache.Cache<K, V> from
the Google Guava Library, and

3) com.github.benmanes.cache.Cache<K, V>
from the Caffeine caching library, a successor to the
Guava’s caching API [26]–[28]

Despite its simplicity and ease of use, we found that the
ConcurrentHashMap implementation in the Java Stan-
dard Library is unsuitable for our cache use, due to its
lack of an eviction policy – memory usage could grow to
an unsustainable size given the number of possible points
in a graph. Guava uses the common Least Recently Used
(LRU) cache replacement policy, which discards the item
used furthest in the past. Caffeine uses a modern “Window
Tiny Least Frequently Used” policy, which has shown in
benchmarks to perform significantly better than LRU [29].
When testing on the existing GPHH for EMD system, we
found that Caffeine resulted in an average of 3% lower training
time over Guava (which itself produced training times under
half that of the original implementation), and so Caffeine
is the chosen caching implementation for our simulation.
We also optimised hashCode implementations, eliminating
equals and hashCode contract violations, and minimising
the boxing of Java primitives where possible.

Ultimately, this optimisation effort resulted in a baseline im-
plementation that is approximately 6x faster than the original
implementation, reducing mean training time from >24 hours
to 4 hours.

IV. MULTI-FIDELITY DESIGN

Simulation graphs are at the scale of, and represent real-
world coverage areas, such as the Wellington and Christchurch
graphs used in this research project. The execution of these
individuals on the simulated days is computationally heavy,
and is the most time-consuming process when training. There-
fore, our research aims to reduce the computational load
of simulations while producing comparable results in terms
of resultant fitness, ultimately reducing model training time.
The advantages of reduced model training time are twofold,
both reducing feedback cycle time of the GPHH for EMD
implementation in its research & development phase, and
facilitating a larger number of users (emergency dispatch
services) for a given compute capacity in production.

The computational cost of route-finding queries within a
graph is the primary contributor to the complexity of the
simulation. Route-finding queries are used throughout the
simulation to implement the various terminals that make up
an individual, as well as to calculate locations of agents in
transit. We use the OpenRouteService library, which supports
a simultaneous query for a Pathi→j = {pi, . . . , pj} and
Costi→j ∈ R+ from a source point pi = ⟨lati, loni⟩ to a
destination point pj = ⟨latj , lonj⟩. We then denote the tuple
Routei→j = ⟨Pathi→j ,Costi→j⟩ as the route between two
points on a graph, such as the route from an agent to a new
emergency.

These route-finding queries are performed throughout the
training process in excess of 10,000 times per individual, per
training instance, per generation, per training seed, per graph.
In a full training run, we train 1000 individuals on 5 instances
each for 50 generations, repeated over 30 Pseudorandom
Number Generator (PRNG) seeds. As a result, route-finding
queries are made well in excess of 75 billion times per training
run, and so optimisations made to this critical operation can
have a significant impact on the resulting training time. Given
this observation, the principal aim of our research is to reduce
the computational cost of route-finding queries.

In real-world EMD, operators must make dispatch decisions
with estimates for route costs, and indeed the costs returned
from OpenRouteService throughout the simulation can only be
considered estimates. Our approach to optimising route-finding
requests is to decrease the accuracy of these estimates in order
to increase the speed of the requests over many invocations.
The effective accuracy of these estimates constitute a level of
fidelity, where a low-fidelity graph will produce low-accuracy
routes, and a high-fidelity graph will produce high-accuracy
routes. The fidelity level is then inversely proportional to the
amortised speed of request invocations, and thus we implement
multi-fidelity techniques, varying the balance between accuracy
and speed throughout training.

A. Caching and Route-Point Quantisation

An initial optimisation over the original GPHH for EMD
implementation is the usage of query caching. Since queries
can be considered pure functions, the result Routei1→j1 of a
given route query can be reused for query pi2 → pj2 , provided
that pi1 = pi2 and pj1 = pj2 . This can provide significant
speedup for queries between static locations, such as the
route between an agent at a facility to a repeat emergency,
eliminating the need for recalculation when start and end
points are identical.

However, if pi1 and pi2 or pj1 and pj2 differ, even by a small
amount (e.g., within 15 meters), the route must be calculated
anew. Our graph simplification approach is to loosen this
constraint through the quantisation of endpoints in a route
query, such that route query results can be re-used when
pi1 ≃ pi2 and pj1 ≃ pj2 , with lower fidelity graphs quantising
more aggresively, allowing for reuse between pairs of points
with greater deviations than higher fidelity graphs. An intuitive
design for route-point quantisation would be to store the result
Routei→j for each pair pi → pj , and return Routei→j for some
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pi2 → pj2 if pi ≃ pi2 and pj ≃ pj2 . As fidelity increases, we
would decrease the maximum allowable distance for endpoints
to be quantised to endpoints for which a route has already been
computed. However, with this design, the resulting endpoints
used in the route query for are dictated solely by the points
used in the first query with points in their respective areas,
since subsequent queries with endpoints within a radius of the
endpoints in the initial query will return the same route. If the
first query had endpoints in a difficult-to-access location (e.g.,
down a narrow, windy road), it may be a poor representative
of endpoints in the vicinity. In addition, within a multithreaded
simulation context, the first query may differ from run-to-
run, resulting in non-deterministic behaviour for the resulting
quantised routes.

For these reasons, we use a quantisation design that is less
sensitive to initial route queries, and can be implemented in
a deterministic manner. For a fidelity level l, we divide the
graph into l2 equally sized areas called boxes. Figure 2 shows
the Wellington (WLG) graph divided into boxes at l = 10 and
l = 50. We then elect (through some election algorithm) a
delegate point pBdel for each box B in the graph that is used
as the quantised point when a point p is used as an endpoint for
a route query: p⇝ pBdel ⇐⇒ p ∈ B. We use ⇝ to indicate
replacement with an approximation: x ⇝ x̂ denotes x being
replaced with x̂. Then, a route query between endpoints pi →
pj are substituted with a route query between the delegate
points for the boxes in which pi and pj reside respectively:
Routei→j ⇝ RoutepBx

del
→pB

y
del

⇐⇒ pi ∈ Bx ∧ pj ∈ By. This
route is cached, and future route queries from pi1 → pi2 can
return the same route, provided that pi2 ∈ Bx ∧ pj2 ∈ By. As
fidelity increases, we divide the graph into a greater number
of boxes, resulting in smaller boxes and thus more accurate
delegate points.

Fig. 2: Wellington (WLG) graph divided into 102 boxes at
fidelity 10 (thick black lines) and 502 boxes at fidelity 50
(magenta lines).

B. Multi-Fidelity Strategy

We use a Multi-Fidelity Strategy adapted from the GSGP
strategy described by Zhang et al. [20]. In a fidelity stage

a particular fidelity level is maintained for a range of genera-
tions, after which the fidelity level is updated for the next stage.
Multiple fidelity stages are sequenced together to comprise a
fidelity sequence. The fidelity sequences used in our evaluation
and analysis are described in Section VI-B.

C. In-Transit Simulation Simplification (ITSS)

In addition to the route-point quantisation described in Sec-
tion IV-A, we also simplify the simulation to facilitate the use
of route-point quantisation. When an individual is evaluated on
the simulated “days” of occuring emergencies, agents (such as
ambulances carrying medical personnel) travel to emergencies,
and optionally return to a facility so patients can receive further
care. When an agent is en-route to a destination (either a
facility or emergency), its location must be updated so that it
can be used in the decision-making process. For example, an
ambulance with capacity en-route to a facility may become the
closest ambulance to a newly occuring emergency, resulting
in its dispatch to the emergency. Due to limitations with the
OpenRouteService graph implementation, we are unable to
obtain time estimates within a route. Therefore, the current
implementation uses a binary search of route queries to points
within the agent’s current route are used to locate agents that
have been in-transit on a particular route for some period of
time.

However, since route-point quantisation effectively limits
the resolution of such requests, this binary search method is
infeasible, as time estimates for points further along a route
may not necessarily be longer. As a result, we opt to simplify
the method by which agent locations are calculated. Consider
an agent on a Routei→j = ⟨Pathi→j ,Costi→j ∈ R+⟩, where
Pathi→j = {pi = p0, . . . , pj = pn} has n points. If m time
has passed since the agent left pi, we linearly interpolate the
point based on the proportion between the elapsed and total
estimated time, taking point p⌊n× m

Costi→j
⌋ to be the calculated

location of the agent.

D. Intra-Box Routing

As discussed in Section IV-A, route queries between
endpoints pi → pj are substituted: Routei→j ⇝
RoutepBx

del
→pB

y
del

⇐⇒ pi ∈ Bx ∧ pj ∈ By. However, when
both the source point pi and destination point pj reside within
the same box B, then Bx = By, and thus pBx

del
= pBy

del
. Then,

the calculated route would be: RoutepBx
del

→pB
y
del

= ⟨{pBx
del
}, 0⟩.

A Costi→j of 0 is not a representative cost value for routes
within a box, as costs are always positive. Such a cost could
encourage the model to prefer the dispatch of agents to
emergencies in the same box, since it would achieve this
at no time cost. However, this would not generalise well to
testing (nor in real-world application), since testing is always
performed at perfect fidelity and actual costs are positive.
Instead, for each box B, we calculate a cost value c that
is used to approximate the mean cost of routes with both
endpoints within B, resulting in a quantised intra-box route
of RoutepBdel→pBdel

= ⟨{pBdel}, c⟩.
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Fig. 4: Architecture of Multi-Fidelity GPHH for EMD. Orange
components are written in Java, while the purple multi-fidelity
component is written in Kotlin. Dotted line shows default
connection from OpenRouteService to GPHH for EMD system
when Multi-Fidelity is disabled.

V. MULTI-FIDELITY IMPLEMENTATION

As discussed in Section III, the improved baseline GPHH
for EMD implementation is a Java 17 application using the
ECJ library. It uses the OpenRouteService Java library for
graph operations such as route finding, as well as a number
of other Java dependencies managed by Maven. We use the

Kotlin programming language for the multi-fidelity implemen-
tation due to its ease of use facilitating faster prototyping,
full interoperability with Java, and similar runtime perfor-
mance [30]. Figure 4 shows the architecture of the Multi-
Fidelity GPHH for EMD system.

A. Multi-Fidelity Strategy

To facilitate the simple configuration of the multi-fidelity
strategy, we integrate the multi-fidelity parameters, such as
fidelity staging (fidelity at each generation range) into the
plaintext .params configuration file used by ECJ.

B. Box Lifecycle

As discussed in Section IV-A, we elect a delegate point
pBdel (used for both inter and intra-box routes) and intra-box
cost value c for each box B. An intuitive implementation for
delegate point election would be to elect the central point
of the box. However, the central point may not be a good
representative for query points in that box. For example, for
a box with an arterial road on its west side, a delegate point
situated towards the west would be more representative of the
typical point than the central point of the box. Similarly, for
intra-box routes, every box will have a different typical cost
(compare an inner-city box to a rural box with a highway
roads). Therefore, for each box B, we observe a number of
route queries made during simulation/evaluation to elect the
delegate point pBdel and cost value c. There are two distinct
cases for route queries:

1) Inter-box queries: the endpoints reside within different
boxes: pi ∈ B1 ∧ pj ∈ B2,B1 ̸= B2

2) Intra-box queries: the endpoints reside within the same
box: pi ∈ B ∧ pj ∈ B

For case (1), we add pi and pj as delegate point “votes”
for B1 and B2 respectively. Once the Graduation Eligibility
Criteria (Section V-B1) for a box B is met for inter-box
queries, the delegate point pBdel is calculated via the Delegate
Point Election Algorithm (Section V-B2). Before pBdel is
elected, B is externally inactive, and all inter-box queries with
an endpoint residing in B are calculated at perfect fidelity with
the underlying OpenRouteService implementation, though the
In-Transit Simulation Simplification (Section IV-C) still ap-
plies. After pBx

del
for a box Bx is elected, the box “graduates”

to become externally active, and inter-box queries with an
endpoint residing in Bx would be quantised – including
queries in which the box the other endpoint resides in has
not elected a delegate point.

In case (2), we record the Costi→j for the enclosing box
B. Once the Graduation Eligibility Criteria (Section V-B1)
for a box B is met for intra-box queries, the cost value c
is calculated by averaging the recorded costs. Before c is
calculated, B is internally inactive, and all intra-box queries
with endpoints residing in box B are calculated at perfect fi-
delity with the underlying OpenRouteService implementation,
though the In-Transit Simulation Simplification still applies.
Once c is calculated, provided that a pBdel has previously
been elected, the box “graduates” to become internally active,
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and intra-box queries within endpoints residing in box B use
quantised routes.

As a result, there are three possible states for each box,
shown in Table I.

State Symbol Internal State External State Possible
Next States

B Inactive Inactive {B+}
B+ Inactive Active {B±}
B± Active Active ∅

TABLE I: Box states with state symbols and possible next
states.

When fidelity is changed, the graph is divided into a new
number of boxes, and all boxes are initialised to an internally
and externally inactive state.

1) Graduation Eligibility Criteria: To calculate representa-
tive values for pBdel and c, we first observe full-fidelity route
queries and collect point and cost data, calculating values after
the number of data observations meet or exceed a particular
threshold k. We use a value of k = 50, which we have found
in testing to produce relatively stable values (with different
PRNG seeds) while not significantly impacting performance.
However, if boxes were permitted to graduate immediately
after meeting the threshold k and begin returning quantised
routes, this would occur during evaluation, thereby changing
the behaviour of the simulation and resulting in an unequal
evaluation of individuals within a generation: Consider a graph
with fidelity n = 3, such that the boxes are in state Bt:

Bt =

B11 B12 B13

B21 B22± B23

B31 B32 B33


Where a + suffix indicates that a box is externally active

only, and a ± suffix indicates a box is both internally and
externally active.

If an individual d1 is evaluated given Bt, when we request
a route from pi1 ∈ B23 to pj1 ∈ B22, the route request would
be quantised to:

Routei1→j1 ⇝ Routepi1→p
B22

del
(1)

The returned route would then be:

Routepi1
→p

B22
del

= ⟨{pi1 , . . . , pB22
del
},Costpi1

→p
B22

del
⟩ (2)

If another individual d2 is then evaluated and performs a
route request from pi2 ∈ B23 to pj2 /∈ B23, the number
of external requests with a point within B23 may reach
the threshold k. Then, if boxes were permitted to graduate
immediately after reaching the threshold, then B23 would
graduate, and the boxes would then be in state Bt+1:

Bt+1 =

B11 B12 B13

B21 B22± B23+
B31 B32 B33


Any subsequent requests from the same pi1 ∈ B23 to pj1 ∈

B22 as in (1) would then be quantised to:

Routei1→j1 ⇝ Routep
B23

del
→p

B22
del

(3)

Returning a route not equal to (2):

Routep
B23

del
→p

B22
del

= ⟨{pB23
del
, . . . , pB22

del
},Costp

B23
del

→p
B22

del
⟩

As a result, the evaluation on individuals would differ
between states Bt and Bt+1. This is undesired, as the fitness
values for each individual used to determine the likelihood
for reproduction will not be comparable. In addition, such an
implementation would exhibit non-deterministic behaviour in a
multithreaded context, as the first k queries (from any threads)
would vary from run to run.

Therefore, we limit box graduation to occur only when
the generation is incremented, when all evaluations for that
generation have completed and the system is running in a
single-threaded context (see Figure 1). This ensures that all
individuals in a particular generation are evaluated under iden-
tical circumstances. In addition, we do not limit the number of
route request observations to the first k, instead graduating any
boxes that have collected at least k observations. As a result,
the order in which routes are requested before graduation does
not affect the resultant pBdel and c values for each box, so pBdel

and c are deterministic across runs (provided PRNG seeds
are identical). However, the number of observations is only
guaranteed to be ≥ k, rather than = k, since boxes continue
to collect observations until they graduate.

2) Delegate Point Election Algorithm: To calculate the
delegate point pBdel for a box, a number of alternatives were
considered:

• MFE: Average every (≥ k) observed point equally
• MFD: Average ≥ k distinct observed points
• MFL: Compute a weighted average of every point,

weighting the log (log10) of the number of points ob-
served at a distinct location

MFE MFL MFD

Average Test
Fitness (σ)

47.25 (0.96) 46.67 (1.14) 46.59 (1.10)

TABLE II: Average test fitness across 30 runs (PRNG seeds)
on WLG graph after 25 generations for delegate point election
algorithm alternatives.

When using MFE, we found that the elected delegate
points for particular boxes were more varied between runs
with different PRNG seeds. Since training instances (which
contain emergencies and their locations) are used repeatedly,
many routes had the same endpoints, and thus the delegate
points were highly sensitive to the first few training instances
used. Therefore, we implemented MFL, ensuring that repeated
points had only a logarithmic (rather than linear) influence on
the calculated average. This ultimately produced models with
lower (better) average fitness (46.67 for MFL vs 47.25 for
MFE). However, in testing, we found that MFD produced
models with the lowest (best) fitness of the three alternatives,
and so MFD is the chosen Delegate Point Election algorithm.
Figure 5 shows how MFD elects a delegate point, compared
to simply using the central point of a box.

In total, the multi-fidelity techniques employed in our im-
plementation encompass the following additions to the existing
GPHH for EMD implementation:
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Fig. 5: Left: Delegate point in a grid square chosen by
center point method, and automatically snapped point by
ORS to nearest street. Right: Delegate point in a grid square
elected using MFD. The magenta points denote the previously
requested points, the dashed outlined point denotes the average
point chosen as the delegate, and the ringed point denotes the
automatically snapped point by ORS to nearest street from the
delegate.

• Subdivision of the original graph (Section IV-A) during
initialisation

• Change of graph fidelity through re-subdivision in accor-
dance with the staging strategy (Section IV-B),

• Observation and collection of full-fidelity route queries
during evaluation (Section V-B)

• Graduating boxes from inactive to active states between
generations (Section V-B1), and

• Fulfillment of route requests between points with routes
between quantised delegate points during evaluation.

VI. EVALUATION AND ANALYSIS

To evaluate the effects of employing multi-fidelity tech-
niques in GPHH for EMD, we compare a number of models
trained with multi-fidelity training against the updated baseline
implementation described in Section III.

The full evaluation process involves three stages: Training,
Validation, and Testing.

1) Training: As discussed in Section IV, during a full
training run, we train 1000 individuals on 5 instances each for
50 generations, repeated over 30 PRNG seeds. However, due
to computing resource constraints discussed in Section VI-A
and following an observation that the model tended to con-
verge well before the 25th generation (Generation 24), this
was halved to 25 generations. The training fitness of each
individual at each generation is ascertained by evaluating the
individual on 5 instances using a graph at the prescribed
fidelity level for that generation. During training, for each
generation, the individual with the lowest training fitness out of
the population (1000 individuals) is retained as the candidate
individual for that generation. The result of training is the 25
candidate individuals and their training fitness, one for each
of the 25 generations.

2) Validation: During validation, the 25 candidate individ-
uals produced during training are validated on 250 instances
each to ascertain their validation fitness. The validation fitness
of each individual is ascertained by evaluating the individual

on instances using the baseline graph without fidelity simpli-
fication. The individual with the lowest validation fitness is
then the chosen individual for that run.

3) Testing: In testing, we test the 25 candidate individuals
(which includes the chosen individual from validation) on 500
each to ascertain their test fitness. The test fitness of each indi-
vidual is ascertained by evaluating the individual on instances
using the baseline graph without fidelity simplification.

The result of the evaluation process for each run is the 25
individuals for a run, alongside their train, validation, and
test fitness values. This process is repeated over 30 runs (with
different PRNG seeds) to account for variations from run to
run. All summary statistics are averaged across these 30 runs,
and are shown alongside the standard deviation.

A. Computing Resource Constraints

The computational load of running the GPHH for EMD
implementation requires the use of a High Performance
Computing (HPC) cluster. Because of the performance and
optimisation focused nature of this project, it is critical that
timing runs are completed on the actual hardware that the
implementation will run on – a number of performance bot-
tlenecks only manifested themselves when running on the HPC
cluster, such as lock contention. The majority of timing runs
when improving the original GPHH for EMD implementation
to form the new baseline model were run on the Rāpoi HPC
computing resource. However, partway through the completion
of this project, the Rāpoi resource became unavailable to
us, and so we did not have any HPC resources to complete
timing runs. Eventually, we gained limited access to NESI,
another HPC cluster, which we were able to run the final
evaluations on. We would like to thank Jordan MacLachlan (of
MacLachlan et al.) for his efforts in finding and gaining access
to NESI. However, the temporary lack of computing resource
which lasted over a month restricted progress on this project.
In particular, we were unable to iterate on our solution based
on results, as we were only able to complete the final train,
validation, and test runs in the remaining time. Instead, we
iterated on the multi-fidelity implementation with local testing
only. Because of the change from Rāpoi to NESI, training
times are not comparable between Section III and Section VI,
though we estimate that NESI is approximately 2x faster than
Rāpoi.

B. Fidelity Sequences

We evaluate three separate fidelity sequences to investigate
how different sequences affect training. All three sequences
use the same generation ranges, starting at fidelity 50 and
ending at fidelity 3000, but have differing intermediate fidelity
levels. We expect that the sequences with lower intermediate
fidelity levels will complete training in a reduced time, since
a lower fidelity facilitates increased use of cached routes.
However, the effect of lower fidelity on final test fitness may
be more nuanced, since lower fidelity graphs may be worse
predictors of the test fitness of individuals than higher fidelity
graphs, but may also smooth the search space facilitating more
effective learning.
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Generations FS0 Fidelity FS1 Fidelity FS2 Fidelity

[0, 5] 50 50 50
[6, 10] 75 100 250
[11, 15] 250 500 1000
[16, 20] 1000 1500 2000
[21, 25] 3000 3000 3000

TABLE III: Fidelity levels for FS0, FS1, and FS2.

Fidelity (l) Geographical Box Size on WLG
(w × h)

50 3.6km × 2.6km
75 2.4km × 1.73km
100 1.8km × 1.3km
250 0.72km × 0.52km
500 360m × 260m
1000 180m × 130m
1500 120m × 86.6m
2000 90m × 65m
3000 60m × 43.3m

TABLE IV: Geographical box size on Wellington (WLG)
graph at each fidelity level.

The models using these fidelity sequences are then called
MFD-FS0, MFD-FS1, and MFD-FS2 respectively.

Training time confirms our hypothesis that lower fidelity
sequences complete training in a reduced time than higher
fidelity sequences. Figure 6 shows that MFD-FS2, MFD-FS1,
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Fig. 6: Violin plot showing the distribution of training times
over 30 runs. x axis labels show the model, the mean training
time, and the standard deviation in brackets. An outlier time of
48 minutes for MFD-FS1 has been removed, as the scheduler-
measured job time was not consistent with the internally
measured running time. Thus, MFD-FS1 is aggregated across
29 runs.

and MFD-FS0 all have considerably lower training times than
the baseline, with the average training times 41%, 48.4%, and

51.3% faster than the baseline respectively. After removing
extreme values 1, mean test fitness does not differ significantly
between the four tested models. However, standard deviation
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Fig. 7: Violin plot showing the distribution of test fitness over
30 runs 2. x axis labels show the model, the mean test fitness,
and the standard deviation in brackets.

does differ – the multi-fidelity models exhibit a higher standard
deviation, and Figure 7 shows that fitness values for MFD-
FS2, MFD-FS1, and MFD-FS0 are spread out across a larger
range than the baseline. We attribute this increased variation in
multi-fidelity models to an increased variance in the produced
rules/individuals. Figure 8 shows that the aggregate tree size
of the individuals vary more across the 30 runs of each multi-
fidelity model than the baseline.

To show the learning effectiveness throughout the training
generations, we plot the average test fitness of the candidate
individual at each generation across the 30 training runs.
Figure 9 shows multi-fidelity models starting at a higher
test fitness than the baseline in the first generation, before
the average test fitness drops to become equivalent to the
baseline model by generation 8. In generations [0, 5], while
the baseline has consistently lower test fitness than the multi-
fidelity models, the multi-fidelity models are still able to learn
effectively, as the test fitness reduces in tandem with the
baseline. As discussed in Section V-B, the first generation of
each fidelity stage is evaluated at perfect fidelity. However,
since the In-Transit Simulation Simplification (Section IV-C)
still applies, the graph is still a surrogate replacement of
the original graph, and thus there remains some increase in

1 Three extreme fitness values above 60 (those which perform worse
than closest-idle) have been removed, two from MFD-FS0 and one from the
baseline, in order to more accurately reflect the comparative test performance
between the baseline and the shown models. Extreme test fitness values have
been equally observed in both baseline and multi-fidelity models, and thus we
believe that this is an issue unrelated to the implementation of multi-fidelity
learning. The cause of individuals exhibiting high test fitnesses despite low
validation fitnesses is unclear at present.

2See footnote 1.
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Fig. 9: Line graph showing mean test fitness for candidate
individuals at each generation.

approximation error. Therefore, the evaluation is less effective
at assigning the lowest training fitness to the best individual,
a limitation further exacerbated by the fact that the first
generation is randomly initialised. After generation 8, training
progress is similar for all models. However, MFD-FS0 and
MFD-FS2 show peaks in average test fitness at generation 10
and 23 respectively. Further analysis shows that these peaks
are the result of a small number of extreme values that impact
the mean. Figure 10 shows that median test fitness does not
peak in this manner.

Overall, we conclude that the multi-fidelity models are able
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Fig. 10: Line graph showing median test fitness for candidate
individuals at each generation.
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Fig. 11: Line graph showing the average percentage of time
saved per generation, relative to baseline: tb−tmf

tb
, where tb

is the time taken to train the baseline at that generation,
and tmf is the time taken to train the multi-fidelity model at
that generation. “ITSS Savings” line and shaded area shows
mean ± σ percentage time saved through ITSS, obtained by
averaging percentage of time saved across generations at the
start of each fidelity stage, across all multi-fidelity models.

to learn as effectively as the baseline, but in a significantly
reduced training time. However, the majority of these time
savings occur within the first 10 generations. Figure 11 shows
that for the first 6 generations (generations [0, 5]), average
training time for that generation is over 90% (up to a maximum
of 93%) lower in the latter 5 generations compared to the
baseline. The stable percentage time saved for generations
[0, 5] suggests that almost all boxes that graduated in the first
fidelity stage for all multi-fidelity models (since all have the
same first fidelity stage) did so in the graduation step between
generation 0 and 1. By contrast, the ramp up in percentage
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time saved for the second fidelity stage [6, 10] indicate that
boxes continued to graduate as the generations increased. In
particular, for MFD-FS0, the percentage time saved appears
to increase logarithmically between [6, 10] from 15% to
83%, suggesting that a consistent proportion of inactive boxes
graduated to active states between each generation. A similar
pattern is observed for MFD-FS1, but the percentage time
saved is significantly reduced for MFD-FS2, within the range
achieved through ITSS alone. Past generation 10, percentage
time saved for all multi-fidelity models falls to around 20%,
with savings dropping below those achieved through ITSS
past generation 20. From this, we conclude that fidelity levels
greater than 250 do not contribute positively to a reduced
training time. However, ITSS remains an effective method to
optimise training speed, reducing training time by an average
of 24.5% whilst not making a measurable impact on test
performance during training.

Combined with the observation that training is effective
even at the lowest fidelity levels, because the majority of per-
centage time saved occurs during fidelity stages with fidelity
levels well below 250, we believe that a greater emphasis
should be placed on low fidelity surrogates in future fidelity
sequences. It is clear that, particularly in early generations,
there is sufficient accuracy in low fidelity graphs to facilitate
learning, though it is unclear whether this holds true for later
generations.

Since MFD-FS1 has the lowest test fitness (46.54) and yet
maintains a significant training time reduction (48.4%) over
the baseline, we choose it as the candidate multi-fidelity model
for further analysis. To see the speedup and learning progress
MFD-FS1 compared to the baseline, we plot the average
test fitness in realtime, showing the velocity of training at
each generation. Figure 12 shows the effectiveness of low-
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Fig. 12: Line graph showing average test performance of
candidate individuals at each generation, placed on the x axis
according to the elapsed time when training for that generation
has concluded. Line markers indicate each generation, and
every 5th generation, marker labels (displayed to the top right
of the marker) indicate the generation number.

fidelity training – by the time that the baseline has trained
to generation 5, MFD-SF1 has trained generation 15, and
MFD-SF1 completes training before the baseline has reached
generation 10.

We also plot the 25th, 50th, and 75th percentiles of test
fitness across the 30 runs for each generation to investigate
how the fitness values converge as training progresses. We
use percentiles rather than mean ± σ due to the right skewed
distribution of fitness, particularly at early generations. Fig-
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Fig. 13: Line graph showing 25th, 50th, and 75th percentiles
of test fitness across 30 runs for each generation of training,
for the baseline model and MFD-SF1 on WLG.

ure 13 shows that both the median fitness and the Interquartile
Range (IQR) remain consistent between the baseline and
MFD-FS1, with both models converging to a stable IQR by
generation 10. Past generation 10, mean and median fitness
values reduce very little, suggesting that the individuals with
low fitness values found during these generations is not the
result of continued/cumulative learning, but rather random
chance. However, the probability of finding exceptional in-
dividuals increasing as more trials/generations occur, and as
such, many of the individuals chosen during validation are
candidate individuals from later generations.

C. Model Generalisability – Christchurch (CHC)

As discussed in Section II-A, a limitation of the existing
implementation is that training starts with a randomised initial
population, meaning that even rudimentary heuristics can take
multiple generations to emerge through training. As a result,
we aimed to apply transfer learning techniques to GPHH for
EMD, building a baseline population that could be used as
the seed population for training on novel geographical areas.
Such a baseline population should not be specialised to any
particular graph, instead containing general dispatch heuristics
that could be refined during further (transfer) training. We
hypothesised that by applying our multi-fidelity techniques to
training, the resulting individuals would be more generalisable
since the lack of precision/detail in a low-fidelity graph could
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limit specialisation to a particular geograph. More general-
isable individuals would thus be more suitable for transfer
learning. To test this, we ran the validation and test stages
with the Christchurch (CHC) graph, using both the baseline
and MFD-FS1 trained on the WLG graph. This combination
of training on the WLG graph, then validating and testing on
the CHC graph is denoted as “WLG-CHC”. Figure 14 shows
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Fig. 14: Line graph showing 25th, 50th, and 75th percentiles
of test fitness across 30 runs for each generation of training,
for the baseline model and MFD-SF1. The models are trained
on WLG, while test fitness is evaluated on the CHC graph.

the 25th, 50th, and 75th percentiles of test fitness for each
generation. We see no significant difference in IQR between
the two models, with IQR reducing to a consistent level by
generation 10, mirroring the behaviour when tested on the
WLG graph. MFD-FS1 performs worse in test fitness for the
first 5 generations, but since this also occurs when testing
on WLG, this is likely due to a slightly reduced overall
learning effectiveness at low fidelities rather than reduced
generalisability.

Figure 15 shows that none of the multi-fidelity models
perform significantly better or worse on average than the
baseline on CHC, when trained on WLG. Overall, we do
not observe any significant impact of multi-fidelity on the
generalisability of the produced models.

Accordingly, we propose that to reduce the time used to
build rudimentary heuristics on novel geographical areas, early
generations should use a randomised initial population as
standard, but run at lower fidelities, reducing the time taken
to complete training for each generation while not biasing the
population from prior learning on a baseline graph.

VII. CONCLUSIONS AND FUTURE WORK

This project aims to reduce the training time of the GPHH
for EMD implementation through both engineering improve-
ments and the implementation of multi-fidelity training tech-
niques. We make a number of engineering improvements to the
original GPHH for EMD implementation to improve source
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Fig. 15: Violin plot showing the distribution of WLG-CHC
test fitness over 30 runs. x axis labels show the model, the
mean test fitness, and the standard deviation in brackets.

code portability and execution performance, forming a new
baseline implementation that is 6x faster compared to the
original implementation. We then propose a set of multi-
fidelity algorithms that enable the approximation of route-
finding in a geographical, coordinate based graph by subdi-
viding the geography into boxes, and quantising endpoints
of route requests into elected delegate points within those
boxes. We integrate an implementation of these multi-fidelity
algorithms into the baseline GPHH for EMD implementation,
and compare training execution time and test fitness values
throughout training. We find that multi-fidelity techniques do
not significantly impact test fitness nor model generalisability
compared to the baseline model, but achieve comparable
fitness levels between 41% to 51.3% faster. In addition, we find
that the speedup gained from these multi-fidelity techniques is
concentrated at fidelity stages with fidelity levels below 250,
with per-generation training time reduced by over 90% at the
lowest fidelity level.

These results indicate that multi-fidelity techniques in
GPHH for EMD are feasible and provide various opportunities
for future work to explore in greater depth:

1) Extended training at low fidelity
Our results indicate that the time savings are concentrated
at the lowest fidelity levels (those below 250), and that
training effectiveness is not significantly impacted by the
loss in route accuracy in early generations.
However, further work could explore whether these low
fidelity levels continue to facilitate training at later gener-
ations, or if fidelity must necessarily increase throughout
the training process.

2) Multi-fidelity testing
At present, multi-fidelity is only used during training,
reducing training time by up to 51.3%. As discussed in
Section I, fitness evaluation constitutes the majority of
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training time, a process also completed during testing.
Testing also takes a significant amount of time to com-
plete, since 500 evaluation instances are used in testing
rather than 5 during training, and it is completed using
the original graph at full fidelity.
Further work could explore the feasibility of completing
testing at a reduced fidelity, in particular the correlation
between test fitness at various fidelity levels compared to
full fidelity. If feasible, multi or reduced fidelity testing
could then further reduce iteration cycle time via a
reduction in testing time.

3) Mixed-fidelity graphs
In our multi-fidelity implementation, we subdivide a
graph into a fixed number of boxes, regardless of the
usage of endpoints within those boxes.
Our implementation could be extended to further sub-
divide boxes so as to improve accuracy for oft-queried
boxes (such as those residing in cities) whilst exploiting
the speedup from large boxes in less dense areas, such
as the countryside. Of particular value would be an
exploration into whether this recursive subdivision results
in bias, such as improved response times in urban areas
and worse response times in rural areas.

4) Affects of multi-fidelity training on diversity
In our testing, multi-fidelity models exhibited slightly
higher test fitness standard deviation from run to run.
Further exploration into the effects of surrogate-based
multi-fidelity training on population diversity would help
us to further enhance our multi-fidelity techniques.
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[18] P.-E. Réthoré, P. Fuglsang, G. Larsen, T. Buhl, T. Larsen, and H. Madsen,
“Topfarm: Multi-fidelity optimization of wind farms,” vol. 17, 12 2014.

[19] Y. Song, Q. Cheng, and S. Koziel, “Multi-fidelity local surrogate model
for computationally efficient microwave component design optimiza-
tion,” Sensors, vol. 19, p. 3023, 07 2019.

[20] F. Zhang, Y. Mei, S. Nguyen, M. Zhang, and K. C. Tan, “Surrogate-
assisted evolutionary multitask genetic programming for dynamic flex-
ible job shop scheduling,” IEEE Transactions on Evolutionary Compu-
tation, vol. 25, no. 4, pp. 651–665, 2021.

[21] S. Nguyen, M. Zhang, and K. Tan, “Surrogate-assisted genetic program-
ming with simplified models for automated design of dispatching rules,”
IEEE Transactions on Cybernetics, vol. X, 04 2016.

[22] D. Yska, Y. Mei, and M. Zhang, Genetic Programming Hyper-Heuristic
with Cooperative Coevolution for Dynamic Flexible Job Shop Schedul-
ing, 01 2018, pp. 306–321.

[23] E. O. Scott and S. Luke, “Ecj at 20: Toward a general metaheuristics
toolkit,” in Proceedings of the Genetic and Evolutionary Computation
Conference Companion, ser. GECCO ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 1391–1398. [Online].
Available: https://doi.org/10.1145/3319619.3326865

[24] “Oracle java se support roadmap — oracle australia,” https://www.oracle.
com/au/java/technologies/java-se-support-roadmap.html.

[25] “Forkjoinpool (java se 17 & jdk 17),” https://docs.oracle.com/en/java/
javase/17/docs/api/java.base/java/util/concurrent/ForkJoinPool.html.

[26] “Overview (java se 17 & jdk 17),” https://tinyurl.com/yc8xezxy, Apr
2023.

[27] “Guava,” https://guava.dev/.
[28] Ben-Manes, “Caffeine: A high performance caching library for java,”

https://github.com/ben-manes/caffeine.
[29] G. Einziger, R. Friedman, and B. Manes, “Tinylfu: A highly efficient

cache admission policy,” ACM Trans. Storage, vol. 13, no. 4, nov 2017.
[Online]. Available: https://doi.org/10.1145/3149371

[30] S. Gakis and N. Everlönn, “Java and kotlin, a performance comparison,”
2020. [Online]. Available: https://urn.kb.se/resolve?urn=urn:nbn:se:hkr:
diva-20721

https://doi.org/10.1007/978-3-642-01799-5_6
https://doi.org/10.1007/978-3-642-01799-5_6
https://www.bmj.com/content/378/bmj.o1763
https://doi.org/10.1007/s10618-022-00830-7
https://doi.org/10.1007/s10618-022-00830-7
https://www.sciencedirect.com/science/article/pii/S0920410522000080
https://www.sciencedirect.com/science/article/pii/S0920410522000080
https://doi.org/10.1007/s00500-012-0965-7
https://doi.org/10.1007/s00500-012-0965-7
https://doi.org/10.1145/3319619.3326865
https://www.oracle.com/au/java/technologies/java-se-support-roadmap.html
https://www.oracle.com/au/java/technologies/java-se-support-roadmap.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/ForkJoinPool.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/ForkJoinPool.html
https://tinyurl.com/yc8xezxy
https://guava.dev/
https://github.com/ben-manes/caffeine
https://doi.org/10.1145/3149371
https://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-20721
https://urn.kb.se/resolve?urn=urn:nbn:se:hkr:diva-20721

	Introduction
	Motivations
	Key Findings

	Related Work
	Learning Emergency Medical Dispatch Policies via Genetic Programming
	Multi-Fidelity Genetic Programming
	Surrogate-assisted GP For Dynamic Flexible Job Shop Scheduling

	Improvements to Original gphh for emd Implementation
	Maven & Java Version Update
	Multithreading Improvements with ForkJoinPool
	Caching & hashCode Optimisations

	Multi-Fidelity Design
	Caching and Route-Point Quantisation
	Multi-Fidelity Strategy
	itss
	Intra-Box Routing

	Multi-Fidelity Implementation
	Multi-Fidelity Strategy
	Box Lifecycle
	Graduation Eligibility Criteria
	Delegate Point Election Algorithm


	Evaluation and Analysis
	Training
	Validation
	Testing

	Computing Resource Constraints
	Fidelity Sequences
	Model Generalisability – Christchurch (CHC)

	Conclusions and Future Work
	References

