ENGR 489 (ENGINEERING PROJECT) 2023

Understanding Sickness and Emotional Experiences
in 360° VR Motion Simulators

Harley Welsby

Abstract—Simulating real-life scenarios for training and enter-
tainment purposes in Virtual Reality (VR) is more realistic than
ever before. Currently available VR head-mounted displays are
unable to match movements in VR simulations to real physical
movements effectively. Eight360’s Nova device is a 360-degree
VR motion simulator which physically moves its user in time
with their virtual movement in VR simulations. The Nova brings
to light new unknowns on whether 360-degree motion simulation
adversely affects VR motion sickness (cybersickness). This project
developed a spaceship flight simulation game for the Nova to
evaluate motion sickness symptoms. A user study was conducted
to evaluate the symptoms experienced and to better understand
the causes and effects of these symptoms to inform future design
of VR simulations and 360-degree motion simulators.

Index Terms—Virtual reality, simulation, cybersickness, mo-
tion sickness.

I. INTRODUCTION

HROUGHOUT the history of virtual reality (VR) tech-

nology, motion sickness (cybersickness) has been a crit-
ical issue at the forefront of device and simulation design
[1]. The use of head-mounted VR headsets has proven to
cause symptoms of motion sickness such as ‘“significant dis-
orientation” and rising heart rates [19]. Studies such as D.
Saredakis et al. [20] have proven that video game and task-
based content heightens the symptoms experienced, and can
be a significant blocker stopping some people from using
VR technology [18]-[20]. A primary cause of cybersickness
is the difference in motion between one’s physical and dig-
ital presences [19]. Theoretically, matching the movements
of one’s physical presence within VR content could reduce
effects of cybersickness and potentially make VR content more
accessible to the general public. With the development of full-
body motion simulators such as Eight360’s Nova device [21],

This project was supervised by Craig Anslow (primary), and Christopher
Maymon.

matching virtual movements for VR has become technologi-
cally feasible. However, new technology inherently means new
unknowns as the extent of the difference in motion sickness
has yet to be fully understood. Two previous studies have
been conducted assessing the difference between headset-only
VR usage and Nova device usage [7], [8], but little is known
about the effects of differing movements and Nova-specific
variables such as movement speed and acceleration on users
of 360 degree motion simulators. This project sought to better
inform future designs of VR content and 360 degree motion
simulators by assessing the effects of the Nova device via the
use of a bespoke software application, in the form of a VR
spaceship flight simulation game with support for the Nova
[21]. A user study was then conducted using the software
application developed, to assess the effects of the device on
motion sickness and identify any links between symptoms
experienced and rotational movement.

II. RELATED WORK
A. VR Motion Sickness and Evaluation Strategy

To understand the effects of the Nova device in regard to
motion sickness, an evaluation method must be developed
to determine an accurate reading of one’s sickness levels.
Previous studies have shown that the Simulator Sickness
Questionnaire (SSQ) [1] is able to provide accurate readings
of common motion sickness symptoms [1]-[3]. Symptoms are
categorized by Nausea, Oculomotor (eye comfort) and are
typically scored from 0-3, where 0 is no experience of the
symptom and 3 is a severe experience [3]. The SSQ system
has been standard in academia since it was developed in
1993 [4]. The primary limitation of the SSQ system however
is that there are a lot of questions asked [1], [2], meaning
it is not well suited to being continually answered verbally
during an experiment. Another study has been done previously
assessing an adaptation of SSQ called FastMS, which uses

ENGR 489 (ENGINEERING PROJECT) 2023

short questions such as “How sick do you feel?”” answered on
a scale from 0 to 20 [2]. As this system has been proven to be
accurate, it can stand in place of SSQ for during-experiment
questions to participants, to keep things short and simple [2].
To properly evaluate the solution, metrics should also be given
on the task presented to participants, and the usability of the
software. Two key systems have been developed previously
to quantify software usability, the NASA Task Load Index
(TLX) [5] and the System Usability Scale (SUS) [6]. The
TLX scale focuses on task achievement and stress experienced
when undertaking a given task via 6 questions answered on
21-point scale, such as “How mentally demanding was the
task?” and “How hurried or rushed was the pace of the
task?” [S]. The SUS scale is oriented more to usability, with
10 statements such as “I found the controls too complex”
and “I need support of a technical person” answered from
“Strongly Disagree” to “Strongly Agree” [6]. Each are suited
to assessing software and Nova device functionality but with
different approaches, either task-focused or directly stated [5],
[6]. These two questionnaires complement each other well,
and are the standard in assessing usability.

B. VR Simulators and Previous Solutions

Two prior projects have been run to assess sickness levels
of the Nova device, by C. Simmonds [7] and C. De Bruyn
[8]. The first featured a roller coaster simulation built from
scratch, where participants experienced a short roller coaster
ride (See Fig. 1) with no control over the simulation [7]. The
simulation had no player controls, and participants were run
through a pre-programmed course [7]. This has limitations in
that the simulation can only be used for the track provided
and there are only a few variables that can be changed [7].
However, no controls means no variation in the experience, and
participants would always be run through identical movements
in the device which is more consistent for data collection
[7]. The second project instead used a modification of an
existing VR game, Subnautica [9], to support the Nova device,
meaning the visuals were much more pleasing as they were
developed by a professional game studio [8]. C. De Bruyn’s
project gave controls to participants and had them move
the Nova themselves using a handheld game controller [8].
The consistency issue was mitigated by the use of a pre-
programmed checkpoint system, where all participants would
navigate the same course in a submarine with little room for
variation [8]. The biggest difference between the two prior
solutions however is what the solution was built upon. C.
Simmonds’ solution was built from scratch using Unity, which
has benefits in that the developer has absolute freedom over
what can be developed in the game and that any required
changes to fit requirements would be feasible, at the cost
of spending more time implementing basic functionality that
would already exist if one were to modify an existing game
[7]. C. De Bruyn’s solution was instead a modification of
the existing VR-supported game Subnautica [9], to provide
a checkpoint course and allow for control of the Nova device
[8]. A modification could be quicker to develop as the game
has already been built, and just requires an extra component

to be added to allow for Nova device rotation [8], but has
drawbacks in that the developer is limited to the modding API
for the game. Some games are open-source and provide their
code online, and some actively discourage modification, often
to prevent cheating. The choice made here should reflect the
project goals and requirements, and a solution of either method
has the potential to meet the project requirements.

Fig. 1. A section of the roller coaster track from the previous solution [7].

Fig. 2. A screenshot of Subnautica [9] from C. De Bruyn’s solution [8].

III. SOLUTION DESIGN
A. Requirements
The requirements for this project are as follows:
Reql:
Req2:
Req3:

The solution must be a playable VR experience.
Control of the Nova device must be supported.

The solution must involve first-person spaceship
flight.

Participants must be able to rotate in every direction.
Experiences between participants must be consistent.
Data must be output on the Device’s rotation.

The solution should be expandable for future work.

Req4:
Req5:
Req6:
Req7:

The requirements given by Victoria University of Wellington
upon beginning the project were minimal and open-ended,
provided that the solution was fit for purpose in a user study
with several constraints. These initial constraints advised by
the project supervisors being that the solution is a VR video
game involving first-person spaceship flight, in which the
player controls. It was also specified that the Nova device must

ENGR 489 (ENGINEERING PROJECT) 2023

be able to rotate in every direction. Building on these initial
requirements (Requirements 1-4 below), the “fit for purpose
in a user study” specification had to be resolved. As seen in
previous work, an important part of this is consistency between
subjects to retrieve accurate results. Therefore, Requirement 5
is defined in that experiences between participants must be
consistent. Another difficult question to answer here is how
the analysis will be run after the user study, and which data
can be used to evaluate the symptoms effectively. While the
user study planned to primarily evaluate symptoms, it cannot
be ignored that participants will move in different ways as they
have full control over the game. Therefore, Requirement 6 was
defined that at all times, data must be output on the device’s
current rotation. This means that differing levels of rotation
between participants can be easily analyzed and interpreted
to factor in any major differences in symptom analysis which
could act as causes of said symptoms. As the development of
a VR game from-scratch is a large undertaking, it should be
possible to use the software in future work. Effort should be
made to design the software in a way which facilitates later
expansion (Requirement 7).

B. Design Choices

Drawing from previous solutions, the biggest decision is
whether to modify an existing VR game, or build one from
scratch [7], [8]. After initial investigation, the project proposal
stated that a modification would be developed for No Man’s
Sky [10], a VR-supported open-world spaceship flight game
with an active modding community [11]. Upon speaking to
members of the community and investigating the structure
of the game’s modding features, it was concluded that the
game did not support real-time retrieval of data values such
as ship rotation, meaning that control of the Nova device
would be near impossible [11]. A possible option could be
to use an in-memory editing software such as CheatEngine
[12]. However, this software is known to contain viruses
unless payment is given to an untrusted third-party and is
commonly used as a hacking tool for cheating in competitive
games [12]. The use of this tool would be ethically dubious
and thus the option of modifying this game would not be
feasible for this project. Since no other game could be found
with adequate modding tools, it was decided that a game
must be built from scratch. Several game engines exist with
VR support, the most popular being Unity [13] and Unreal
Engine [14]. C. Simmonds’ project used Unity [13] for game
development as the Nova device SDK is written as a plugin
for Unity [7]. Using another engine would require the Nova
device controller to be rewritten, therefore Unity was chosen
for this solution as well. Since Unity has been chosen as a
game engine for this project, the solution will follow Unity’s
conventions and framework. Unity projects are organized as a
nested series of components, where a component is anything
from an individual object to a code file. The highest level of
this component architecture is the Scene. The Scene acts as
the uppermost parent component of the solution as well as the
visual 3D space for the game. The scene must contain a folder
of checkpoint objects, laid out in the scene as specified by

the checkpoint system design. There must also be a folder of
obstacles and scenery containing asteroid/planet game objects,
and a folder of enemies containing spaceship game objects.
Finally, a Spaceship game object is required and should be
placed at the top of the scene directory. Each of the folder
directories acts as a bounded context for the inner components,
where nothing outside of the folder component should interact
with these objects.

C. Game Design

With the requirements of supporting consistency between
subjects for data collection (Requirement 5) but encouraging
movement (Requirement 4), a checkpoint course is a an
ideal task as it gives control to the player but in a consistent
manner and with as much movement as desired, depending
on how the course is set up. This method has also been used
previously in C. De Bruyn’s [8] project, where it proved a
good task for consistency which participants understood well.
The task requires participants to follow a set of checkpoints
through 4 “stages”, where after each stage one variable
changes for assessment on sickness effects in the user study.
Each stage should be consistent in length at 10 checkpoints
each and no more than 2 minutes in length, with an 11th
checkpoint straight forward from the 10th to allow time for
verbal questionnaires on symptoms.

The stages are organized in increasing difficulty as follows:

Stage 1: Basic movement and slowed controls.
Stage 2: Basic movement, regular controls.
Stage 3: Continual up and down movements.
Stage 4: Intensive obstacle course.

As well as the checkpoint system, a scored shooting system
was added. This is because the initial checkpoint task while
good for consistency, was often boring or too little in terms of
interaction. The shooting system creates more difficulty and
therefore requires more engagement from the player, keeping
them immersed in the game and thinking more about the task
than how they’re feeling at any moment. Although it should
add difficulty, the shooting aspect should not take away from
the checkpoint course as the course is essential to keep the
requirement of consistency (Requirement 5). However, there
needs to be incentive for players to use the system. If the player
were required only to shoot at static objects such as asteroids,
it likely would not be engaging enough to gather interest.
The solution devised is that during the checkpoint course,
several enemy ships should fly through the player’s view on
a randomly generated path from their spawn point, which can
be shot at for extra points. Each ship should be worth equal
points each, and additional points should be given based on the
speed in which participants reach each checkpoint. This adds
some variance between subjects however, so the ships should
at least spawn in the same locations to promote consistency.
Checkpoints should be numbered individually and organized
in a singly-linked list, where on game start each checkpoint
searches for the next in the list until one has no next checkpoint
value. The final checkpoint should be flagged as the last one

ENGR 489 (ENGINEERING PROJECT) 2023

and should stop the game once reached. Each checkpoint
consists of a visual circle indicating where the checkpoint
is, an invisible trigger which activates the checkpoint only
when a player has collided with it, and a C# script to handle
the location of the next checkpoint and focus switching (See
Fig. 3). The benefit of a checkpoint system which auto-
detects its own path is that the checkpoints can be moved
and remixed at any time. Should future studies take place
using the software built in this project, building an entirely
new checkpoint course or even a new scene would be simple
due to the fact that checkpoints dynamically self-detect. This
satisfies the requirement of keeping the software expandable
(Requirement 7).

Checkpoint Parent
Component

Visual Appearance C# Script providing Event Trigger
Checkpoint-1 (Circle Object) functionality checking for collisions

Checkpoint Next ¢

IsLast = False

Checkpoint-2

Checkpoint Next —l

Checkpoint-3

IsLast = False

Checkpoint Next

IsLast = True

Fig. 3. Structure of the singly-linked list of checkpoints (Bottom Left), and
structure of each individual checkpoint (Top Right).

In previous work, a loose handheld controller was used
to control the movements of the Nova device [8]. However,
the previous project saw no more than 45 degree vertical
rotations, meaning that there was no danger to the participant
should they let go of the controller [8]. This project has been
given the requirement of allowing 360 degree vertical rotations
(Requirement 4), meaning the use of a handheld controller
inside the Nova is no longer a viable option. The Nova
device comes equipped with fixed flight simulator controls
(a forward and back throttle in one hand, and joystick in
the other), so this is the only option for participants of this
solution. The throttle should control movement of the ship
forward and backwards, and all turning should be done with
the flight stick. A trigger or button on the flight stick should
activate the guns on the spaceship for the shooting feature.
The most important object in the scene is the spaceship. This
will be front and center during all gameplay and will act
as a connector for other components, since it is the way in
which the player will interact with all other objects in the
game. The spaceship component must consist of a parent
component acting as the visual representation of the ship, with
inner components/scripts attached to the parent and not each
other (See Fig. 5). One of these inner components must be
the C# script provided by Eight360 to allow for control of the
Nova device. The ship must also have a rigidbody component,
which handles physics simulations for the ship and acts as
the object for the Nova controller script to read rotations
from. An OpenXR component [36] must also be added within
the Spaceship component to act as the camera the player

views from when wearing a VR headset. OpenXR components
are physical camera components in the scene and therefore
must be placed within the cockpit to ensure the player is
seated correctly during gameplay [36]. Another C# script
must be provided which handles reading of control inputs
and rotation/acceleration changes on the rigidbody component.
Finally, a C# script component must be added within the
spaceship to handle logging of the rigidbody translation and
rotation during gameplay, to provide data for the user study.

Scene Visuals

Fig. 4. A default Unity scene using Unity’s VR Template. Highlighted in red
is the list of nested components within the scene, and in pink is the visual
display of the scene itself.

Spaceship Bounded Context

Spaceship
Component

Folder Bounded Context

; Object Folcer

Object

i | openxR component Rigidbody Movement Controller | | - Nova Controler | | Movement Logger | |
i (VR camera) (Physics Handler) (c# Seript) (C# Script) (C# Script) |

Fig. 5. Architecture of the scene, with each sub-component of the scene
acting as an isolated parent for the inner components.

D. Visual Assets

The Unity Asset Store is accessible as a free source of
visual assets [23]. Unity by default only includes simple
colours and surfaces with cube, sphere and plane shapes for
providing visuals. To meet the requirement of providing a
spaceship flight simulation (Requirement 3), the 3D scene for
the environment must visually appear like space, where the
surroundings are space-themed and participants sit in a virtual
spaceship. This means that a spaceship asset with a textured
cockpit is required, for the player to sit inside. A space-themed
background must also be provided, as Unity’s default appears
as a large white box. Any obstacles present should also fit into
the general space theme, and be recognizable as objects that
would be in space for the purpose of creating an immersive
space environment. When findings fitting assets, several free

ENGR 489 (ENGINEERING PROJECT) 2023

options were available on the Unity Asset Store [23] which
were adequate for producing the game, therefore these were
prioritized over paid options which would provide little more
value to the project. Assets were chosen based on their theme
fit and ability to adapt and modify the provided visuals. For the
player spaceship, an asset with a detailed interior is required.
The only free asset on the Unity Asset Store featuring a
detailed spaceship interior at the time of selection was Ebal
Studios’ “Hi-Rez Spaceships Creator Free Sample” [23], [30],
therefore this asset was chosen. For the enemy spaceships
players would shoot at as part of the task, an asset was chosen
from the same provider, “Star Sparrow Modular Spaceship”
[31]. This was to keep consistency between models, as the
assets have a noticeable style more similar to a cartoon
than reality. Therefore, choosing a model from a different
Unity Asset Store provider could be immersion-breaking or
jarring for the player. While several free assets exist for
distant planets, most appear to be 2D or only for background
use. “Earth like Planets” features 3D visuals which are high
enough in resolution to be used as close-up obstacles in the
game [32]. Several free asteroid assets are available on the
store [23], but are low-polygon or 2D. To fit the theme thus
far, just one asset “Asteroids Pack” actually appeared similar
enough to the ships and planets to fit into the game effectively
[33]. Many space backgrounds are available on the Unity Asset
Store, so there was much more freedom of choice on which
background to use [23]. However, most of these assets have
poor reviews, indicating there could be issues with them [23].
Therefore, the space background was selected based on the
item with the best reviews to ensure that a visually pleasing
experience is provided, with as little hassle in implementation
as possible. This asset is Pulsar Bytes’ “Starfield Skybox” [34].

E. Data Collection and Analysis

1) In-Game Data Output: For the user study, data had
to be output every frame containing the current time and
the translation and rotation data of the spaceship, to fully
understand each participant’s movements. This can be done
from a C# script component attached to the spaceship in the
Unity editor. Unity’s API by default uses two main functions,
Start and Update. Start runs the first time the component is
rendered, e.g. when the game starts. Update is called once
per frame. The Start function for the ship logging component
should determine an output file using a random GUID for
differentiation between subjects, and log to that file that the
game has started at the current time. The update function must
continually log the position and rotation of the spaceship’s
rigidbody component, which would be a child component
under the same parent as the logging script (the spaceship
component). The output file should be in CSV format to
facilitate easy parsing of the data in the analysis tools.

2) Analysis Tools: While the checkpoint course is able
to provide a guideline for consistency in the study phase,
everyone plays video games differently. When evaluating the
results of the study, it is important that inconsistencies can be
quickly recognized and assessed in participant’s experiences.
In C. De Bruyn’s project, a visualization tool was built

Analysis Tool User Flow

Spaceship Route Tracker

Choose File

Y X Rotation [V Rotation

Fig. 6. User flow of the Analysis Tool web application when uploading a log
file from the game.

in Python [8] using the Plotly low-code data visualization
library [15]. The tool tracked a given participant’s path in 3D
from a data file, giving insight on any inconsistencies that
could occur [8]. The major drawback of this system though is
that using Python means that the data visualizations must be
downloaded and run locally, with setup required in installing
and setting up Python. This could pose an issue if any future
work were to be done by a non-technical person, such as
collecting further data from this solution with modifications.
To resolve this drawback, a user interface should be developed
which could be used by a wider range of people with less
understanding of the underlying code. This could be done
in Python, but using a JavaScript web application, which
Plotly supports [15], would also mean that the tool is readily
available with no setup. Therefore, a web-based analysis tool
would be the preferred option.

Since this tool is not the primary solution for this project
and only an additional tool for later analysis, development
should be quick and simple. The React framework features
a one-command setup “Create React App”, which would
suit this requirement well as it builds a website template
using React and bypasses any initial setup required [16].
React also supports use of TypeScript, which allows strong
typing of variables for important calculations, preventing
programmer errors. By utilizing a user interface, data could
be uploaded by dragging and dropping onto a file picker
HTML component. This requires minimal effort from the
user and is generally an understood concept as many other
modern websites make use of drag and drop file choosing,
such as Facebook’s Profile Picture upload system [17]. To
promote usability, the screen should be as simple as possible
meaning that no other features are required than the drag
and drop file picker. Once a file has been uploaded, the page
should update to display a 3D diagram of a given player’s
route in the game using Plotly [15], and optionally some
additional density plots displaying rotation over time on the x
and y axis, to assist in understanding whether one participant
rotated more than another.

ENGR 489 (ENGINEERING PROJECT) 2023

FE. Sustainability

As the project requires no hardware components other than
the Nova device [21], the primary sustainability consideration
is the use of power for operating the device, and running the
produced solution. The more complex operations required in
the software, the more power will be required to run it. As
the project was run in New Zealand using the New Zealand
national power grid, up to 87% of the electricity used to de-
velop and run the project was produced by renewable sources
[22]. To reduce power usage, the solution designed uses only
operations directly required to fulfill the project requirements,
and avoids unnecessarily complex logic to reduce its power
usage and increase sustainability. Due to the use of Unity,
there is little that can be done to promote sustainability more
so than limiting unnecessary calculations in code and their
use of electricity. Primarily, conventional standards should be
adhered to in writing any scripts to prevent extra memory
causing power usage such as unused or incorrectly scoped
variables. However, this is not a major concern due to the
environmental stability of New Zealand’s power network [22].

IV. SOLUTION IMPLEMENTATION
A. Checkpoints

Checkpoints have been implemented as a game object
within the scene, under the “Checkpoint Course” context as
specified in the design. Each checkpoint object consists of 4
inner components; the Mesh Renderer, Sphere Collider, Func-
tionality Script and rigidbody (See Fig. 7). The Mesh Renderer
is included on a new game object by default and handles the
display of the visual representation of the object, in this case
a green sphere. The Sphere Collider component is visible in
the Unity editor as a green wireframe around the checkpoint
mesh from the Mesh Renderer, which has been placed over
the object and sized correctly around the checkpoint. This
component has a flag enabled titled “Is Trigger”, which allows
the use of the OnTriggerEnter() function in C# scripts attached
to the same parent object. Therefore, this Sphere Collider acts
as collision detection between the checkpoint and other game
objects. This is required to correctly detect when players have
reached a checkpoint so that it can be disabled and the next
one enabled to continue the course. The rigidbody component
also helps with this functionality, as it is required to provide
physics to the checkpoint object. Although the checkpoint
will be stationary, this rigidbody component in Unity lets the
checkpoint know where it is and what should and shouldn’t
be a collision with the Sphere Collider. Finally, there’s the
functionality script component. This component is a C# code
file which determines what the checkpoint should do under
certain conditions such as game start, update and Sphere
Collider overlap with another game object. Public fields in
these C# components are represented as variables on the
Checkpoint object in the Unity editor interface, meaning that
they can be freely toggled and modified without editing any
code. This is an incredibly useful feature for maintainability,
which has been utilized on the checkpoints in the form of
boolean flags. On game start, a checkpoint will first scan for
a Player Ship object, as knowing which object is the player

from game start helps keep interactivity simple during run-
time and prevent intensive searching of components during
the game. Next they will individually determine their assigned
checkpoint number, and locate a checkpoint in the game with
the number after theirs e.g., if one checkpoint is assigned
“Checkpoint-3”, it will locate and store “Checkpoint-4” as its
next value in a singly-linked list. Should a checkpoint not have
a “next” value, it will flag itself as the final checkpoint and
trigger the end-game screen once reached instead of unlocking
the next checkpoint.

Fig. 7. A dissection of the inner components on a Checkpoint object.

All individual checkpoints act as state machines in two
different states, Active and Inactive. All checkpoints begin as
inactive unless they are numbered as “Checkpoint-1". While
this could have been done with a single boolean “IsActive”
field, this approach was chosen as in future work, more states
could easily be added and handled for each checkpoint. Once
a checkpoint senses a collision has been made, it will confirm
that this collision is with the player’s spaceship and if so,
set itself as inactive and activate the following checkpoint in
the list. When performing this check, the checkpoints will also
enact certain functions given the boolean flags set in the Unity
editor as mentioned prior. Each flag is a separate functionality,
determining whether a checkpoint should be overridden as
the final checkpoint, or whether it is a stage change. If a
checkpoint is a stage change, then the game should be paused
so that participants can be questioned on their symptoms thus
far.

B. Checkpoint Task Layout

As per design, the checkpoints have been organized into
4 stages (See Fig. 8). Each stage consists of 11 checkpoints
taking roughly two minutes to complete, with one changing
variable between each stage. At the beginning of the game
and after every stage, there are checkpoints flagged to pause
the game for symptom questioning. The changing variables
are determined both by checkpoint flags and course design.
The first stage consists of just basic left and right movement,
with minimal vertical changes in the course. During this stage
and from the beginning of the game, the participant’s flight
stick controls for rotating themselves are slowed to one fifth
of their regular speed, via the “ShipControl” C# component on

ENGR 489 (ENGINEERING PROJECT) 2023

Top—Down View

-4000 |

Fig. 8. The checkpoint course layout split by stage, displayed via the 3D
visualization in the analysis web application.

the player’s spaceship game object. Once stage 1 is completed
by reaching Checkpoint 11, the checkpoint will increase the
player’s flight stick sensitivity to its regular level. This is the
variable change between the first and second stages, aiming
to determine by the end of the second stage whether the
speed in which the player rotates in the Nova device adversely
affects their symptoms or sickness levels. Stage 2 consists only
of basic movement similar to stage 1, as to not create any
unexpected variance outside of the control sensitivity change.
Once a player reaches stage 3, they are met with continual
up and down movements, forcing them to be nearly upside
down or suspended in the Nova device for most of the section.
Finally, stage 4 acts as an intensive obstacle course using
asteroids as obstacles directly in front of the checkpoints at
times as to provide a more mentally demanding task as the
final variable.

C. Enemies and Shooting

Enemies were implemented as object-orbiting spaceships.
Their implementation differs from the design in that dynami-
cally spawning the enemies around the player proved difficult,
and did not fit the requirement of consistency where possible
(Requirement 5). Instead, enemy spaceships orbit around a
fixed obstacle such as a checkpoint or asteroid, at various
points in the game. It was also found that the collision detec-
tion provided by the imported visuals was extremely difficult
to hit with the shooting implementation, so a wider collision
detection box was required so that most participants could
easily engage in the game’s shooting feature (See Fig. 9). Since
shooting is a player-controlled action, it was implemented in
the same C# script as the movement controls for consistency.
On pressing the designated shooting button as mapped in
the Unity Input Manager [29], a pre-defined bullet object is

created, which contains a sub-component C# script perpetually
moving it forward and eventually destroying itself if it collides
with another object or travels for too long. When implementing
this feature, it seemed fitting that shooting the obstacle aster-
oids should also have an effect, as stray bullets missing targets
buts hitting the asteroids and doing nothing did not initially
provide an engaging experience. Therefore, asteroids explode
when shot based on a health variable attached to them in a C#
script sub-component. For consistency, this was implemented
for any object hitting asteroids. This means that should the
player crash into an asteroid, the asteroid would explode. This
proved a fun experience, and also allowed for added difficulty
in that on explosion, the spaceship shakes itself side to side,
rotating the player in the Nova device. For the obstacle course
in Stage 4, this effect can be used to move the player in ways
they may not expect or do themselves.

Fig. 9. An enemy ship in the Unity Editor, where the green wireframe cube
is its collision detection.

D. Nova and VR Integration

VR integration was completed via Unity’s OpenXR plugin
[36]. Unity provides game templates when creating a project
with basic setup for various use cases, one of those being VR
with OpenXR. OpenXR is also an ideal VR plugin, due to its
multi-platform support of VR devices [36]. The game template
used provided just a “XRRig” component acting as the VR
camera, and some directional light behind it so that the player
can always see in front of them. This XRRig component has
been moved into the ship visually in the scene editor, as well
as placed as a sub-component of the spaceship game object,
meaning that it will act as part of the ship and move along
with it. During development, an Oculus Rift S [24] and HTC
Vive Pro 2 [25] were used to test VR functionality, however
the Nova device uses an HP Reverb G2 [26]. All three of
these headsets are notable as each one runs on a different
VR framework (Oculus [24], OpenXR [25], and Windows
Mixed Reality (WMR) [26]). This quickly became an issue
as it was unknown whether the game would work in a Nova
device since it had only been tested with other frameworks
directly supported by Unity. Near the end of development, an
opportunity arose to test the game with an HP Reverb G2

ENGR 489 (ENGINEERING PROJECT) 2023

[26], to which it was discovered the game did not support
it by default. An extra WMR plugin exists for the OpenXR
for Unity plugin, which allowed for use of the Reverb G2,
meaning that the game is functional on the Nova device.
Integration with the Nova device [21] was completed via the
use of the Nova Software Development Kit (SDK) provided
by Eight360 upon beginning the project implementation.

Fig. 10. The XRRig component and its placement in the player’s spaceship.

= Nova Visualisati... — O X

Fig. 11. The Nova Emulator running locally, as provided by Eight360 [21].
This emulator was used to test the affect of the game in controlling the Nova.

The SDK is a Unity plugin which consists of two scripts;
one to read rotations from an in-game rigidbody in the scene,
and another to actually rotate the device accordingly. The
SDK also came provided with a Nova emulator, which can
simulate the movements of the device virtually to test whether
the game is correctly connecting to and rotating the device.
From the SDK files, the script “NovaController.cs” was added
as a sub-component to the player’s spaceship, along with
a rigidbody component to handle physics simulations. This
allowed the emulator to move, proving that the device was
compatible during development and before testing on a real
Nova device [21]. Once the game was ready enough to test on
a real device, an issue was found in that the IP address and
port for the device are hard-coded into the game as public

fields in the Nova Controller component. This meant that to
debug issues with the device or switch between use of the
emulator and real device, the game had to be rebuilt entirely
from the Unity editor. To resolve this, modifications were
made to the pre-provided C# script to pass the IP and Port
fields from a configuration file. This configuration file was
stored in Unity’s pre-defined “StreamingAssets” folder as this
is persistent between build and editor versions and can easily
be accessed and modified.

E. Player and Investigator Controls

Implementation of the flight stick controls was difficult due
to the lack of accessibility to said controls, which could not
be emulated the same as the Nova device. Therefore, this
was one of the final implementations from the design before
user testing began. The Nova device comes equipped with a
Thrustmaster Hands-On Flight Stick (HOTAS) Warthog flight
simulation controller [28], which features both a throttle and
flight stick, where the user would hold the throttle in their left
hand and the flight stick on the right.

Trigger
Forward/Back

Ship Movement Rotational

Movement

Fig. 12. Player controls using the Thrustmaster Warthog [28]. This diagram
was adapted from PB Tech’s listing of the simulation controls [27].

According to the design of using bolted-down flight sim-
ulator controls, the throttle should handle forward and back
spaceship movement and the flight stick should handle space-
ship rotation. On the back of the HOTAS Warthog [28] is
a trigger, which can also be used for the shooting system
implementation. The input of the throttle and flight stick were
implemented via the use of the Unity Input Manager [29],
which can read controller input and translate it into a variable
in the form of an ’axis’, which is a scale reading where
the controller is currently located. Once the Input Manager
knows to read input from flight simulator controls (labelled
as Joysticks in the Unity Editor), the value of the controller’s
axis can be read in code as “Input.GetAxis(“ControllerAxis”)”
[29]. This is then used to translate the axis to movement, by
multiplying the throttle’s axis value by the maximum speed
and adding it to the velocity of the spaceship’s rigidbody com-
ponent. This rigidbody component is monitored for increased
acceleration by the Nova Controller script, and will move the

ENGR 489 (ENGINEERING PROJECT) 2023

Nova device backward slightly to simulate acceleration of the
vehicle. The spaceship object’s rotation is modified by the
flight stick, by multiplying Unity’s default rotation axes by
the horizontal and vertical axes input by the HOTAS Warthog
[28], multiplied by the sensitivity setting which is used to
control the slowing of the controls as specified in the study
design for Stage 1. Joystick controls can be read from multiple
joysticks at once in Unity, meaning that the HOTAS Warthog
controls were mapped the same as those for a traditional video
game controller [28]. Therefore for the investigator, a handheld
controller is able to control every aspect of the game as a
participant would. This adds a level of safety as if at any time
a participant is uncomfortable in the position they are in and
unable to control the ball themselves, the investigator would
be able to help orient them.

G

Manual

Game Control e |

Sensitivity Change,
‘ | Pause & Unpause

Fig. 13. The investigator controls for the Nova device.

FE. Spaceship Dashboard

In development, the task proved more difficult than expected
as the next checkpoint location is not always immediately
obvious. If participants are unaware of the next checkpoint’s
location, there would be more variation in them searching
for it by rotating to look around. To resolve this, a compass
system was implemented on the spaceship’s dashboard. The
compass is its own game object which is a sub-component of
the spaceship, powered by a C# script. The script identifies
which checkpoint is currently active, and rotates the arrow to
point toward that checkpoint (see Fig. 14).

G. Data Analysis and Tooling

As discussed for the game’s configuration file, Unity has a
designated folder “StreamingAssets” for storing persistent files
between game builds and the editor. Therefore, this can not
only be used to provide configuration for the game but also for
outputs from the game that must be retrieved later, such as log-
ging of the ship’s location and rotation. This logging is done in
the C# script “ShipLogger.cs” which is a sub-component of the
spaceship. Logs are formatted as a JSON as the analysis tool
is designed to be a JavaScript web application, meaning JSON
files would be easily readable as JavaScript objects in-code,

Fig. 14. The spaceship dashboard, featuring a score counter and the in-ship
compass.

compared to CSV files which would require extra parsing
on import. To ingest the output data, the developed analysis
tool is a single-page web application, featuring a file chooser
which once a file has been uploaded, instead displays graphs
depicting the route of the player whose data was uploaded, and
density plots on their rotation during the game (See Fig. 15).
The page state is determined by a set of React states, detecting
whether a file has been uploaded, processed, or is unable to
be processed. Depending on these checks, either the upload
screen, and error screen or the graphs will display. The graphs
have been built using Plotly’s JavaScript implementation [15],
using a 3D scatter plot. Checkpoint markers have also been
added via an array of X, Y and Z coordinates (See Fig.
15). Checkpoints were not added dynamically due to time
constraints, and the fact that in this case the checkpoints will
never move. In future work, it would be ideal for checkpoints
to be uploaded to this tool dynamically so that it could be
used for multiple courses or simulations.

Upload spaceship flight data here:

Fig. 15. The two primary screens of the analysis web application; file upload
and route view.

V. USER STUDY

A user study was conducted to evaluate the symptoms
experienced in the Nova device [21] under varying conditions
suspected to correlate to feelings of motion sickness.

A. Study Design

As previous projects have already assessed differences in
sickness between VR headset and Nova device usage [7],
[8], this project primarily focused on whether differences

ENGR 489 (ENGINEERING PROJECT) 2023

in types of motion in the Nova device affects the user’s
symptoms of motion sickness and to what degree. To collect
data using the software produced, a within-subjects study was
designed featuring 4 stages of gameplay in the Nova device,
with one clearly defined variable changing between each, as
defined in the game design in Section 3C. Before beginning,
between each stage, and after completion, the investigator
undertaking the study asked participants about their symptoms.
The questionnaires used for this study were devised from
the SSQ [1] and FastMS methods [2]. Since the participant
will be in-game during questioning, questions must be fast
and simple. Therefore, the FastMS method is ideal since it
is proven, robust and requires only 1-2 questions on a 0-
20 scale [2]. These questions should be “How sick do you
feel?” and “How nauseous do you feel?”. While this will
provide adequate data on sickness levels at each stage, it does
not directly evaluate the software’s effectiveness. Therefore,
an extra question “How immersed do you feel?” should be
asked as well, to determine whether participants feel that the
simulation is working. This should be consistent with the
previous questions for familiarity, and thus use a 0-20 scale
as well. As FastMS does not directly ask for symptoms [2]
and only an estimate level of sickness, it would be ideal
to ask additional symptom questions after participation is
complete on symptoms and task effectiveness for evaluating
the software. These questions were dervied from the SSQ [1],
NASA TLX [5] and SUS [6] questionnaires.

Left/Right
Simple Movement
(Dampened Controls)

SSQ SsQ SSQ §SQ SsQ

Left/Right
Simple Movement
(Undampened Controls)

Intensive
Obstacle Course

Intensive
Up/Down Movement

Fig. 16. The study design by stage with SSQ questions in-between.

As well as the sickness levels, due to the software logging
spaceship translation and rotation over time, extra variables to
be considered included the participant’s amount of rotation,
time to complete and whether they were able to complete the
study or became so sick they had to stop. This data was then
aggregated and analyzed for any noticeable correlations, such
as a significant number of participants becoming sick due to a
specific variable change in the simulation, whether those who
rotated more than others saw more symptoms, or if those who
were less familiar with VR saw greater symptoms.

B. Participants

Participation was offered via a sign up form, where partic-
ipants were then to be randomly selected. In total, 10 partici-
pants signed up and 10 were required, meaning all participants
who signed up were selected. In the sign up form, data was
collected from each participant on their history of motion
sickness, VR usage and whether they actively play video
games. The participant criteria looked for any person who had
no history of seizures, heart conditions or migraines which
could be aggravated by the use of VR. The project aimed to

run the experiment with some participants who had VR and
video game experience, and some who did not, as well as some
with a history of motion sickness on vehicles such as cars,
planes, and boats, and those who had not experienced motion
sickness in other settings. The 10 people who participated in
the study met these specifications in that there were 7 male and
3 female participants, where 5 participants had experienced
motion sickness in VR or vehicles prior, 4 had not and 1
was not sure (See Table 1). 5 participants had either used VR
irregularly or regularly prior to participating, and 5 had only
used it once or twice or not at all. In terms of experience with
video games, 4 participants did not play video games and 6
did actively play video games, for at least 1 hour per week.

TABLE I
PARTICIPANTS BY ID, GENDER, HISTORY OF VR OR VEHICLE SICKNESS,
AND PRIOR USE OF VR

’ ID ‘ Gender | Sickness History VR History
1 M No Yes, Once or Twice
2 M Yes Yes, Irregularly
3 M No Yes, Every week
4 F No Yes, Irregularly
5 M Yes Never used VR
6 M No Yes, Once or Twice
7 F Unsure Yes, Once or Twice
8 M Yes Yes, Once or Twice
9 M Yes Yes, Irregularly
10 F Yes Yes, Irregularly

C. Procedure

Each session lasted up to 1 hour. In this session, participants
were brought into the Eight360 office [21] and sat in their
staff room. Participants would then be given time to read the
relevant paperwork before beginning and confirm that they
fit the criteria via a series of verbal statements asked by the
investigator. They were then informed about the game they
are about to play, and what the objective is. The investigator
then walked them to the Nova device and sat them inside
with the VR headset on and the game open, but no physical
movement. Participants then verbally completed the modified
FastMS questionnaire [2] for the first time as a baseline for
their current sickness levels in the headset, discounting any
movement. After the questionnaire was completed, the game
was started using the built-in pause and un-pause functionality
and participants were left to complete the course. After each
stage was completed, the game automatically paused so that
the investigator could re-ask the FastMS questions [2]. On
game completion, the questions were answered again for
the final stage, and participants then completed a written
questionnaire on their symptoms, featuring SSQ [1], NASA
TLX [5] and SUS [6] questions. In total, each participant
was asked the FastMS [2] inspired questionnaire 5 times, once
before the game, three times during the game and once after
the game.

ENGR 489 (ENGINEERING PROJECT) 2023

VI. RESULTS
A. Sickness and Symptoms

To evaluate whether the changing variable of one stage
saw significant differences in sickness to the other stages,
a Repeated-Measures ANOVA was completed on the data
retrieved from the FastMS questionnaire [2], using the sta-
tistical software Jamovi [35]. The data was organized by
question and stage where each stage contains 3 variables,
sickness, nausea and immersion. Immersion was recorded in
order to evaluate the software itself, whereas the sickness and
immersion values can be used to determine the symptoms ex-
perienced throughout the experiment. Unfortunately from the
10 participants who undertook the experiment, 1 participant
had a technical issue with the Nova which invalidated their
data, and 3 participants did not complete the course as they
were too sick. While this shows that symptoms of sickness do
occur for some people, the nature of the ANOVA method of
analyzing the data means that their results cannot be used,
since they are incomplete. Therefore, the results produced
were only produced using the data from the remaining 6
participants.

Within Subjects Effects

Sum of Squares df Mean Square F p n'p
Time 62.3 3 20.78 415 0.025 0433
Residual 75.2 15 5.01
Note. Type 3 Sums of Squares

Within Subjects Effects

Sum of Squares df Mean Square F p n'p
Time 1148 3 3828 748 0.003 0.600
Residual 76.7 15 511

Note. Type 3 Sums of Squares

Fig. 17. The Repeated-Measures ANOVAs on feelings of sickness (top) and
nausea (bottom) between stages, produced using Jamovi [35].

One Repeated-Measures ANOVA was completed on each
FastMS [2] variable (sickness, nausea and immersion), using
Jamovi [35] (See Fig. 17). The feeling of immersion has been
excluded from the figures provided as it does not factor into
motion sickness symptom levels. The sickness and nausea
ANOVAs saw a significant P-value for the difference in each
value between stages at 0.025 and 0.003. This means that at
least one variable change between stages saw a significant
difference in its affect on the participant’s symptoms of both
sickness and nausea. In the same ANOVAs, a partial eta
squared test was run to quantify the size of the effect. A
value above 0.14 is considered a large effect, and the sickness
and nausea data saw values of 0.453 and 0.6 respectively,
meaning the difference had a significant area of effect. Post-
Hoc tests were conducted on the data to find any errors present
in the data that would otherwise go unnoticed using only the
ANOVAs, by comparing each stage to all stages that come
after it. This produced some interesting results in that the
levels of sickness were a false positive, and have no significant
difference between stages. This is because no adjusted P-value

under the Tukey Test for sickness saw a value below 0.05, the
lowest being for between Stage 1 and Stage 2 at 0.176 (See
Fig. 18).

Post Hoc Comparisons - Time

Comparison

Time Time Mean Difference SE df t P Prukey
Stage 1 Stage 2 -2.833 1.138 5.00 -2.400 0,176
Stage 3 -3.667 1,547 5.00 -2.227 0.235

Stage 4 -4.167 1.778 5.00 -2344 0.207

Stage 2 Stage 3 -0.833 0.833 5.00 -1.000 0757
Stage 4 -1333 1.229 5.00 -1.085 0713

Stage 3 Stage 4 -0.500 0.806 5.00 -0.620 0921

Post Hoc Comparisons - Time

Fig. 18. The Post-Hoc Tests run on the sickness data (top) and nausea data
(bottom), produced using Jamovi [35].

Mausea

Stage 2 Stage 3 Stage 4

Stage

Stage 1

Fig. 19. The estimated marginal means of nausea values provided at each
experiment stage, produced using Jamovi [35].

However, the same tests run on the nausea data show that
there is a significant difference between Stage 1 and Stage
2, with an adjusted P-value of 0.017, which is below the
significance boundary of 0.05 (See Fig. 19). This confirms
that there is a clear and significant difference in each stage’s
effect on nausea, between Stage 1 and Stage 2. However, all
other stages were too similar and saw no difference in the
symptoms experienced. In terms of the changing variables
between stages, this means that the raised sensitivity of the
controls directly correlates to a more prominent feeling of
nausea. By plotting the marginal means of the FastMS [2]
results for nausea on a scale between 0-21, the significance

ENGR 489 (ENGINEERING PROJECT) 2023

of Stage 1 compared to the remaining stages is clear (See
Fig. 19). Participants saw far less nausea in Stage 1 with the
lowered control sensitivity, than they did in further stages. It
is important to note that there could be interference in that
Stage 1 was first, and the time participants were in the device
could be a factor in the final result.

TABLE II

PARTICIPANTS BY APPROXIMATE TIME, FILTERED BY PARTICIPANTS
WHO COMPLETED THE COURSE

1D ‘ Stage 1 Time | Full Course Time

1 12 minutes 26 minutes
3 5 minutes 23 minutes
4 4 minutes 14 minutes
5 4 minutes 18 minutes
6 16 minutes 55 minutes
10 4 minutes 16 minutes

However, the game has been designed to output participants’
rotation and translation data with timestamps, and provides
a metric on the times when each checkpoint and stage were
reached. This data can be used to view the time spent in Stage
1 compared to other stages, and whether this is likely to be
a factor in the result (See Table 2). Participants had vastly
varying times depending on how they controlled the game
and what parts of the task they prioritized. Some participants
engaged with the shooting feature while others ignored it, and
some participants went off course whereas others followed
it strictly. As visible in Table 2, two participants saw a
significantly higher time spent in Stage 1 at 12 and 16 minutes.
While the sample size is small which could cause unexpected
variance, this suggests that the time spent in VR was not
affecting the symptom of nausea alongside the change in
control sensitivity.

+—

Sweating -

Stomach Awareness -

Nausea -

*

Increased Salivation -

*

— .
* I

Headache -

*

Fullness of Head -

Fatigue -

Subscale

Eye Strain -

Dizzy (when eyes open) -

*
& W

Dizzy (when eyes closed) -

Discomfort -

Difficulty Focusing
Difficulty Goncentrating -
Burping -

Blurred Vision -

-

50 75
Score

Fig. 20. SSQ sub-scale results across participants, produced using R [37].

The SSQ [1] questions asked after the experiment showed
more accurate results on the symptoms felt across participants
(See Fig. 20). Notably, the symptoms of salivation, headache,
fullness of head, eye strain, and dizziness were spread widely
between participants. While the mean for each of these symp-

toms is on the lower end of the scale, there are many outliers.
The sample size of participants is likely influencing this, so
more participants would be needed to gain an accurate result.
The most common symptoms were nausea, stomach awareness
and discomfort (See Fig. 20). Sweating, while having a low
mean overall, appears to have a larger variance with many
people experiencing it at varying levels. The highest scoring
symptom overall was nausea, with just two outliers scoring
this symptom lower than 5/10.

B. Software Usability

Using the NASA TLX [5] and SUS [6] results for all
participants (excluding the one with technical issues who did
not complete the task), the usability of the produced software
and Nova device can be evaluated. The raw NASA TLX
[5] data is scored between O and 20. The standard way of
calculating this is to multiply it by 5 to reach a number out of
100 (See Table 3). Overall, participants found that completing
the experiment saw a reasonable 45/100 in demand mentally,
and 35/100 physically. The pacing for the checkpoint task
scored a low 25/100 (asked as “How hurried/rushed was the
task?” [5]), and most participants found the difficulty fair at
55/100 (See Table 3).

TABLE III
NASA TLX RATING AVERAGES

’ Factor ‘ Mean (Raw) ‘ Mean (Calculated) ‘
Mental Demand 9 45
Physical Demand 7 35
Temporal Demand 5 25
Performance 13 65
Effort 11 55
Frustration 6 30
Temporal_Demand - —{ | * }7

Frustration - ‘ |*

Physical_Demand -

Performance - »

Subscale

Mental_Demand -

Effort -

o
T
=
-
5]
=3

Fig. 21. Results of the NASA TLX scale across participants, produced using
R [37].

The SUS usability score [6] can be derived by converting
the “Strongly Disagree” to “Strongly Agree” statements into
a scale from 1-5 (See Table 4). Few participants found the
controls too complex with a mean score of 1.55/5. Most people
found the Nova device very easy to use and learn how to use
with scores of 4.09 and 4.18 (See Table 4). while confidence
in one’s ability to use the software scored a 3.91/5, a score of
2.55/5 was given for the software being difficult to use. Most

ENGR 489 (ENGINEERING PROJECT) 2023

people stated they require the support of a technical person to
use the Nova device [21], which makes sense as operation of
the device required 2 people.

TABLE IV
SUS RATING AVERAGES ON A 1-5 SCALE, WHERE 1 = STRONGLY
DISAGREE AND 5 = STRONGLY AGREE

Statement Mean Score
I would use this simulation frequently 2.72
The controls were too complex 1.55
The device was easy to use 4.09
I need technical support for the device 345
The device functions were well integrated 4.00
There was too much inconsistency 2.00
Learning to use the device is easy 4.18
The software was awkward/difficult to use 2.55
I felt confident using the software 391
I need to learn more to use the software 2.64
Would_Use_Frequenty- —————————] * ——
Well_Integrated - . - ¥ 4
Too Inconsistent~ |
Easy_To_Use- i —:,
Confidence - . . * | N
Awkward_To_Use - #*

¥
o

-

on

Score

Fig. 22. Results of the SUS scale across participants, produced using R [37].
Note that the questions were answered from Strongly Disagree” to ”Strongly
Agree” on a 5-point scale, which has been converted to a corresponding value
from 1-5.

C. Discussion

The produced software met all 7 requirements. It is a
playable VR experience in which the player controls the Nova
device, presented as first-person spaceship flight (Require-
ments 1-3). Players also have the control to rotate themselves
360 degrees (Requirement 4). Experiences between partici-
pants were kept consistent via a checkpoint course task, during
which the game logs the translation and rotation data of the
player (Requirements 5 and 6). The game has been designed
with future expansion in mind, with checkpoints being easily
rearrangeable (Requirement 7). Participants were asked in
the post-experiment questionnaire whether they enjoyed the
experience, which resulted in an average score of 8/10. This
is exceptional and proves that the game and device could
draw more participants for future work, as most people find
the experience very entertaining. In terms of purpose fit,
most participants found the controls understandable (1.55/5
in complexity, see Table 4) and feel moderately confident

using the simulation (3.91/5, see Table 4). The simulation
was understandable by participants and was very usable.
While the software achieved a level of consistency via a
checkpoint course however, the course did have flaws in that
participants varied in time significantly to complete the same
section (see Table 2). While in some cases this is due to
participants intentionally veering off course to explore the
game, variations more than a minute per stage could definitely
cause inconsistencies in the symptoms experienced. This is
difficult to resolve with the requirement of allowing the player
to control the experience, as the investigator has no power
over their choices outside of encouraging them to complete
the course. It is worth noting that while the user study was
conducted well and produced good results, the sample size
was very small in that only 10 participants took part, and only
6 could be included in the ANOVAs. In future work, it would
be beneficial to confirm the results of the study with a larger
pool of participants.

VII. CONCLUSIONS AND FUTURE WORK

Use of modern head-mounted VR equipment often causes
symptoms of nausea and motion sickness for some people [1],
[19]. This is thought to be due to the difference in movement
when a user appears to move physically in the digital space,
while not moving in real life [19]. The Nova device matches
user’s physical movements to what they see in VR, which has
the potential to offset these feelings of motion sickness [21].
This project developed a bespoke software application for the
purpose of assessing sickness symptoms in the Nova device
[21], in the form of a spaceship flight simulation game where
players traverse a set of checkpoints laid out strategically to
assess varying levels of movement. A within-subjects user
study was conducted using this software with 10 participants
of varying backgrounds, in which a link was found between
the speed of player-controlled movement and feelings of
nausea (See Fig. 19). Other common symptoms included
sweating, stomach awareness, and discomfort, however the
study was unable to link these symptoms to a particular
variable within the study (See Fig. 20).

The software was deemed fit for purpose in the study
and scored well in the usability analysis (See Fig. 21 and
Fig. 22). Overall, symptoms of sickness are still experienced
in the Nova device [21], but can be dampened by slowing
rotational movement (See Fig. 19). In future work, it would
be ideal to include a larger sample of participants to confirm
that the results shown generalize to a wider population. The
study was also limited in that during the experiment, only
feelings of general sickness and nausea were recorded at each
stage. Using the newfound knowledge of the most common
symptoms experienced in the Nova [21] (See Fig. 20), a
future study could ask more specific questions in the FastMS
[2] format, which could explain more about the primary
cause of these symptoms. Also, this study was limited in that
it initially planned to measure physiological data via health
monitoring vests, which did not happen due to a lack of time
and equipment. Future work could utilize health monitoring

ENGR 489 (ENGINEERING PROJECT) 2023

equipment to gain more accurate insights into the symptoms.
In the NASA TLX [5] scoring, participants also suggested
that the task pacing was slightly too slow (See Fig. 21). In
future, the checkpoint task system could be expanded upon or
replaced with a more intensive task to maintain engagement.
This could also alter the results in that people who are more
engaged in the task may think less about their symptoms
while completing the task, and should be investigated.

REFERENCES

[11 R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G. Lilienthal,
“Simulator sickness questionnaire: An enhanced method for quantifying
simulator sickness,” The International Journal of Aviation Psychology,
vol. 3, no. 3, pp. 203-220, 1993. doi:10.1207/s15327108ijap0303_3

[2] B. Keshavarz and H. Hecht, “Validating an efficient method to quan-
tify motion sickness,” Human Factors: The Journal of the Human
Factors and Ergonomics Society, vol. 53, no. 4, pp. 415-426, 2011.
doi:10.1177/0018720811403736

[3] P. Bimberg, T. Weissker, and A. Kulik, “On the usage of the simulator
sickness questionnaire for Virtual Reality Research,” 2020 IEEE Confer-
ence on Virtual Reality and 3D User Interfaces Abstracts and Workshops
(VRW), 2020. doi:10.1109/vrw50115.2020.00098

[4] S.A. Balk, M.A. Bertola and V.W. Inman, “Simulator Sickness Question-
naire: Twenty Years Later”, Driving Assessment Conference, 2017, pp
257-263. doi: 10.17077/drivingassessment.1498.

[5] NASA, “NASA Task Load Index,”
https://humansystems.arc.nasa.gov/groups/tlx/downloads/TLXScale.pdf
(accessed Aug. 28, 2023).

[6] Usability.gov, “System usability scale (SUS),”
https://www.usability.gov/how-to-and-tools/methods/system-usability-
scale.html (accessed Aug. 28, 2023).

[7] C. Simmonds, “Understanding the Effectiveness of 360 Motion in VR
Simulators,” 2021.

[8] C. de Bruyn, “Understanding Sickness and Emotional Experiences in
Virtual Reality 360 Degree Motion Simulators,” 2022.

[9] UnknownWorlds, “Subnautica,” Available:
https://unknownworlds.com/subnautica/ (accessed Aug. 28, 2023).

[10] Hello Games, “No Man’s Sky,” https://www.nomanssky.com (accessed
Aug. 28, 2023).

[11] H. Welsby, Modding Discord Conver-
sations,” https://gitlab.ecs.vuw.ac.nz/groups/course-
work/project489/2023/welsbyharl/-/wikis/NMS-Modding-Discord-
Converations (accessed Aug. 28, 2023).

[12] CheatEngine, “CheatEngine,” https://cheatengine.org/ (accessed Sep. 3,
2023).

[13] Unity, “Unity.com”, Accessed 9 May, 2023. Available: https://unity.com/

[14] Epic Games, “Unreal Engine”, https://www.unrealengine.com/en-US
(accessed Aug. 30, 2023).

[15] Plotly, “Plotly: Low-code data app development,” https://plotly.com/
(accessed Sep. 3, 2023).

[16] Meta, “Create react app,” https://create-react-app.dev/ (accessed Sep. 3,
2023).

[17] Meta, “Add or change your Facebook profile picture: Facebook help
center,” Add or change your Facebook profile picture — Facebook Help
Center, https://www.facebook.com/help/163248423739693 (accessed Sep.
3, 2023).

[18] H. Oh and W. Son, “Cybersickness and its severity arising from virtual
reality content: A comprehensive study,” Sensors, vol. 22, no. 4, p. 1314,
2022. doi:10.3390/s22041314

[19] Y. S. Kim, J. Won, S.-W. Jang, and J. Ko, “Effects of cybersickness
caused by head-mounted display-based virtual reality on physiological
responses: Cross-sectional study,” JMIR Serious Games, vol. 10, no. 4,
2022. doi:10.2196/37938

[20] D. Saredakis et al., “Factors associated with virtual reality sickness in
head-mounted displays: A systematic review and meta-analysis,” Frontiers
in Human Neuroscience, vol. 14, 2020. doi:10.3389/fnhum.2020.00096

[21] Eight360, “Eight360 - NOVA Untethered Motion Simulator,”
https://www.eight360.com/ (accessed Sep. 3, 2023).

[22] New Zealand Ministry of Business, Innovation and
Employment (MBIE), “Energy in New Zealand 2023
https://www.mbie.govt.nz/dmsdocument/27344-energy-in-new-zealand-
2023-pdf (accessed Sep. 3, 2023).

“NMS

[23] Unity, “Unity Asset Store,” https://assetstore.unity.com/ (accessed Sep.
3, 2023).

[24] Meta, “Oculus Rift S,” https://www.oculus.com/rift-s/ (accessed Sep. 6,
2023).

[25] HTC, “HTC Vive Pro 2 Overview”
https://www.vive.com/nz/product/vive-pro2/overview/ (accessed Sep.
6, 2023).

[26] Hewlett-Packard, “HP Reverb G2 VR Headset” https://www.hp.com/us-
en/vr/reverb-g2-vr-headset.html (accessed Sep 6, 2023).

[27] PB Tech, “Thrustmaster Hotas Warthog Joystick For
PC, Official Replicas Of The Joystick, Throttle and
Control ~ Panel of the U.S. Air Force AIOC Aircraft”

https://www.pbtech.co.nz/product/ GAMTTMH913771/Thrustmaster-
Hotas-Warthog-Joystick-For-PC-Officia (accessed Sep. 7, 2023).

[28] Thrustmaster, “HOTAS WARTHOG,”
https://www.thrustmaster.com/products/hotas-warthog/ (accessed Sep. 7,
2023).

[29] Unity, “Unity Manual: Input Manager,”
https://docs.unity3d.com/Manual/class-InputManager.html (accessed
Sep. 7, 2023).

[30] Ebal Studios, “Hi-Rez Spaceships Creator Free Sample,”

https://assetstore.unity.com/packages/3d/vehicles/space/hi-rez-spaceships-
creator-free-sample-153363 (accessed Sep. 8, 2023).

[31] Ebal Studios, “Star Sparrow Modular Spaceship,”
https://assetstore.unity.com/packages/3d/vehicles/space/star-sparrow-
modular-spaceship-73167 (accessed Sep. 8, 2023).

[32] A. Bielecki, “Earth like Planets,”
https://assetstore.unity.com/packages/templates/packs/earth-like-planets-
32790 (accessed Sep. 8, 2023).

[33] M. Dion, “Asteroids Pack,”
https://assetstore.unity.com/packages/3d/environments/asteroids-pack-
84988 (accessed Sep. 8, 2023).

[34] PULSAR BYTES, “Starfield Skybox,”
https://assetstore.unity.com/packages/2d/textures-materials/sky/starfield-
skybox-92717 (accessed Sep. 8, 2023).

[35] Jamovi, “Jamovi - Open Statistical Software for the Desktop and Cloud,”
https://www.jamovi.org/ (accessed Sep. 23, 2023).

[36] Unity, “OpenXR Plugin,”

https://docs.unity3d.com/Packages/com.unity.xr.openxr@ 1.7/manual/index.html

(accessed Sep. 27, 2023).
[37] The R Foundation, "R: The R Project for Statistical Computing,”
https://www.r-project.org/ (accessed Oct. 1, 2023).

