
ENGR 489 (ENGINEERING PROJECT) 2023 1

Beyond the Four Key Metrics: Quantifying DevOps
Practice

Sridhar Venkatesh

Abstract—This project aims to extend the standardized meth-
ods of managing software delivery, to ensure developers are
provided with meaningful in-depth feedback on their practices.
The problem with the standardized metrics is that they’re too
broad and don’t consider the wide-ranging statistics that GitLab
repositories will have to offer. Some repository statistics such
as milestones, pipelines, epics to name a few, are presently
unexamined by management features such as GitLab’s ’Value
Stream Analytics’. This project aims to provide richer statistics
that should be analyzed when the software delivery process is
being managed, which will also enhance and give guidance to how
features such as ’Value Stream Analytics’ can be extended. This
project follows the structure of ‘Process Mining’ streamlining
the process of collecting source workflows, comparing them
against the model workflows, to perform discovery methods to
understand how to improve the model workflows. This allows the
chance of introducing important statistics which are pivotal for
measuring DevOps performance - through taking source work-
flows and judging their performance against the existing DevOps
metrics, along with additional analytics that should be considered
when measuring productivity in a DevOps environment.

I. INTRODUCTION

THE aim of this project is to refine the way we analyse
and manage processes that are adopted for software

delivery, to deliver enhanced feedback on demand. Feedback
and metrics of process management performance are highly
sought after in many DevOps environments. Through reading
the metrics and feedback available to those operating in
a DevOps environment, invites the opportunity for process
improvement and learning. Depending on the richness of the
analytics and metrics, this can determine the speed of process
refinement and enhancement on the workers end. Reinforcing
the need for valuable and definitive metrics that provide insight
of developers’ productivity, workflow management, feature
planning etc. Currently DevOps teams utilise four standard-
ised metrics as a basis to measure their workflow adherence
and productivity. These metrics include ’Lead Time’, ’Cycle
Time’, ’Deployment Frequency’ and ’Change Failure Rate’.

On the surface, these metrics do a solid job outlining
speed and stability of the work developers are doing [7],
however it doesn’t capture the full image/performance and
could lead to potential false positives/negatives regarding
process performance. For example ’Change Failure Rate’ is
a metric that determines the ratio of code deployments to
failure in the production cycle. If a company is deciding to
add minimal or low-complexity level features to it’s code
base, the valuation for ’Change Failure Rate’ would be largely
positive as there’s minimal risk with some of the changes

This project was supervised by James Quilty

decreasing the likelihood for failure. An event such as this
would ensure an inaccurate way to determine stability in a
DevOps environment making changes - and could reduce the
efficiency of translating the results of performance into actual
process improvement.

The aim of this project is to find additional metrics beyond
the four key metrics to ensure richer statistics/metrics/analytics
are presented to developers, to ensure they are presented
with a definitive measurement of their workflow management.
Providing metrics that will apply to projects being conducted
outside of those that will support business operations. This can
be achieved through the technique of ’Process Mining’ [10].
Which includes validating/comparing source workflows to a
model workflow, and invites the opportunity to introduce new
metrics off the basis on the gaps in the source workflows.

The source workflows in question will originate from Git-
Lab repositories used by ENGR301 students. The reason for
the use of GitLab repositories specifically is that it contains
planning tools such as issues, milestones, and also contains
support for automated processes such as CI/CD pipelines -
this is quite convenient as this now ensures all the tools
and services for the repositories are all in one place. The
contributions a project member can make to a GitLab repos-
itory such as creating an issue, making a merge request or
triggering a pipeline - are available for analysis through Git-
Lab’s full feature API [5] and python library [6]. The choice
of ENGR301 repositories specifically and only ENGR301
repositories, is due to the fact all students are practicing the
same workflow and will be working under the same project
requirements which ensures all source workflows are practiced
under the same context - evading any problems with bias or
misinformation in the analysis.

There are many implications surrounding sustainability that
can be supported by the outputs of this project. The ability to
find new metrics and statistics improves the feedback which
in turn gauges faster process improvement. Enhancing the
insights based on the speed and stability of large-scale integra-
tions and planning - ensures the optimization of resources. If
there are more metrics putting more emphasis on the planning
stage of a project than some metrics such as ’Lead time’
or ’Cycle time’ for example - this allows DevOps teams
to plan understand the amount of usage for their resources
better. Stronger feedback on the planning phase of a project
ensures resources are adequately dedicated to meeting project
requirements at hand, as opposed to wasting resources on un-
necessary features that don’t align with project specifications.
An example that would be avoided with stronger feedback on



ENGR 489 (ENGINEERING PROJECT) 2023 2

the planning phase - would be an avoidable upgrade to server
capacity to service unnecessary features that don’t correlate
to project requirements, optimizing energy consumption and
costs [9]. Richer statistics that will lead to an enhanced
level of feedback ensures both faster iterations and reduced
waste. Producing a faster transition into process improvement
throughout the project will ensure a better understanding
of the cause of for example a deployment failure/failure in
production and hence ensure for more responsible consump-
tion of computational resources, electricity and time. These
sustainability implications align with the 12th goal which
depicts ’Responsible consumption and production’ in the list
of goals of sustainable development provisioned by the United
Nations [14].

II. RELATED WORK

This project adopts the technique of process mining to
validate/compare git workflows to a model workflow. There
are no current examples of Process Mining tools specifically
for git Repositories. However there are examples of Process
Mining which help establish common practices for dealing
with each step. All of the discussion surrounding Process Min-
ing universally agree on the phases that should be undertaken
when performing process mining workflows.

A. Event Logs

The first phase which is discussed amongst the readings
is the Event Logs stage. The reading provided here [10],
provides an example of event logs tracking different cases of
a web application. This provides a software specific example
of how event logs could be adapted for a software solution,
comparative to the process mining handbook [15], which sites
a general business model example for the production of pizzas
for a pizzeria. This simplified example helps to bridge the gap
for people new to process mining and provides an example of
how to structure a simplified event log to provide a structure
latter phases.

The web application example aligns more with the needs of
process mining git repositories. Each iteration of the model
workflow in the provided example starts with an expected
triggering point - in this case a ’request from a client’ is the
event which starts a case. This example alone groups the events
into it’s own cases which can be directly applied to that of a git
workflow. Each iteration of the gitlab workflow [4] starts with
a specific triggering point (specifically creation of an issue),
which allows for it to be grouped into it’s respective cases
making it easier to group it’s connected events (such as an
attached merge request or tagged milestone).

Fig. 1. Scalable software application of event logs.

This differs from the example provided from the process
mining handbook [15], which collects all the events and
sorts them by timestamp, without grouping the events by
case to note the other events in that specific iteration. This
example would not be suitable for the application of process
mining git repositories - as it is important to be able to
trace the events in the same iteration. Grouping them into
individual cases allows for easier aggregating of the workflows
to produce a cumulative overview of the logs in general for
performance/conformance analysis.

B. Conformance Checks

Fig. 2. Example of process model used to support conformance analysis.

The need for producing event logs is to ensure the source
workflows are structured in a way to assess their conformance
to the model workflow. Both examples provided from the
respective readings require the need for both an event log
and a process model to act as inputs for the conformance
analysis phase. The model is designed to aggregate the typical
behavior from the event logs. While the structure of the
event logs (grouping the connected events into cases for
better traceability) makes it easier for validating the source
workflows. The major disadvantage with process modelling is
that it purely depends on the stability of the event logs, if there
isn’t a largely consistent scheme which is prevalent through
the event logs it would be the upmost difficult to cumulate it
into a visualised model.

There also needs to be careful consideration on the out-
puts/goals of the project - which is to find metrics beyond the
four main metrics [7]. Conformance analysis on the source
workflows needs to not only spot gaps in them in comparison
to the model workflow, but to also assess it’s performance
against the four main metrics. What both the handbook and
software-oriented applications don’t discuss about this phase is
how quickly the processes are being performed - which can be
assessed through the four main metrics previously discussed.



ENGR 489 (ENGINEERING PROJECT) 2023 3

C. Process Discovery
The final stage orients around the results from the Confor-

mance Checks/Performance Analysis to take in what processes
dominated and the general gaps in the source workflows. This
is what would lead into finding the additional metrics that
should be added to assess the source workflows against. This
differs from the definitions provided from both the handbook
and the scaled software example [15] [10]. In the examples
provided from the readings, the source workflows are assessed
in the conformance checks phase to spot potential gaps - which
is then sent into the discovery phase to determine how the
model/reference workflow should be changed to adapt to the
source workflows. This is adaptable for a business operations
setting where it’s important to understand customer behavior
and adjust your services to suit them, however for an internal
project setting this is not applicable.

The model workflow which is an adaptation of the GitLab
flow [4], will not be adjusted to conform to the source work-
flows. Instead the source workflows performance according
to the four key metrics is assessed to judge the relevance of
the existing metrics, and to also understand what processes
dominated. This invites the opportunity to introduce new
metrics based on the processes that did dominate. This is
due to the needs of the project not aligning with the typical
needs/applications of process mining - the examples provided
in both readings explain the need to support the source
workflows and form internal processes that cater to customer
needs. This project focuses more on the areas in the workflows
that were common and creating new metrics to assess them,
ensuring DevOps metrics are provided and applicable for a
internal project setting.

III. DESIGN OF SOLUTION

The solution will automate the event logs and conformance
checking phases of process mining. It is planned to utilised
GitLab’s logging of contribution events to support both the
logging and analysis. This is expected to be a CLI tool which
will both generate and collect the contribution events from
a given repository and specific author, and will generate an
html based report similar to the scheme of another tool named
’GitInspector’ [2].

A. Event Logs Design
The structure for the event logs will follow the same format

as the scalable software example [10], which will group the
events into it’s relevant cases (in this case an issue would rep-
resent a case). Previously, in the preliminary report the event
logs were expected to be grouped based on repository. In the
example provided below - this follows more of the examples
provided within the process mining handbook [15], however
it does create some of the traceability issues previously cited,
it doesn’t align with the aim of tracking all the events in that
specific iteration hence it makes it difficult to assess workflow
conformance.

Project ID event-type timestamp
2002 created-issue 2023-07-08
19670 closed-issue 2023-04-06

Hence the change to structure the cases of event logs based
on issues as an event such as creating a merge request/tagging
to a milestone can be traced to that specific gitlab issue.

Fig. 3. Soft example of issue event logs.

The example provided in figure 3, shows a preliminary
example of how the event logs should be structured based
on issue - with the unique identifier of the CaseID being
generated off the Issue IID. This change to use the Issue
ID (provided by GitLab) as a unique identifier for each case
would mean that the event logs generated will be from each
repository, meaning that an event log will have to be generated
for each repository that is a subject for the research. Along
with tracking the timestamps of the created issue - event logs
will be structured as a .csv file to support the visualisation
aspect of the conformance analysis phase. This will mean
a .csv file (event log) would have to be generated for each
repository that has been provisioned for the research. Causing
unnecessary bloating for the file system at hand.

Additionally we would also have to consider the ethi-
cal considerations attached with gathering repository event
logs. These source repositories owned by the students of the
ENGR301 Project Management class would need to provide
full permission to utilise the event logs. On top of this these
repositories also are owned by groups of people - meaning
that we would require permission from all the members of a
specific repository to collect all the events from that given
project. This would guarantee that filtering based off the
specific project member is also required to address these
specific ethical issues as we wouldn’t be allowed to gather
events from students who don’t provide permission.

It was also previously mentioned that the event logs would
utilise dependencies such as GitLab’s REST API resource
[5], which contains several endpoints necessary for tracking
workflow conformance, along with python-gitlab [6] which is
a python module capable of gathering issues, merge requests
and pipelines from an inputted repository. Both of these will
serve as dependencies for generating the event logs.

Fig. 4. Event logs and it’s dependant modules and inputs



ENGR 489 (ENGINEERING PROJECT) 2023 4

From the figure provided above - this shows the expected
inputs and outputs of the events logs portion of the CLI
tool. Expecting both a username and the repository ID to be
provisioned as support. The output generated from the event
logs is a .csv file which is expected to act as input for the
conformance analysis/performance calculations.

Another consideration is the adequate structure of the se-
quence of events for creating the event logs. To collect all the
possible issues, merge requests and pipelines associated with
the inputted user, this would require a few API calls along
with appending such results to the csv, potentially meaning
this phase could be a bottleneck for the rest of the tool.
Another problem would be the traceability of the events - it
is completely possible that the user in question could be an
author of a merge request which is attached to an issue they
didn’t create. Meaning we would have to filter based off the
merge requests they authored, to find the connected issue and
additional events etc.

Fig. 5. UML Sequence Diagram showing the order of procedures in event
logs

From the figure above, this shows the sequence of pro-
cessing events within event logs, with the additional events
using the same scheme for finding connected issues to merge
requests - this ensures for each entry in the .csv file will have
an issue grouped with it’s associated events and the timestamps
that those events occurred. This is also structured to ensure
functions or procedures aren’t repetitively called during the
event logs to optimize performance and not put too much
load or dependency on the GitLab server which would have to
respond to all the API calls etc. The timestamp format used by
GitLab is ’iso8601’, naturally this timestamp format would be
unrecognizable for many graphing tools. However the tools
to convert that into a datetime readable format will not be
performed before logging the details into the csv, this is done
to restrict the amount of dependent libraries for this stage as
we only want to have dependencies on the gitlab-api and the
python library.

B. Conformance Analysis

The next phase in question is the conformance analysis done
on the source workflows. At this point of completion in the
event logs - it is expected that both the event logs are structured
necessarily to calculate conformance according to the four key
metrics. The outputs of this phase is an html report similar to
the scheme of ’GitInspector’ [2].

Fig. 6. Example run of GitInspector on own repository

The figure above shows an example of GitInspector’s ability
to collect the contribution events within the given repository
and display such information for all members. Tracking lines
of code that have been contributed into the current revision,
weekly contributions etc. These statistics displayed in GitIn-
spector won’t specifically be queried or displayed on the
conformance check page - however its established a good
scheme to display the statistics - which will be adopted for
displaying conformance to the four standardised metrics.

Considering the inputs for the conformance check phase
is a csv - we can utilise libraries such as pandas [12], to
structure the data into tables to ensure easy conversion into
some visualisation of a graph. Another consideration is how
we would allow for both calculations based off the event logs
as well as producing graphs and finding a natural way to
export them into html for the report. Tools such as Bokeh
[1], mpld3 [11] and plotly [13] - were all experimented
with to decide which library was suitable for exporting the
graphs/figures into the html report. Each module going off
the basic documentation and showcase would be suitable for
exporting the graphs into html - however it is desired that a
solid user experience can be felt when using the reports. The
reports are supposed to be sent out to students with the graphs
and calculations being the focal point of the report.

When trialling out Bokeh it was clear to see it had a wide
variety of graph styles/chart styles meaning it was fit for
purpose, along with having a good level of interactivity such
as hovering over points on a line graph and showing the value
in a popup.

Plotly can perform this too, as well as provide a wide rang-
ing amount of graphs that would help for displaying workflow
conformance such as Sankey Diagrams, Value Stream Maps
etc. Plotly’s high level API makes it easy to customise the
diagrams and charts. Plotly has a more gentle learning curve
than Bokeh - whilst Bokeh has the capability of providing
abstract, interactive and complex data visualisations it requires
abstract ways to structure your dataset to be able to make these
complex visualisations. Along with this it takes less lines of
code to produce the visualisations in ’Plotly’ comparative to
creating the same graphs in Bokeh and Mpld3. This design
decision can have sustainability implications - particularly



ENGR 489 (ENGINEERING PROJECT) 2023 5

surrounding ’Green Computing’, reducing the lines of code
that needs to be parsed by a processor leading to greater
memory and energy usage overall. While this may be a small
change to make a partial impact, it still contributes to the
scheme of writing more ’green software’ [8].

Fig. 7. Plotly Example of producing a line graph

Taking into account the customization capabilities and how
easy it is to adjust to, plotly suits the needs of the project in
comparison to the other modules such as ’Bokeh’ and ’mpld3’.
Also taking into account time constraints ’plotly’ is the most
suitable and is the most capable of matching the needs of the
project.

After determining the packages to support both the calcu-
lation and visualisation of the event logs, we also need to
determine the sequence of calculations that will happen in the
conformance analysis phase.

’Lead time’ - for an issue calculates the time taken from
the time an issue is scoped to a milestone, to the time that the
issue is closed. The overall Lead Time for the repository takes
into account the median value for all these time differences
for each issue. ’Cycle time’ - takes into account the time
taken from a merge request opening to the issue that it
was attached to closing, overall cycle time is calculated in
a similar fashion to ’Lead time’. Both deployment frequency
and change failure rate take into account the amount of
deployments over a specific time frame, where change failure
rate considers the ratio of failed deployments in comparison
to deployment attempts. These calculations can be calculated
by using different fields each line of the csv file. Each of
the formulas required for each metrics take into account 1
or 2 fields each - meaning that there doesn’t need to be any
specific order established to make a difference in speed or
performance.

Fig. 8. Structure of Conformance Analysis phase.

In figure 8 the block diagram shows the order of events
that should be processed in the conformance analysis phase.
Each portion such as ’Calculating Lead Time’ is responsible
for calculating lead time for each issue that’s relevant, as well
as calculating overall lead time and producing the respective
graphs - and output them into the .html file.

C. Overall Design

Fig. 9. Diagram showing format of modules and tasks of CLI tool.

This is the final format of all the modules and tasks
performed in each phase of process mining. The event logs will
take a Project ID and member username to perform each step,
mainly for polling events from the GitLab API and python-
library, it’s only purpose is to log and format the .csv in a
structure where it is easy to perform the conformance analysis
calculations in the final stage.

IV. ARTEFACT IMPLEMENTATION

Before commencing on the general implementation of the
CLI process mining tool - the first step was to collect and
gather permission from students to use their repository con-
tribution event logs for testing and to support results for the
research. Considering the amount of time this can take - we
had to adjust for testing the scripts on my previous GitLab
projects. This can be quite problematic for collecting event
logs as most of the projects (that were conducted from 1st
year/2nd year), don’t work accordingly to the GitLab flow
[4]. This means when generating the event logs there will be
minimal logs (issues, and general events tagged to issues) to
visualise and produce - making it difficult to fully test and
verify the robustness of the solution before collecting and
assessing the logs of the ENGR301 repositories.

To address this issue for testing the solution, an attempt
to automate the creation of a test repository was done with
the GitLab supported python library ’python-gitlab’ [6]. This
library has the helpful tools to automate the creation is-
sues/milestones/register merge requests from python scripts
- however this does come with some limitations, such as
not having the ability to create a merge request and branch
simultaneously with the reference of an issue. This makes
it difficult for logging and testing the tools ability to spot
linked merge requests - we want to emulate an environment
and repository that aligns closely with the repository events
performed by the students. A solution/compromise to this issue
was to use the repository hosting the artefact itself as a basis



ENGR 489 (ENGINEERING PROJECT) 2023 6

for testing and collecting the logs. That way it properly sim-
ulates planning, development, and review stages in a typical
DevOps environment practicing the GitLab workflow [4].

Work commenced by prioritising the collection of event
logs and using the GitLab repository itself as a test base.
Specifically using ’python-gitlab’ and the GitLab API inter-
changeably to search for events and statistics to log. Whilst
orienting myself with the capabilities of the API - it was
also important to note the push rules/configurations of the
repositories itself, some repositories and the 301 projects in
particular can be set up with the scheme of squash commits/ or
deleting branches on merge. These events are hard to track as
they’re deleted from the projects internal storage and tracking
events such as commits or pushing branches aren’t accessible
from a simple endpoint such as ’/branches’ or ’/commits’ [3].
A solution to this is the GitLab API contains an endpoint such
as ’/events’ which contains all the contribution events under
one endpoint - it is preferable to limit use of this endpoint as
it can have a negative impact on performance having to filter
through 1000 different events searching for a ’branch creation’
event or searching for the existence of a specific commit under
a merge request event - however this is the only endpoint
which makes these commit logs available for analysis.

Another consideration which was previously mentioned was
the instance of a student starts a merge request on an issue they
didn’t create - specifically in an instance that the student being
analysed follows in this example in the sense they’re starting
the merge request. GitLab stores the information based on
author meaning that the log itself is traceable to the student to
authored the event - implying an ethical issue with collecting
logs of students who didn’t consent to the research [5]. This
was fixed by filtering based on merge requests authored by the
inputted username (a student who volunteered for the study).

The .csv which is acting as output for the event logs portion
was structured to dedicate each line for an issue, and each field
dedicated to the events connected to the issue.

Issue ID ms tagged at mr created at mr merged at
67 2023-07-08 2023-04-06 2023-07-08
12 2023-04-06 2023-07-08 2023-08-09

This table shows how the event logs were formatted and
collected, where the fields ’ms tagged at’ means for the
timestamp which the issue was tagged to a milestone, and
’mr created at’ and ’mr merged at’ means the timestamp for
opening and closing merge requests respectively. We’ve also
decided to separate pipeline event logs into it’s own file as
it’ll be more suitable for the calculations of metrics such
as ’Deployment Frequency’ and ’Change Failure Rate’ if we
collected all the pipelines triggered, and there’s no need to
trace the logic of pipelines to issues.

Using this change - we could use the information from
the ’issues-event-logs’ file to calculate metrics such as ’Cycle
time’ and ’Lead time’, which require evidence of adhering to
the workflow (through the existence of certain events).

Fig. 10. Structure of final design

This image here shows the revised format of the event logs
producing two csv files for calculation and visualisation in
the conformance check phase, including another event logs
portion for pipelines specifically to help calculate ’Deployment
Frequency’ and ’Change Failure Rate’.

After establishing such changes and completing the logic for
collecting issue traceable logs and pipeline event logs - then it
was time to perform the necessary calculations and visualise
the logs in conformance analysis. Each metric is calculated as
follows:

LT = ic −mso

mso = Milestone tagged at
ic = Issue closed at
LT = Lead time

CT = mrm −mro

mro = merge request opened
mrm = merge request closed
CT = Cycle time

*Note Deployment Frequency and Change Failure Rate has
been adjusted to pipeline attempts and pipeline failures (which
differs from normal convention), to match the events of the
source workflows.

DFm = np/31

np = Number of pipeline runs
DFm = Deployments/Pipeline frequency by month

CFRm = np/npf ∗ 100

npf = Number of pipeline failures
CFRm = Change Failure Rate by month



ENGR 489 (ENGINEERING PROJECT) 2023 7

After establishing the calculations using both pipeline event
logs and issue event logs, graphs were created to visualise the
outputs.

Fig. 11. Histogram of Lead time

This histogram of the lead time distribution is done from the
event logs of my own repository. This is regarded as a positive
case where majority of the issues I have development work
for, match the scheme of scoping an issue into a milestone,
and connecting the merge request of work to the issue so it’s
traceable through the algorithm.

Fig. 12. Histogram of Lead time in students repositories

After trialling out the scripts for calculating and visualising
Lead time, on the selected ENGR301 Repositories who pro-
vided consent for analysis - we get the output shown above.
This already provides great insights on the processes that
dominated - as through the calculations and visualisations
we’re also filtering out issues that don’t have a milestone
attached to the issue. Only 8 out 40 issues collected we’re able
to provide valuations for all of milestone tag, merge request
open, merge request merge and issue closing timestamps. The
main bottleneck here is the lack of milestone tags for issues -
which means the calculation will never be triggered.

Fig. 13. Average Cycle time over the months of the project.

For the Cycle time calculations on the selected repositories
we found cycle time would improve within the final phase
of the project - and the development cycle (merge request
lifespan) taking up majority of the lead times for each issue.
Even some instances when the merge request starts before
the issue is scoped into a milestone (due to Cycle time being
greater than Lead time) - which is another point to raise for
process discovery. We also need to consider how long merge
requests last due to the lack of frequent approvals/reviews
done by other team members, this can unfairly inflate the
development cycle time and read out negatively on a members
productivity.

Fig. 14. Average Deployment Frequency and Change Failure Rate over the
project.

After this we have the analysis based on pipeline attempts
and failures - this can indicate that throughout the project -
students were gaining enough in-depth feedback to familiarise
themselves with the project environment to reduce pipeline
failures. Another indications can be the low severity of the
changes people are making gradually reducing throughout the
back-end of the project to reduce the risk of a pipeline failure.

Fig. 15. Additional events and reviews to be considered

Beyond the four key metrics, analysis is also performed
on the additional activities a member can perform outside
of Developer work - this function mainly uses the ’/events’
GitLab API endpoint to collect all possible events committed



ENGR 489 (ENGINEERING PROJECT) 2023 8

at the repository. Such as giving credit for reviewing merge
requests/work done on testing and integration and general
discussion. Another important aspect to track is the amount
of atomic commits - ’atomic commits’ are a great way of
preventing unneccessary bloat of memory usage and resource
consumption from using a repository. From the graph provided
above we can see the presence of binaries being committed
ranging from about 3500-4000 lines of code in one commit -
which gives an idea for another metric we could introduce to
measure stability and consistency of commits.

V. EVALUATION

After taking into account the findings from assessing the
source repositories against the four key metrics - we’re able
to introduce new metrics that would suit the nature of the
source workflows. The first metric proposed is:

IRR =
Nic
Tio

∗ 100

Nic = Number of issues closed within a given time frame
Tio = Number of issues opened at the start of a given time
frame
IRR = Issue Resolution Rate

Issue Resolution Rate caters to the huge gap in the workflow
where a minimal percentage of issues have been scoped into
a milestone. Basing it off a specific time frame, for example
a month, this tracks how fast issues are resolved - and also
prompts the need for using milestones as this would provide
a great way to track productivity and performance within
specific iterations.

Another metric introduced to cater to the nature of the
workflows is:

Mdt = M(mrr −mro)

Mdt = Median development time
mrr = Time when Merge request is marked as ready
mro = Time when Merge request is opened

Median development time takes into account the issue of
the development cycles being unfairly bloated due to the time
considered to review/approve their body of work. There is the
ability to mark when a merge request is ready for review and
indicate that to other team members. Tracking the time taken
from merge request opening, to the last instance of marking
the merge request as ’ready’ - to get closer to reproducing
the general time taken in a development cycle. The overall
development cycle time is determined by the median of all the
time differences, to reduce the impact of potential outliers.

Based on the ability to find new metrics to align with the
source workflows found in internal projects - this meets the
requirement of finding metrics from process mining the source
repositories.

The last metric introduced revolves around detecting the
presence of binary files being committed to the repository to
prevent avoidable resource consumption [8].

BFCR =
Nocb

Noc
∗ 100

BFCR = Binary File Commit Rate
Nocb = Number of commits that exceed the limit (¿1000 lines
of code)
Noc = Number of commits in total

Binary File Commit Rate acts more of a detection of
adherence to the workflow compared to the other metrics
proposed. Being able to track and identify instances of binaries
being needlessly committed to the repository can help DevOps
engineers to place practices to prevent instances like these oc-
curring down the track of the project and ensure engineers are
following the ’green coding scheme’ to also take responsibility
of the sustainability implications of the project.

Performance was compared through the runs on my own
repository with a minimal amount of events to the ENGR301
repositories. The main bottleneck spotted in performance came
through the collection of issue oriented event logs and the
calculation of ’Lead time’ and ’Cycle time’ from it.

Fig. 16. Performance Test comparing the time taken to collect issues event
logs of own repository compared to source repositories.

From the figure provided above majority of the runs take
under 2 minutes to generate the events logs as well as calculate
’Lead time’ and ’Cycle time’. This huge gap in performance
sits well outside the window of an efficient tool that is
effective for process mining - and the event logs should be
serviced under a minute. The reason for this huge difference in
performance for collecting the logs from my own repositories
in comparison to the student repositories - is due to the amount
of filtering for events that need to occur. On my own repository
where I am the sole contributor, almost no time will be
dedicated for scanning and ensuring that event belongs to that
user - whereas for the ENGR301 source repositories, filtering
and verification has gone in to ensure that event belongs to the
user in question, this is to ensure compliance with previous
ethical issues such as collecting logs from non consenting
users.

VI. FUTURE WORK AND CONCLUSIONS

There are many aspects to build off from the findings of this
project. Firstly - through the ability of a tool named ’Value
Stream Analytics’ - which is built in to all GitLab repositories
to assess the overall performance against the four key metrics
[7]. The next point would be to push some of the metrics
proposed to be actioned and reviewed within ’Value Stream



ENGR 489 (ENGINEERING PROJECT) 2023 9

Analytics’ to determine it’s relativity to real-world projects
and is serviceable for GitLab to provide calculations for.

Another is to add more visualisations that tell more about
the processes being conducted as opposed to measuring con-
formance against the four key metrics - whilst measuring
against the four main metrics allowed for identifying some
key gaps in the workflow, it could be even more identifiable
if the tool were to provide visualisations of the logs collected
to tell more about the specific workflows conducted. Using
graphs such as a Sankey Diagram, or a ’Value Stream Map’
to aggregate the workflows.

REFERENCES

[1] BOKEH. Bokeh documentation/showcase. https://bokeh.org/. Accessed:
2023-10-13.

[2] EJWA. Git inspector repository. https://github.com/ejwa/gitinspector.
Accessed: 2023-10-12.

[3] GITLAB. Branches api endpoint. https://docs.gitlab.com/ee/api/
branches.html. Accessed: 2023-10-15.

[4] GITLAB. Gitlab flow. https://about.gitlab.com/topics/version-control/
what-is-gitlab-flow/. Accessed: 2023-10-11.

[5] GITLAB. Gitlab rest api. https://docs.gitlab.com/ee/api/api resources.
html. Accessed: 2023-10-10.

[6] GITLAB. ’python-gitlab’ documentation. https://python-gitlab.
readthedocs.io/en/stable/. Accessed: 2023-05-27.

[7] GREGORY, P. Agile processes in software engineering and extreme pro-
gramming. https://directory.doabooks.org/handle/20.500.12854/70808.

[8] IBM. Why green coding is a powerful catalyst for sustainability
initiatives. Accessed: 2023-10-14.

[9] IMPACT, E. Resource optimization. https://www.engieimpact.com/
expertise/resource-optimization. Accessed: 2023-10-10.

[10] LEEMANS, M. Hierarchical process mining for scalable software
analysis. https://pure.tue.nl/ws/portalfiles/portal/109318783/Leemans
thesis normal.pdf. Accessed: 2023-05-23.

[11] MPLD3. Mpld3 showcase and documentation. https://mpld3.github.io/.
Accessed: 2023-10-13.

[12] PANDAS. ’pandas’ table formatting. https://pandas.pydata.org/docs/user
guide/style.html. Accessed: 2023-05-29.

[13] PLOTLY. Plotly showcase. https://plotly.com/python/. Accessed: 2023-
10-13.

[14] UNITEDNATIONS. United nations 17 goals of sustainable development.
https://sdgs.un.org/goals. Accessed: 2023-06-02.

[15] VAN DER AALST, W. M. P. Process mining handbook. https://link.
springer.com/book/10.1007/978-3-031-08848-3. Accessed: 2023-10-11.


