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Abstract— The New Zealand Institute for Plant and Food 

Research has been working on creating breeding programs for 

the Australasian Snapper (Chrysophrys auratus) to breed 

snappers that mature faster and are high quality. One of the 

breeding program goals is to select individuals that produce 

quick-to-mature offspring. To accomplish this, they collected 

the genomic makeup of snappers into a dataset. However, the 

collected data has missing values in some features, which 

require imputation to enable use of those features to classify fish 

that grow faster and slower. As the genes responsible for 

controlling the growth rate in Snapper are currently unknown, 

the dataset must maintain as many of the features as possible to 

enable identification of the genes most likely to control the 

snappers' growth rate. This project investigated whether the 

data imputation methods used impacted the ability of a machine 

learning classifier to predict the growth rate and, if so, how 

different imputation methods performed. This project 

implemented five imputation methods, specifically Most 

Frequent imputation, K-Nearest Neighbour (KNN) imputation, 

Multiple Imputation by Chained Equations (MICE), a KNN 

approach using domain information, and a cascading KNN 

imputation method using domain information. The KNN and 

MICE approaches have two different parameter settings for 

imputation. This project evaluated these imputation techniques 

using a Random Forest classifier. The results showed that all 

imputation methods are robust to the test train split and random 

state used in the random forest classifier. The classification 

accuracies were similar between the imputation methods. 

Despite differences being displayed in split datasets, the 

complete datasets p-value calculations confirmed no significant 

differences in overall result. These results indicated that 

domain-based imputation approaches did perform better than 

other imputation techniques indicating that using domain-based 

imputation techniques could improve the overall classification 

accuracy. Lack of significant differences between the 

classification accuracies are caused by the number of features 

being so great that there is little overlap in the features selected 

by the Random Forest classifier and the features that are 

selected by the majority of the trees help account for majority of 

the classification accuracy. 

Keywords—data imputation, machine learning, fish, KNN, 

MICE 

I. INTRODUCTION 

This project is part of the Australasian Snapper 
(Chrysophrys auratus) breeding program begun in 2016 by 
The New Zealand Institute for Plant and Food Research 
Limited [1]. The breeding program aims to identify the 
genotypes responsible for controlling the growth rate in 
snapper fish so that when planners breed snapper, the 
offspring grow to a harvestable size faster [1]. The snapper 
growth rate is slow. It can take 3-5 years for a snapper to grow 
large enough to be legally caught commercially for food [2], 

[3]. This project aims to solve the problem of how to handle 
missing data within the genetic dataset. Since the genes 
responsible for influencing the growth rate in snapper are, as 
yet, unknown, the handling of missing data is vital to creating 
a model that can accurately predict the growth rate of a 
snapper based on its DNA [1]. 

This project investigated whether the use of different data 
imputation methods impacts the ability of a machine learning 
classifier to predict the growth rate and, if so, how different 
imputation methods perform. The project implemented and 
evaluated different techniques for imputing the missing data 
values within the original dataset. This project is part of an 
existing project being worked on by multiple researchers, both 
within Victoria University of Wellington and The New 
Zealand Institute for Plant and Food Research Limited. This 
project directly built on the project “Machine Learning 
Techniques for Fish Breeding: Finding Genetic Variants 
Related to Growth” by Ze Chen [4]. This project is crucial as 
there are many missing values within the genomic dataset, 
which contains many features. The project aimed to determine 
which genes are most likely responsible for the growth rate in 
snapper fish. Therefore, features (genes) cannot be removed 
from the dataset because of missing data as it is currently 
unknown which genes are responsible for Snapper growth 
rate. 

In [4], the missing data was imputed by using with the 
most frequent value in each feature. Because this data will be 
used in machine learning models to identify which genes are 
responsible for controlling the growth rate in snapper, it is 
necessary to replace missing values in a way that will not lead 
to distortion of any of the attributes of the data. Distortion will 
lead to misclassification of the features responsible for 
controlling the growth rate of snapper. This project 
implemented a variety of data imputation methods to create 
new datasets and evaluated the datasets to assess how the 
accuracy of the imputation methods. 

Successfully identifying data imputation methods that 
work with this type of data will benefit other projects with 
similar datasets with missing values. Despite the dataset being 
high dimensionality, with over 18000 features, keeping as 
many features as possible is vital. Because there are only 1200 
instances, 1100 of which are usable, performing data 
imputation ensures that those remaining instances are high 
quality. Replacing the missing values with the most frequent 
value in the feature was not ideal, as it distorted the data. More 
complex data imputation methods consider and evaluate the 
most likely value of the instance, so those imputed features are 
less likely to distort the data than using the most common 
value does. 



The model created in this project can be used to improve 
the breeding programmes of Snapper fish for food by 
identifying individuals with a higher genetic likelihood of 
growing faster and producing offspring that will grow faster. 
Fish will reach a harvestable size sooner by growing quicker, 
allowing them to be harvested for food sooner [2]. The overall 
project of classifying the genes responsible for growth in 
Snapper will be able to help in achieving two of the United 
Nations Sustainable Development Goals, specifically, goal 2, 
“End, hunger, achieve food security and improved nutrition 
and promote sustainable agriculture” and goal 14, “Conserve 
and sustainability use the oceans, seas and marine resources 
for sustainable development” [5], [6]. These goals are 
supported as growing fish faster means more fish are an 
adequate size for food sooner (goal 2). Fish growing faster 
commercially would also help prevent illegal fishing as less 
fish would need to be illegally fished (goal 14). 

To discover whether the imputation method influenced the 
classification accuracy 5 different methods were used for 
imputing missing values: most frequent, KNN, MICE, domain 
KNN, domain KNN version 2. All versions of KNN imputed 
datasets using two different values of k (3 or 5) and for MICE 
two different values for the maximum number of iterations 
were given (10 and 50). 

For this project, a domain-based weighted function was 
created. This takes positional information relating to each 
feature to create weights for a specific selected feature based 
on the difference in position relative to other features. This 
domain-based weight function ensured that features further 
away from the selected feature have less impact on the 
imputation of the current feature and closer features have more 
impact on the imputed value. This was based on biological 
concepts of crossover and inheritance of DNA where genes 
closer to the current gene/feature are more likely to be 
inherited together and so are less likely to be different from 
each other [7]. 

This was applied to two domain-based versions of KNN 
created for this project. The first version imputes each missing 
value for each fish using the domain-based weight function. 
The function is repeatedly run for every feature with a missing 
value in each instance. The second version of the domain 
based KNN imputes the features with the fewest missing 
values first and for every feature imputes the values for all 
instances. 

Stratified 10-fold Cross Validation was conducted using a 
Random Forest classifier 30 times on every dataset to test 
whether classification accuracy was robust to different 
random state for the test split and random forest. Friedman’s 
Test was then applied to identify whether there was a 
significant difference in classification accuracy between the 
imputed datasets. 

Overall, the results showed that machine learning 
imputation methods used did not have a significant impact on 
the classification accuracy of the model despite there being a 
significant difference in the average accuracy of the 
chromosome/scaffold datasets. Regardless of that, in general 
the domain-based imputation methods perform better than 
non-domain-based imputation methods. All the imputation 
methods models outperform the most frequent imputation 
model. The most frequent imputation technique was used as 
the baseline method for this project due to being the technique 
used for imputation in [4]. MICE with a maximum of 50 

iterations performed the best overall compared to the other 
methods but this came at a cost, as MICE was time and 
resource intensive. As there were differences in the imputed 
values, the features selected by the Random Forest classifier 
were investigated. It was found that the majority of the 
features used contained imputed values and there was overlap 
in the selected features. Potentially the features selected by 5 
or more different imputation methods be considered good 
starting predictors for the class of growth rate of the fish. 

II. RELATED WORK 

A. Machine Learning for Analysing Fish Related Data 

Machine learning has been a useful tool for a variety of 
different tasks relating to fish over the years. 

There are a wide variety of fish classification tasks that 
have occurred using machine learning on fish-related data. 
When it comes to classification-based studies several focussed 
on classifying the presence of schools of fish based on 
different data collection methods [8], [9]. Paper [8] used 
machine learning techniques to classify whether clusters 
recorded by Multibeam Echosounder were fish or other 
natural occurrences such as bubbles. Paper [9] used data 
collected from a Drifting Fish Aggregating Device and used 
machine learning to classify whether groups of fish were 
present or not. These two papers show how machine learning 
can be used to help classify fish in environments. There have 
also been some papers that classified different species of fish 
based on spectroscopic data recorded [10], [11]. These are 
more general applications of machine learning and how they 
relate to fish. 

There are also papers which looked at using more specific 
data regarding fish which can be used in machine learning 
classifiers. Paper [12] uses data recorded from tagged fish and 
environmental data to classify the fate of individual fish 
during migration. Paper [13] uses machine learning 
techniques to create a classifier able to identify the age of fish 
based on provided information such as scales, length, weight 
and vertebrae. This shows that there are a variety of different 
ways to use machine learning to classify specific information 
about fish using other physical and biological related fish data. 

There have also been uses of machine learning to predict 
other fish related things. Paper [14] uses neural networks to 
predict the physical characteristics length, circumference and 
weight of a variety of fish species based on images. Paper [15] 
used chemical and physical data related to fish muscle 
information in order to predict the mobility type of the given 
fish. Paper [16] has used machine learning to generate 
biomarkers to identify fish sex and thermal stress information. 
Two papers have also used machine learning to gain a better 
understanding of how different environmental factors affect 
fish [17], [18]. 

In recent years machine learning has been a vital tool in 
helping researchers understand and find links between a 
variety of different information about fish for many different 
purposes. There is demonstrated merit in using machine 
learning to identify genes and justifies the idea of using 
machine learning to identify genes related to growth. 

B. Exisiting Genetic Based Imputation Techniues For 

Genetic Data 

The features within the genomic dataset, “data.csv” and 
“new_data.csv”, can be broken down into two different 



categories: they are either part of a chromosome or a scaffold. 
The dataset called “Snapper_SNP_locations.xlsx” stores the 
chromosome or scaffold the feature belongs to and positions 
the genes have on the chromosome or the relative positions 
they have in the scaffold [19]. The scaffold positions are 
estimates of the distances between each chromosome in the 
scaffold and therefore should not be used when imputing the 
data. This is because scaffolds are collections of DNA 
sequences which were unable to be read as part of a full 
chromosome and has been stated during our discussions with 
experts from New Zealand Institute for Plant and Food 
Research Limited [19]. 

There is the potential to use the positional information 
about where the genes are on the chromosome in data 
imputation methods due to the existence of haplotypes. 

Haplotypes are sets of DNA variants in a chromosome 
which are usually inherited together due to their close location 
on the chromosome [20], [21]. There are three different 
methods for deriving haplotypes but the most applicable form 
for this project would be population inference, which looks at 
other genomic information in the population to find haplotype 
matches [21]. Haplotypes have been used to help impute 
missing values in genomic data in other studies seeking to do 
this. Two of these studies were focused on imputing missing 
human genomic data, such as The Cancer Genome Atlas 
datasets and the 1,000 Genomes Project [22], [23]. There have 
also been studies on imputing data in livestock population data 
and for dairy cattle breeding that used haplotypes [24], [25]. 
In paper [25], haplotypes between the parents and offspring 
were compared and if there was an identifiable match the 
missing values would be imputed based on that. However, in 
this project we do not know whether the parents and offspring 
are included in the data, so are prevented from using haplotype 
imputation in this way. Haplotypes cannot be applied directly 
to this project as haplotypes need to be found using industry 
experts. However, the general concept that DNA variants are 
likely to be inherited together can be used in the project as it 
means that fish with similar DNA on a chromosome are likely 
to be related, so this concept can help with imputation of 
missing values. 

In paper [22], a study was conducted into using variational 
auto-encoders (VAE) on datasets which are related to human 
DNA, such as The Cancer Genome Atlas datasets and DNA 
methylation datasets. Like this project’s dataset, the datasets 
looked at in this paper are purely numeric [22]. VAE are able 
to learn about distributions of variables to ensure that the 
output generated is like the input and have been used on 
genomic data before [22]. However, research is needed on 
some more specific types of genomic data [22]. Overall, they 
found that VAEs were able to outperform KNN in multiple 
different situations. However, the differences between the 
datasets they used and this project’s dataset is that only 15% 
of the features in their dataset have missing values with on 
average 8.5% of the values missing [22]. This is significantly 
different to this dataset which has a wider range of missing 
values, in some cases features can have over 60% missing 
values and more than 15% of the features have missing values. 
Because of having more missing values, the reported accuracy 
of VAEs were not applicable to this project. 

C. Machine Learning Impiutation Methods 

There are two main different types of data imputation 
methods: single imputation methods and multiple imputation 
methods [26]–[29]. Single imputation methods impute a 

missing value once whereas multiple imputation methods 
impute a missing value multiple times in order to find the most 
likely value [26]–[29]. Single imputation has flaws due to the 
fact it can be inconsistent in producing results if the missing 
data isn’t missing completely at random, which can lead to 
biased results [26], [27]. Multiple imputation methods are less 
likely to be biased due to the missing value being calculated 
multiple different times and so allow for more variability in 
the results produced [26]–[29]. In this project a variety of both 
single and multiple imputation methods are implemented. 

The single imputation methods considered for use in here 
were: 

• K-Nearest Neighbour, which looks at the k instances 
most similar to the instance with missing value and 
imputes the missing value using the average or most 
frequent value in those k instances [30], [31]. 

• Weighted Nearest Neighbours (NN), which is a 
version of KNN that uses a weighting function that 
weights the features of the instances differently 
depending on a given criteria [28], [30]. 

The multiple imputation methods considered for use in 
here were: 

• MICE, which fills in all the missing values as a base 
then for every instance makes the values missing and 
runs regression to calculate what those missing 
values in the instance would be [29]. It does this a 
number of times, equal to the number of iterations 
given and produces the final result based on the 
regression model [29]. 

• SICE, which is an extension of MICE as it runs 
MICE a number of times and calculates the mean or 
most frequent result from the different MICE results 
[26]. 

• Multiple Imputation using Nearest Neighbours, 
which repeats a nearest neighbour method multiple 
times while using the newly completed values when 
computing the next instances missing values [27]. 

The reasons for considering these methods are they have 
some existing implementation in Python libraries such as 
scikit-learn. These methods allow for the ability to incorporate 
domain knowledge gained from research and from talking 
with people from The New Zealand Institute for Plant and 
Food Research Limited. Weighted NN is an example of a 
method where domain knowledge regarding the positions of 
genes on the chromosome can be implemented using a custom 
method. 

D. Evaluation and Benchmarks 

The goal of this project was to discover whether the data 
imputation method, used on the missing data, created a 
significant difference between the classification accuracies of 
the model. The main evaluation statistics used are the 
classification accuracy value and standard deviation of the 
classification accuracies value. 

To determine whether there is a statistically significant 
difference between the imputed values, Friedman’s Test will 
be used. Friedman’s test is able to be used on any number of 
groups. It uses ranked classification accuracies between the 
different imputation methods to determine if there is a 
statistical difference between the groups being looked at [32]. 



This test is useful for this project as it compares more than two 
different groups to determine if there is at least one group that 
is more different from the others. This allows for easy 
comparison between the different generated datasets. 

The baseline model that results are compared to in this 
project is the model using imputed values with the most 
frequent value. This project expanded and supports a current 
ongoing project which used the most frequent value as the 
imputation type. This also means the accuracy has been 
compared to a model with a very fast implementation time, so 
conclusions can be drawn about the value of using a more 
computationally intensive imputation method. 

E. Tools 

This project was coded in Python. This project is part of a 
suite of related projects already using Python. Regardless, if 
this project had been started from scratch Python would have 
been chosen as it has a variety of available libraries, such as 
scikit-learn, which provided valuable tools [33]. Scikit-learn 
is a Python library which has a variety of data imputation 
method implementations which can be used and customised 
with different input parameters, along with a variety of other 
methods which can be used to help format the datasets and 
functions for calculating metrics on the data imputations [34], 
[35]. Using Python also allowed for custom imputation 
methods and additional methods to be created from scratch as 
needed. Modifications could be made to existing methods, 
providing more control over how those techniques were 
implemented. 

Microsoft Excel was also used in this project, as more 
complex and detailed visualisations were able to be generated 
using it, as was a simple implementation of difference checks 
and p-value calculations. 

III. DESIGN 

A. Overall Approach 

The approach taken to solve this project was to implement 
a simple data imputation technique, a single imputation 
method and a multiple imputation technique to analyse the 
accuracy of the results. This provided a good starting point 
allowing additional techniques to be implemented later and 
providing an understanding of what techniques would be good 
for incorporating domain knowledge into. When the 
imputation methods were affected by given arguments, such 
as KNN results being influenced by the selected value of k, 
two different values were used to allow for a wider variety of 
results and to see if some of the methods had better potential 
depending on the parameters. Initially KNN and MICE were 
the methods selected to be compared to the baseline. KNN is 
a single imputation method and MICE is a multiple imputation 
method. 

B. Dataset Design 

The datasets themselves are made up of features, which 
are individual genes identified within recorded DNA from 
Snapper fish. These genes can be one of three ordinal numeric 
values, 0, 1 or 2 and missing values are indicated by -1. Within 
this project they are treated as if they are numbers as they have 
different meanings. When the value is 0 then the DNA for that 
individual’s gene is identical to the baseline recorded 
individual. When the value is 1 the DNA for that individual’s 
gene is slightly different to the baseline individual. When the 
value is 2 the DNA for that individual’s gene is significantly 
different to the baseline individual. For each gene 0, 1 and 2 

represent the same difference in DNA, meaning it is a different 
genotype to the baseline fish DNA. This means that distance 
measures such as Euclidean distance can be used, as the 
different values have inherent meaning, denoting that 0 is 
different to 1 and is more different to 2, the reverse can be said 
for 2 and, 1 is similarly different to 0 and 2. 

There are two classes fish can be classified into for this 
project, slow or medium. These labels were based on the 
calculated growth rate of the fish, which was determined by 
changes in weight and length over time. There was a fast 
category, but these fish were removed from the data as there 
were too few of them to be of any use for accurate 
classification modelling. These labels were provided by the 
work done in [4]. 

To help with potential memory issues due to the size of the 
datasets, the imputation techniques were executed on split 
datasets, meaning the full dataset was broken down by 
different chromosomes and scaffolds. Once all the split 
datasets had the missing values imputed these datasets were 
recombined to form a complete dataset for analysis purposes. 
Splitting the dataset like this allowed for the most relevant 
features to be kept together and allowed for better 
implementation of the domain specific imputation 
approaches. The dataset was split into 27 different datasets 
which are shown in Table I along with the total number of 
features each chromosome/scaffold contains and the number 
of the features with no missing values or missing values. 

For a better understanding of the generated datasets, both 
split and complete, stratified 10-fold cross validation was 
performed on a Random Forest classifier to determine their 
overall test accuracies. Stratified k-fold cross validation keeps 
the proportion of classes the same in the test set to keep the 
test instances the same as the population proportion. Two 
experiments were done to ensure that the results were not 
random state dependent on the Random Forest Model seed or 
random state for the test split of the data. This code [36] was 
used to conduct both experiments one after another to ensure 
that less time was spent generating results overall. The results 
of the two different tests then had Freidman’s Test performed 
on them to determine whether there was a significant 
difference between the datasets generated, both for the split 
and complete datasets. A Random Forest classification model 
was chosen due to the ability to ensure that overfitting would 
not occur on the training data. This was accomplished by 
ensuring that new subtrees could only be created when there 
were more than 10 individuals that needed to be classified. 

To gain information about the features selected by the 
Random Forest classifier both the random state for the test 
split and the random state for the Random Forest seed were 
set. This can be seen in code [37]. This allowed for a fair 
comparison between the features selected due to the same 
random seeds being used for the elements that were random 
state dependent. 

The criteria for choosing which methods to use as a base 
for implementing domain knowledge were the time it took for 
the imputation method to run, the amount of memory it needed 
to complete and the simplicity of adding domain knowledge 
to the imputation method. These criteria were chosen to ensure 
that computation time and power usage to ensure code was 
environmentally friendly as possible. 



IV. IMPLEMENTATION 

A. Machine Learning Impuation Techniques Implemented 

Initially the Most Frequent Value, KNN and MICE 
techniques were implemented to provide general statistics of 
performance. Imputation using the Most Frequent Value was 
completed by calculating the most frequent value for each 
feature using the non-missing values and substituting that 
value in for the missing values for each feature. 

KNN imputation was more difficult to implement due to 
needing to code the function from scratch. The version 
provided by scikit was unable to be used in this context due to 
it imputing the missing values using the average value of the 
nearest neighbours rather than providing the option to impute 

using the most frequent value, which is needed due to the 
categorical nature of the data. So KNN was programmed from 
scratch for this project [38]. For KNN, imputation was 
conducted with the value of k set to two different values, 3 or 
5. This meant that the imputation method either selected 3 or 
5 individuals that were most similar (nearest) to perform 
imputation. Doing this provided some insight into how 
different parameters would perform in terms of classification 
accuracy. The distance measure used for KNN was Euclidean 
distance as the data values have an inherent distance built into 
them as discussed earlier. 

MICE used to two different maximum iteration sizes, 10 
and 50. This was done to ensure that the MICE regression 
model could converge and provide accurate imputation. 
However, MICE was difficult to implement for several 
reasons. The amount of time it needed to complete a run meant 
that a lot of time was required to run the algorithm. This was 
especially troublesome when the end was reached for all but a 
few chromosomes’ due to the amount of RAM required not 
being available, so that the run crashed. As the imputation 
technique created regression models to impute the missing 
values, the results from the imputation technique had to be 
rounded later to ensure that the final imputed values were one 
of the allowed categorical values of 0, 1, or 2. Accomplishing 
this meant making a method to round values less than 0.5 to 
0, values greater than and equal to 1.5 to 2 and then rounding 
values equal to or greater than 0.5 and less than 1.5 to 1 and 
can be seen in [39]. Also, due to MICE using a regression 
model to impute the values, an implication is made that there 
is a relationship between the features, so this method was not 
used to impute the missing values in the scaffold datasets, only 
the chromosome datasets as discussed earlier. 

Despite producing datasets which were more accurate, 
MICE was not used for domain-based imputation changes due 
to being too time consuming, memory consuming and being a 
complicated method to implement domain knowledge in. 
When the runs were set to 50, two datasets, LG7 and LG8, 
could not be imputed due to the required resources being too 
great for 32GB of RAM. This also meant that SICE was not 
implemented in this project as it performs MICE multiple 
times to get the most frequent value. This would require 
significant power and memory resources that were 
inaccessible for this project.  

B. Domain Imputation Methods 

KNN was selected to apply domain knowledge to. It was 
ideal due to having a shorter computation time, requiring 
fewer resources and being more easily able to have domain 
knowledge applied to it. To implement domain knowledge 
into KNN a custom method was created to turn the feature 
positional information provided into a weighted function 
which was used to determine the most similar individuals to 
the individual being looked at. This function combines 
domain knowledge with machine learning knowledge. The 
function takes a feature that is currently being imputed and 
then determines the relative distance between the selected 
feature and all other features within a chromosome. Then to 
calculate the proper weighted value the distance value is 
inverted. This can be seen in (1): 

 Weight = 1 / distance () 

This allows for the features that are further away from the 
selected feature to have a less significant impact on whether 

TABLE I.  TABLE OF THE SPLIT DATASETS AND THE BREAKDOWN 

OF FEATURES WITH AND WITHOUT MISSING VALUES 

Chromosome/Scaffold 

Dataset Name 

Number 

of 

Features 

with No 

Missing 

Values 

Number 

of 

Features 

with 

Missing 

Value 

Grand 

Total 

CAURATUSV1 

SCAFFOLD 

124 3305 3429 

LG1 44 630 674 

LG10 43 666 709 

LG11 43 759 802 

LG12 29 514 543 

LG13 49 658 707 

LG14 41 523 564 

LG15 29 558 587 

LG16 43 627 670 

LG17 43 461 504 

LG18 34 639 673 

LG19 38 527 565 

LG2 41 726 767 

LG20 36 494 530 

LG21 29 552 581 

LG22 37 592 629 

LG23 22 404 426 

LG24 23 310 333 

LG25 6 52 58 

LG3 47 713 760 

LG4 51 649 700 

LG5 46 685 731 

LG6 35 583 618 

LG7 46 680 726 

LG8 38 664 702 

LG9 31 514 545 

SUPER 

SCAFFOLD 

182 

3 7 10 

Grand Total 1051 17492 18543 

 



an individual is determined to be like another. This is based 
on the biological concept of crossover as genes that are closer 
together have a higher likelihood of staying together during 
crossover than genes that are further away. This means that 
each feature can have different individual fish selected as the 
most similar depending on the feature being imputed, as the 
weighted value for each feature changes depending on the 
selected feature. This helps accommodate crossover as 
features that are further away as less likely to be the same as 
the features closer to the feature due to crossover. The domain 
weight function can be seen in the code for the two domain 
versions of KNN [40], [41]. 

This domain-based weight function was implemented in 
two versions of KNN created for this project. 

The first version created looked at individual fish and 
imputed all the missing values independently in that fish [40]. 
This meant that each fish and each feature within that fish was 
looked at separately. A downside to using this approach was 
that depending on the number of fish with no missing values 
there was potential for only a very limited amount of 
information to be used. If there were not more fish than the k 
being used for the number of nearest neighbours, then the 
method would look at all fish but only the genes with no 
missing values at all. This meant that for some datasets there 

was a significant amount of information that was not used due 
to there not being enough complete fish. 

The second version of the domain based KNN approach 
was created to attempt to fix the lack of information that was 
an issue in the first version because of the significant number 
of features with >0 - <2.5% missing values, as shown in Fig. 
1. The second version of the KNN approach used domain 
knowledge to weight the importance of the features using a 
waterfall or cascading approach [41]. The method starts by 
imputing features with the fewest number of missing values 
first. These features and instances are added to the available 
information that can be used by the KNN to predict the other 
missing values. The potential flaw with this approach is that 
errors could be propagated. This means that if a missing value 
is incorrectly imputed the likelihood that future imputed 
values are incorrectly imputed also increases. However, since 
the features being imputed to start with have so few missing 
values, that is less likely to happen than if the features with the 
most missing values were imputed first. If the features with 
the most missing values were imputed first, then the 
probability of errors occurring and propagating through the 
future imputations would be higher as there would be very 
little information available to be able to impute many missing 
values accurately. This version of the method provides the 

 

Fig. 1. Stacked Bar Chart Displaying the Average Accuracy of the Test Data when 30 different random states were used to split the data by split dataset 

 



best potential for ensuring errors are less likely to be 
propagated and that there is more available information for 
imputing features with higher proportions of missing value. 

The two Scaffold datasets could not be imputed using 
these methods. This is because the positional information 
provided for the features in those datasets is not actually 
position but relative position to each, because the 
chromosome those features belong to cannot be identified. 
This means that the complete datasets for the domain based 
approached do not have any of the scaffold dataset features 
added to them. Rather than impute the values using a different 
method and adding that into the combination a decision was 
made to keep the datasets purely made of one imputation type 
to ensure that the results would not be affected by using a 
combination of imputation methods. 

V. EVALUATION 

A. Classification Accuracy and Random Forest Statistical 

Significance 

The main goal of this project was to research whether the 
imputation performed on the dataset affected the classification 
accuracy, evaluation was dome by using the imputed datasets 
in a model and evaluating the classification accuracy. A 
Random Forest classifier was used as previous work on this 
over-arching project had shown that using a Random Forest 
classifier produced accuracy of around 65%. 

The first test was conducted to see if the test data split 
influenced the results. This was done by applying a stratified 

test splitter on the imputed datasets 30 times with different 
random states set on the Stratified 10-fold Test Splitter and 
was implemented using the scikit library. The random state for 
the Random Forest classifier was fixed for the experiment. 
Fig. 2 shows the average test accuracy calculated from 
running this experiment on the complete datasets ordered from 
the most accurate to the least accurate. This shows that the 
MICE 50 method produced the most accurate results, of the 
methods tested, and performed better than the benchmark 
imputation method, the Most Frequent. Only one method in 
this experiment was outperformed by the baseline imputation 
method. This was Domain KNN 5. This could be due to 5 
individuals being too many to be able to accurately select the 
value most likely to be the actual gene, which negatively 
affected the accuracy. 

Several p-values were calculated using Friedman's Test. 
The first was a p-value for indicating whether there was a 
significant difference between the individual 
chromosome/scaffold datasets. This value was 4.2248E-05, 
indicating that there is a significant difference between the 
individual datasets and their classification accuracies due to 
the p-value being significantly smaller than 0.05. The second 
was a p-value indicating whether there was a difference 
between the individual chromosome/scaffold datasets and the 
complete datasets. This value was 0.00017206, indicating 
there was still a significant difference between the datasets, 
but the complete datasets decreased the overall difference 
between all the datasets. This decrease in difference between 
the imputation types caused by the complete datasets was 

 

Fig. 2. Graph Displaying the Average Accuracy of the Test Data when 30 different random states were used to split the data 
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confirmed by not only the results shown in Fig. 2, due to the 
overlapping standard deviations and similar average 
accuracies for the complete datasets, but also by the p-value 
calculated for just the complete datasets, which was 
0.43347012, indicating that there was no significant 
difference between the accuracy results of the complete 
datasets at all. 

Overall, it was found the test split did not have a 
significant effect on the classification accuracy. This was 
shown in Fig. 2 by the overlapping standard deviations for 
each method and the Friedman’s Test p-value for the 
combined datasets being greater than 0.05. 

The second test was conducted to see whether the random 
state of the Random Forest model significantly affected the 
results of the imputation methods. This was conducted 
because random forests are known to be random state 
dependent. This was done by performing stratified 10-fold 
cross-validation on the imputed datasets 30 times with 
different random state sets for the Random Forest seed. The 
random state for the Stratified test splitter was fixed for the 
experiment. 

Fig. 3 shows the average test accuracies calculated from 
running this experiment on the complete datasets ordered from 
the most accurate to the least accurate. This shows that the 
domain KNN 5 version 2 method produced the most accurate 
results out of the different imputation methods and performs 
better than the benchmark imputation method, the Most 
Frequent value. The experiment also indicated that no other 

imputation method was outperformed by the benchmark 
imputation method of the Most Frequent. 

Several p-values were calculated using Friedman's Test. 
The first was a p-value for indicating whether there was a 
significant difference between the individual 
chromosome/scaffold datasets. This value was 0.001085608, 
indicating that there is a significant difference between the 
datasets and their classification accuracies due to being 
significantly smaller than 0.05. The second was a p-value 
indicating whether there was a difference between the 
individual chromosome/scaffold datasets including the 
complete datasets. This p-value was 0.003303644, indicating 
that there was still a significant difference between the 
datasets, but the complete datasets decreased the overall 
difference between all the datasets. This decrease in difference 
between the imputation types caused by the complete datasets 
was confirmed by the results shown in Fig. 3 due to the 
overlapping standard deviations, similar average accuracies 
for the complete datasets but also the p-value calculated for 
just the complete datasets which was 0.43347012, indicating 
that there was no significant difference between the results at 
all. 

Overall, it was found that the Random Forest seed did not 
have a significant effect on the classification accuracy. This 
was Random Forest seed did not have a significant effect on 
the classification accuracy, which is shown in Fig. 3 by the 
overlapping standard deviation between the results, the small 
standard deviation of each imputation implementation and the 
Friedman’s Test p-value for the combined datasets being 

 

Fig. 3. Graph Displaying the Average Accuracy of the Test Data when 30 different random states were used to split the data 
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greater than 0.05 which indicated there was no significant 
difference between the accuracy results of the combined 
datasets. 

Together these results indicate that despite having a 
statistically significant difference between the average 
accuracy of the chromosome/scaffold datasets, there is no 
statistical difference found between the different combined 
datasets' average accuracies. The results also show that the 
different random states for the test split produces more 
variable results than the different random forest seed. That is 
the p-values for the random test split are smaller than the p-
values generated for the different random forest seeds. This 
indicates that the test split has more impact on the results than 
the random forest seed does and means that care is needed 
when splitting data into the training and test datasets for 
classification. 

Table II shows the average rank of each imputation 
method based on how well it performed in each test. Overall, 
the domain-based approaches performed better than the 
benchmark imputation method of the Most Frequent Value, 
which has an average rank of 8.5, indicating that it produced 
the least accurate classifiers overall. MICE with 50 iterations 
performed the best out of all the different imputation methods. 
However, MICE is not the recommended imputation method 
for this data as it is not resource-effective when compared to 
the other methods. Either of the domain KNN version 2 
approaches would be more suitable due to their rank being 
lower than the Most Frequent and general machine learning 
imputation methods, excluding MICE 50. 

B. Feature Analysis 

As the results of the complete datasets were similar, a test 
was conducted with a fixed random state for both the test split 
and the Random Forest seed. This meant that the results of the 

features selected by the Random Forest classifier could be 
compared. 

To examine in more depth the features chosen by the 
random forest classifier, the top 200 features selected in the 
random forest trees based on the complete datasets were 
recorded and compared to identify any overlaps in the features 
selected. A breakdown of the features used and whether those 
features contained imputed values was also completed. As 
each complete dataset had a random forest tree generated that 
made a total of 9 tree and a potential for there to be 1800 
unique features selected since 200 features were selected from 
each tree. 

Table III shows that despite the fact that 1800 features 
were recorded in total from the 9 trees, 200 from each dataset, 
there were only 956 unique features used by the Random 
Forest classifiers. Of the features selected by the Random 
Forest classifier, 891 had imputed values, with only 65 
features having complete data. This is not surprising because, 
as shown in Fig 1, there are significantly more features with 
missing values in them than features with no missing values. 
Due to the number of features, this means that features with 
missing values are more likely to be selected than features 
without missing values. However, what is surprising is that 
most of the complete features used only occur in one tree’s top 
200 features, shown in Table III, whereas 18 of them are 
implemented in multiple trees’ top 200 used features. 

Despite the fact the results from the Friedman’s Test 
experiments showed that there were no significant differences, 
the majority of the features in the top 200 for each method are 
independent of one another, indicated by 761 of 956 features 
only occurring in one tree, indicated in Table III. This could 
potentially indicate that the features which occur in multiple 
imputation methods' top 200 features could signal they may 
be good indicators for growth rate classification and explain 
why the results are so similar. If all the trees pick the same 
base features to build Random Forest trees from, then 
selecting similar features early on at the start of the tree would 
help explain why the results end up being so similar as having 
the same starting features would mean that small differences 

TABLE III.  TABLE OF THE AVERAGE ACCURACIES OF THE TWO 

TESTS AND THE AVERAGE PERFORMANCE RANK 

Imputation 
Type 

Test Split 
Average Test 
Accuracy 

Random Forest 
Average Test 
Accuracy 

Average 
Rank 

Most 
Frequent 

0.649022823 0.647403443 8.5 

KNN 3 0.650407464 0.649176577 5.5 

KNN 5 0.65114509 0.649461717 5.5 

Rounded 
MICE 

0.650615302 0.649119096 5.5 

Rounded 
MICE 50 

0.652763054 0.650522143 1.5 

Domain 
KNN 3 

0.649416412 0.650265319 4.5 

Domain 
KNN 5 

0.648829143 0.649461717 7 

Domain 
KNN 3 V2 

0.651200306 0.649576962 3 

Domain 
KNN 5 V2 

0.649232359 0.652283384 4 

 

 

TABLE II.  TABLE OF THE SIMILARITIES BETWEEN THE TOP 200 

FEATURES IN RANDOM FOREST TREES 

Number of 
Trees 

Has Imputed 
Values 

No Imputed 
Values 

Grand Total 

9 5 0 5 

8 16 2 18 

7 31 2 33 

6 28 5 33 

5 35 2 37 

4 33 3 36 

3 16 1 17 

2 13 3 16 

1 714 47 761 

Grand 
Total 

891 65 956 

 



between features selected would occur later in the tree and 
produce less of an impact on the classification accuracy than 
the features selected at the start of the tree. 

The main issue appears to be the number of features in this 
dataset with very few instances in comparison. There are 
around 1100 instances with 18543 features indicated in Table 
I. This means it is a high dimensionality dataset and so 
implementing feature selection on the different imputed 
datasets could produce results where the imputation methods 
matter based on selected features. However, investigating that 
was outside the scope of this project. 

VI. CONCLUSIONS AND FUTURE WORK 

A. Conclusions 

Overall, five different data imputation techniques were 
implemented to analyse whether machine learning imputation 
techniques had an effect on the classification accuracy of 
models for classifying the growth rate of Snapper fish. This 
was done to help future research being conducted in this area 
with this data. Two of the methods used in this paper have 
been created specifically for this project taking into account 
specific domain knowledge. 

Despite the results showing that there is no statistically 
significant difference in the accuracy results generated, a 
recommendation would be to use a domain-based machine 
learning method, either domain KNN or domain KNN version 
2. These methods produced better results than more general 
imputation methods, except for MICE 50. However, MICE 50 
is not recommended due to the time it takes for the imputation 
to complete and the resources it requires. If the risk of 
propagating errors using domain KNN version 2 is not 
acceptable then domain KNN should be used. However due to 
how domain KNN version 2 is implemented it is less likely to 
propagate errors due to the order of the features being 
imputed. 

Despite machine learning imputation techniques not 
producing much difference in classification accuracy, this 
may not be true using biology imputation techniques. These 
need to be conducted by experts in genomics and are currently 
being done by researchers at the New Zealand Institute for 
Plant and Food Research Limited. Datasets generated using 
pure biological imputation techniques were not able to be 
generated in time to be analysed for this project so there is no 
information about how accurate the results generated may be. 
However, based on the results indicating that the domain-
based machine learning imputation techniques produced more 
accurate results, there is a high likelihood that the biological 
imputation would generate more accurate results. 

B. Future Work 

Two different ideas would have been implemented in this 
project if there had been more time and would be worth 
investigating. 

The first is implementing feature selection using the 
different imputation methods and analysing differences 
between the selected features for each imputation method. 
Others in the over-arching project have implemented feature 
selection using allele frequency. Allele frequency calculates 
the relative frequency of alleles in specific genes [42]. Feature 
selection occurs by comparing the allele frequencies between 
different genes, and genes with the same allele frequency are 
considered identical, so only one gene stays in the final 

dataset. The reduced number of features to be considered by 
the classification model may improve the results. 

The second is to include the "well" feature in the original 
dataset as a stand-in for the environment. The idea of the 
project is to create a model which can predict fish growth rates 
regardless of their living environment. However, studies 
indicate that the growth rate of fish is influenced and affected 
by the environment [43]–[45]. As the fish were grown in 
partially controlled tanks, with non-heated seawater brought 
into them, the lack of environmental features within the data 
could explain why the accuracy of the different types of 
imputation produced little difference in the overall accuracy 
of the model. Testing datasets including an environmental 
variable to compare their accuracy could be enlightening as 
current datasets are dependent solely on biology, despite the 
growth rate of fish not being dependent solely on biology 
[43]–[45]. The environment a fish lives in is a significant 
factor that influences how that fish grows. Fish with good 
growth genes may not grow quickly in some environments. A 
further idea, beyond using the well as a stand-in for the 
environment, would be to access the recorded temperature 
data and include it in the model to see if that improved the 
classification accuracy. As this data is currently not 
accessible, more time will be needed to complete this analysis. 

A future ENGR489 project could be an investigation and 
analysis of the available environmental data and how it affects 
classification accuracy. This topic would be unique for future 
research as it is currently unknown what results would come 
from doing this, and it combines biology with machine 
learning and data analysis. 
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