
ENGR 489 (ENGINEERING PROJECT) 2023 1

Prolog Visualisation
Rosanne Saparamadu - 300530238

Abstract—Logical programming languages, for instance Pro-
log, are powerful tools for solving complex problems through
declarative programming. Comprehending and analysing such
logical programs can be challenging due to Prolog’s dense textual
notation. This can create challenges such as understanding
complex logic, and difficulty in identifying errors. To mitigate
these issues, the Prolog Visualisation project aims to develop a
visualisation tool that can display a Prolog clause in a graphical
manner, for improved comprehension and analysis of logical
programming. The objective of the project is to develop a
layout algorithm that produces visualisations which express the
semantics of the Prolog code being visualised. The deliverables
of the project will consist of a web application, both server-side
and client-side, which allows the user to enter Prolog code and
generate a corresponding visualisation for it.

I. INTRODUCTION

THE motivation behind the Prolog Visualisation project
stems from the observation that Prolog programs are

often easier to write than read [1]. The density of logic
in Prolog programming, makes it challenging to understand
the program’s structure and behaviour solely through textual
representation. The minimalist nature of Prolog, where es-
sential elements are expressed concisely and predicates with
multiple arguments rely on ordering alone for distinction, fur-
ther adds to the challenge of understanding Prolog programs.
To overcome these obstacles, the development of graphical
visualisation tool is hoped to be useful to provide a visual
overview of the program’s structure, aiding comprehension and
analysis.

Furthermore, the Prolog Visualisation project aims to tackle
the difficulty in identifying errors within Prolog programs.
Prolog code can be prone to errors, such as incorrect rules,
which can be challenging to identify when working with
textual representations alone. By providing a graphical visual-
isation of Prolog code, the tool can visually highlight potential
errors or inconsistencies in the program’s logic, enabling
programmers to identify and resolve errors and inconsistencies
more effectively.

Therefore, the graphical representation of the Prolog
Visualisation tool will enable the programmers to better
understand program structure and behaviour, and also
facilitate error detection and inconsistencies. As Simon
Holland states in [2], “Some aspects of Prolog programs are
identified that appear to be clearer for novices when presented
in the graphic formalisation.” Where, graphic formalisation
represents the “. . . equivalent to the standard textual notation
for Prolog.”

The Prolog Visualisation project is primarily aimed at
enhancing the understanding and error detection in Prolog

This project was supervised by Thomas Kühne (primary).

programming. While its direct link to some of the United
Nations Sustainable Development Goals (SDGs) may not be
immediately evident, it can indirectly contribute to several
goals related to People, Prosperity, and Planet.

Goal 3: Good Health and Well-being (People): The
Prolog Visualisation tool may not directly address health
concerns but it can indirectly promote well-being. By making
Prolog programming more accessible and comprehensible, it
can reduce the frustration and cognitive load associated with
complex logic within Prolog programs, thus contributing to
the mental well-being of programmers. Clear and visually
enhanced code can lead to more efficient problem-solving,
ultimately reducing stress and improving the overall well-
being of individuals working with Prolog.

Goal 4: Quality Education (People): The Prolog Visual-
isation project strongly aligns with this goal by facilitating a
better understanding of Prolog code. The graphical visualisa-
tion provided by the tool can assist students and programmers
in comprehending the complex logic and relations within
Prolog programs. This, in turn, can enhance the educational
experience and proficiency in logical programming languages.

Goal 9: Industry, Innovation, and Infrastructure (Pros-
perity): The Prolog Visualisation project aligns with this
goal by promoting innovation in the field of programming
languages. By developing a visualisation tool for Prolog,
the project aims to enhance the infrastructure of logical
programming and contribute to the advancement of software
development practices.

Goal 12: Responsible Consumption and Production
(Prosperity & Planet): The Prolog Visualisation project can
indirectly promote responsible consumption and production.
By making Prolog programming more accessible and under-
standable, it can help programmers write more efficient and
error-free code. This efficiency can lead to less wastage of
computational resources, contributing to responsible consump-
tion in the digital realm.

It’s important to note that not all projects directly address
or align with all sustainability goals. In the case of the
Prolog Visualisation project, its primary focus is on education,
productivity, and innovation. This means it may not have a
direct or significant impact on goals related to environmental
conservation or poverty eradication. However, it can indirectly
support these broader sustainability goals by fostering an
environment of education and innovation that can lead to the
development of more sustainable solutions in the future. In
this way, the project plays a part in contributing to the broader
sustainable development agenda, even if it is not its primary
focus.



ENGR 489 (ENGINEERING PROJECT) 2023 2

II. FINAL PRODUCT AND KEY FINDINGS OF THE
EVALUATION

In the development of the Prolog Visualisation project, a
set of key aspects and requirements, including both functional
and non-functional, were initially outlined in the preliminary
report. This served as a foundational guide for the develop-
ment process. While significant progress has been made in
creating the final product, it is essential to evaluate which key
aspects and requirements were successfully implemented and,
conversely, understand why some aspects were modified or not
met.

A. Key Aspects and Requirements Met in the Final Product:

Prolog Code Input (Functional Requirement): The final
product successfully provides a text input area where users can
enter Prolog code. This feature allows users to conveniently
enter their Prolog code for visualisation.

Prolog Code Extraction (Functional Requirement): The
system accurately parses the entered Prolog code to extract
its structure, including rules, facts, conjunctions, and rela-
tionships. This extraction is fundamental to the subsequent
visualisation process.

Prolog Code Parsing and Abstract Syntax Tree (AST)
Generation (Functional Requirement): The system con-
structs an Abstract Syntax Tree (AST) representation of the
parsed Prolog code. This AST accurately captures the structure
of the Prolog code, aiding in the visualisation process.

Visualisation (Functional Requirement): The final prod-
uct utilises the constructed AST to render a visual representa-
tion of the Prolog code by incorporating nodes and edges.
Although the final product doesn’t include labels for the
edges as depicted in the example models, it still manages
to successfully convey the structure of the Prolog code. This
aspect remains in harmony with the project’s motivation, as it
provides users with a valuable tool to visualise and understand
the logic within their entered Prolog code.

Performance (Non-Functional Requirement): The final
product exhibits efficient performance in terms of parsing,
generating graphical notation, rendering, and responding to
user interactions. The system’s performance ensures a smooth
user experience, with quick response times.

Reliability (Non-Functional Requirement): Despite run-
ning locally without deployment, the system has been designed
to be reliable and stable, ensuring a seamless user experience
with minimal errors and downtime.

Compatibility (Non-Functional Requirement): The final
product remains compatible with modern web browsers, en-
suring accessibility across different platforms.

B. Key Aspects and Requirements Not Met in the Final Prod-
uct:

Layout Design (Functional Requirement): The final prod-
uct deviated from the initial layout design plan, opting for a
more user-centric approach. Instead of a fixed layout strategy,
users are given the flexibility to manually arrange nodes to
create their preferred layout. This adjustment was prompted by

the complexity of designing a one-size-fits-all layout strategy
for various Prolog code inputs. While it represents a shift
from the original plan, this approach empowers users to
customise the visualisation to their individual preferences and
requirements.

Deployment (Non-Functional Requirement): The final
product has not been deployed to a web server and still runs
on localhost. Time constraints and other university course
priorities led to this aspect being postponed. However, future
deployment remains a possibility to make the tool accessible
to a wider user audience.

Usability (Non-Functional Requirement): The user in-
terface allows for straightforward input of Prolog code, and
the interactive feature that enables users to manually ad-
just node positions enhances usability. However, the final
product’s graphical notation could be further improved to
enhance usability. While the current design effectively conveys
the structure of Prolog code, the addition of edge labels,
similar to those found in the example models, could make
the visualisation even more meaningful. This enhancement
would contribute to a better understanding of the Prolog code
structure and further improve the user experience.

C. Key Findings of the Evaluation with Relevant Performance
Metrics:

The evaluation of the Prolog Visualisation web application
is grounded in empirical and analytical evidence by using the
following performance metrics:

1) Comparison of Model Output to Actual Output: This
metric revealed distinctions in the labelling of nodes
and edges between the model and actual outputs. The
presence of edge labels in the model output was a
significant technical aspect that enhanced the clarity of
visual representations. The representation of head and
tail variable nodes and the choice of shapes for list nodes
were also identified as technical considerations affecting
the application’s design.

2) Time Taken for Parsing and Visualising: The recorded
parsing and visualisation times demonstrated the ap-
plication’s parsing efficiency and the responsiveness of
visual rendering. Shorter parsing and visualisation times
indicated enhanced efficiency, which is an important
technical aspect. These recorded times played a pivotal
role in evaluating the application’s user experience and
technical performance.

III. BACKGROUND RESEARCH

In the development of the Prolog Visualisation project, it is
imperative to consider a broad spectrum of research areas.
This background research section not only delves into the
literature concerning user interface (UI) design principles and
prototyping methods but also evaluates existing solutions that
have been developed to tackle the complexities of visualising
Prolog code.



ENGR 489 (ENGINEERING PROJECT) 2023 3

A. User Interface Design Principles and Prototyping Methods

In the book “Designing Interfaces: Patterns for Effective
Interaction Design”, the author Jennifer Tidwell states that
Button Groups play an important role in enhancing the clarity
and usability of an interface. They contribute to making the
interface self-explanatory by organising buttons into distinct
clusters that are easily distinguishable within a complex layout.
As for the arrangement, the article states that Button Groups
can either be aligned in a single column or placed in a row if
they are not excessively wide. Hence, by incorporating Button
Groups, a visual hierarchy of actions is created, allowing users
to identify related and important functionalities [3].

In the context of the Prolog Visualisation web application,
Button Groups can effectively display the buttons labelled
“Clear” and “Visualise”, as these buttons are relevant to the
text input area, in terms of clearing the code entered into
the text input area or visualising the code entered into it.
Also, by placing these two buttons below the text input area
in a row arrangement with a reasonable gap between them,
helps prevent inadvertent clicks and ensures a user-friendly
experience.

According to this book, utilising an input prompt can also
cleverly provide assistance in cases where the purpose of a
text input area may not be immediately evident to the user. By
placing the input prompt directly within the text area where
the user will type, the input prompt becomes unmissable and
advantageous. This approach eliminates the need for users to
speculate about the purpose of the text input area or labels,
as the input prompt itself conveys the necessary information
[4]. The article also states that “The prompt must be put back
when the user erases the value, and the requested information
must be familiar to the user (such as name or email)” [4], [p.
369].

The text input area within the Prolog Visualisation
web application, designed for receiving Prolog code, can
effectively employ input prompts. By incorporating an input
prompt such as “Enter you prolog clause here. . . ” directly
within the text input area, users are explicitly informed that
this input area is intended for entering Prolog code. This
intuitive approach ensures clarity and encourages users to
input the appropriate Prolog code with ease.

Another book called “User Interface Design and Evaluation”
discusses on the significance of protypes in the design process,
describing them as experimental and often incomplete designs.
Prototypes work in two ways depending on the stage of the
design process. In the early stages, prototypes can facilitate
communication and idea-sharing between UI (User Interface)
designers, users, and stakeholders, aiding in the clarification
of requirements. In the later stages, prototypes are valuable
for exploring and demonstrating interactions and ensuring
design consistency [5].

The book also discusses that prototypes come in two types:
low-fidelity and high-fidelity. Low-fidelity protypes are char-
acterised by their basic and simplified representations such as
sketching or screen mockups. While low-fidelity prototypes
provide users with an indication of the overall look and feel

of the UI, they offer limited details regarding the functionality
of the UI. In contrast, high-fidelity prototypes are based on
software which means users are able to experience on the
overall look and feel of the UI [5].

For the development of the Prolog Visualisation web appli-
cation, low-fidelity screen mockups will be utilised to design
the UI. This choice is made because high-fidelity prototypes,
which closely represents the final product, are not suitable
for requirements gathering. Also, high-fidelity prototypes are
less flexible during testing and changes are more difficult to
implement compared to low-fidelity prototypes, which allow
for easier modifications and iterations.

B. Existing Solutions

The ”Prolog Visualization System Using Logichart Dia-
grams” by Yoshihiro Adachi offers a comprehensive solution
aimed at supporting Prolog programming education. The paper
presents a Prolog visualisation system that employs Logichart
diagrams to make Prolog programs more accessible and un-
derstandable. This system addresses the need to facilitate the
teaching and learning of Prolog, which can be challenging for
beginners due to its unique mechanisms, including powerful
pattern matching and automatic backtracking [6]. While these
mechanisms are powerful, they can also introduce complex-
ities, especially for those transitioning from procedural pro-
gramming languages like C and BASIC.

The core of the solution involves Logichart diagrams, which
are designed to provide a clear and intuitive visualisation of
Prolog program execution flow. This representation serves two
primary purposes. First, it visually traces Prolog execution as
seen in Fig 1 below, highlighting goal calling, success, and
failure. Second, it offers real-time visualisation of dynamic
changes in a Prolog program, particularly when extra-logical
predicates like ’assertz’ and ’retract’ are invoked. Additionally,
the system provides insight into variable substitution processes
through real-time display within a text widget.

Fig. 1. Visual trace of Prolog execution.

Adachi’s ”Prolog Visualization System’s” relevance to that
of the Prolog Visualisation project introduced in the current
paper, lies in its shared objective of enhancing the understand-
ing and debugging of Prolog programs. Both projects aim to
provide users with tools to interact with Prolog code more
effectively. Adachi’s system accomplishes this goal by offer-
ing visual representations that make it easier to comprehend
Prolog’s unique execution flow and the impact of dynamic
changes [6]. Similarly, the Prolog Visualisation project of this
paper endeavours to provide a user-friendly tool to visualise



ENGR 489 (ENGINEERING PROJECT) 2023 4

and understand Prolog code. Both solutions target the domain
of Prolog education and understanding.

The advantages of Adachi’s ”Prolog Visualization System”
are evident in its ability to create Logichart diagrams, which
provide a visual structure that is more closely aligned with
the structure of Prolog code itself. This visual correspondence
simplifies the process of understanding Prolog programs. Ad-
ditionally, the system’s real-time visualisation of execution and
dynamic changes offers valuable insights into the behaviour of
Prolog programs, further aiding in understanding and debug-
ging. However, it is essential to note a potential disadvantage
indicated in the paper. The system’s current challenge is
visualising and navigating large execution trees. As mentioned
in [6], ongoing work aims to address this issue. While this may
represent a limitation for dealing with complex and extensive
Prolog programs, it’s a limitation that is acknowledged and
under active development.

In summary, the ”Prolog Visualization System Using
Logichart Diagrams” by Yoshihiro Adachi presents a valuable
approach to visualising Prolog programs, closely aligning
with the goals of the Prolog Visualisation project discussed
in the current paper. The system’s use of Logichart diagrams,
real-time visualisation, and support for understanding Prolog
execution flow makes it a noteworthy reference in the context
of Prolog education and visualisation [6].”

In contrast to existing solutions, the Prolog Visualisation
project offers a fresh and user-centric approach to addressing
the challenges associated with understanding and debugging
Prolog code. While solutions like the ”Prolog Visualization
System Using Logichart Diagrams” by Yoshihiro Adachi
primarily focus on visualising Prolog program execution
flow through Logichart diagrams, the Prolog Visualisation
project takes a step further by providing programmers with
an intuitive and interactive graphical representation of their
Prolog code. Not only does it visualise program structure,
but it also emphasises error detection and highlights potential
inconsistencies, aiding in effective debugging. The Prolog
Visualisation tool serves as a practical and efficient means for
programmers to grasp the intricacies of their code, offering a
more holistic understanding of Prolog logic. By meeting a set
of key functional and non-functional requirements, the Prolog
Visualisation project ensures seamless Prolog code input,
accurate parsing and Abstract Syntax Tree generation, efficient
performance, reliability, and compatibility across modern web
browsers. This user-centric and feature-rich approach sets the
Prolog Visualisation project apart, empowering programmers
with a comprehensive tool for Prolog comprehension and
error detection.

IV. TOOLS AND METHODOLOGY

In the development of the Prolog Visualisation web ap-
plication, a carefully chosen set of programming languages,
software libraries, frameworks, and development tools played a
critical role in shaping the design and functionality of the final
system. Each tool brought distinct advantages to the project.

A. Programming Languages

JavaScript: JavaScript served as the primary programming
language for the front-end development of the web applica-
tion. Its versatility and wide adoption in web development
made it an ideal choice. JavaScript allowed for the creation
of interactive user interfaces and seamless communication
with the back-end, enabling real-time updates and dynamic
visualisations.

B. Software Libraries and Frameworks

Node.js [7]: Node.js, the runtime environment, formed the
backbone of the back-end development. It greatly benefitted
the project by facilitating non-blocking, event-driven architec-
ture. This ensured efficient handling of tasks such as Prolog
code parsing and Abstract Syntax Tree (AST) generation while
maintaining smooth interactions with the front-end compo-
nents.

Express.js [8]: Express.js, a web application framework for
Node.js, streamlined the development of server-side compo-
nents. It provided essential features for routing, middleware,
and server-related functions. This accelerated the creation of
a robust and responsive web application.

Tau Prolog [9]: Tau Prolog, a Prolog interpreter written in
JavaScript, proved invaluable as a pre-processor. It prepared
the entered Prolog code for parsing and AST generation by re-
moving any whitespaces, enhancing the system’s performance
and compatibility.

PEG.js [10]: PEG.js, a powerful parser generator for
JavaScript, played a critical role in creating a custom Prolog
code parser. Its ability to define a specific grammar for Prolog
facilitated precise code parsing and syntax analysis. This
ensured that the visual representation accurately reflected the
structure and logic of the Prolog code.

D3.js [11]: D3.js, renowned for its data visualisation capa-
bilities, was chosen for visualising the AST graph generated
from the entered Prolog code. Its flexibility and extensive
features empowered the web application to present the entered
Prolog code’s structure and logic in a visually appealing and
informative manner.

C. Development Tools

Visual Studio Code [12]: Visual Studio Code, as the
integrated development environment (IDE), played a signif-
icant role in enhancing productivity during the development
process. Its support for Node.js web application deployment
and a wealth of extensions and plugins streamlined the coding,
debugging, and project management, ensuring code quality and
efficiency.

Git [13]: Git, the chosen version control system, enabled
systematic tracking of project changes and management of
different code versions. This ensured code stability throughout
the development cycle. Also, its ability to create branches,
merge changes, and maintain a clean version history ensured
project integrity and helped manage different aspects of the
application effectively.



ENGR 489 (ENGINEERING PROJECT) 2023 5

The choice of this toolset supported an iterative development
approach, allowing for structured progress, regular feedback,
and adjustments as required. This methodology, along with
open communication and guidance from the project supervisor,
ensured that the Prolog Visualisation web application aligned
with defined requirements and maintained a high standard of
functionality and performance. The seamless integration of
these tools, each carefully selected for its specific advantages,
resulted in a final product with a web application designed
to provide users with a powerful tool for understanding,
analysing, and visualising Prolog code.

V. DESIGN AND IMPLEMENTATION

A. Conceptual Design

1) System Architecture for the Final Product: The
Prolog Visualisation web application adheres to a client-
server architecture, retaining its structure outlined from
the preliminary report. On the client side, the application
is presented through a modern and interactive web
interface. This interface enables users to engage with
the application by allowing them to input Prolog code
and customise the visual presentation of their parsed
code as preferred. The server side, which functions as
the backend, remains responsible for carrying out the
following processes such as parsing the entered Prolog
code and visualising the nodes and edges graph.

2) Components and Modules for the Final Product:
a) Front-end UI (User Interface): The front-end

of the web application is an important compo-
nent. It offers a user-friendly and responsive inter-
face which was designed using a combination of
HTML, CSS, and JavaScript. The UI encompasses
a text input area where users can easily enter
their Prolog code. The visual representation area
is now dynamic and enables users to move nodes
themselves, ensuring a layout that aligns with their
understanding. This flexibility allows users with
the ability to create layouts that best suit their
needs, enhancing usability and user satisfaction.

b) Back-end Processing: The backend component is
responsible for handling the processing and analy-
sis of Prolog code to generate visualisations. The
detailed processes have been refined and enhanced
for the final product.
• Pre-processing of Prolog Code: The Pro-

log code entered by the user undergoes pre-
processing to extract its structure and essential
elements such as Prolog rules. This is achieved
through the utilisation of Tau Prolog, which
acts as a pre-processor to extract rules and also
remove any whitespaces from the entered Prolog
code. This pre-processed Prolog code is then
handed over to the subsequent components for
further processing.

• Prolog Code Parsing and Abstract Syntax
Tree (AST) Generation: Upon extraction of the
rules using Tau Prolog as a pre-processor, each

rule is transferred to a parser built with PEG.js.
This parser leverages a customised grammar file
to meticulously parse each preprocessed rule,
resulting in the generation of the Abstract Syntax
Tree (AST). This generated AST is a concise
yet comprehensive representation of the entered
Prolog code’s structure.

• AST to Graph Conversion: Next, the AST,
a structural representation of the parsed Prolog
code, is utilised to extract nodes and edges.
In this context, the extracted nodes represent
different elements of the Prolog code, including
predicates, arguments, and variables, while the
edges represent the connection between these
nodes. These extracted nodes and edges will
then contribute to the generation of the graph
visualisation.

• Graph Visualisation: This component leverages
the D3.js library for rendering a graphical rep-
resentation of the nodes and edges that have
been extracted. Hence, this graph will portray
various nodes using diverse shapes, where pred-
icates are depicted as squares, and other nodes
such as variables and arguments are represented
as circles. Furthermore, each node contains la-
bels which display the names of the associated
predicates, arguments, and variables for easier
identification and understanding. The graph also
visually represents the edges as lines, helping
users grasp the structure, relationships, and logic
within the entered Prolog code.

• Layout Design: In contrast to the preliminary
report, the final product does not rely on a fixed
layout design strategy that works for various
entered Prolog code. Instead, it allows users to
interact with the graph by allowing them to
reposition nodes, affording them the flexibility
to arrange nodes and configure layouts in ac-
cordance with their individual preferences. This
user-driven approach to layout design in the final
product encourages an exploratory perspective
as it enables users to customise the graph visu-
alisation to suit their unique requirements.

3) Interfaces with External Systems for the Final Prod-
uct: In the final product, as with the preliminary report,
Prolog interpreters and parsers are used within the
Prolog Visualisation web application itself. They play
an important role in handling tasks such as extracting
rules from the entered Prolog code and parsing it to
generate the AST graph. Therefore, there are no inter-
faces with external systems in the context of the Prolog
Visualisation project.

4) Requirements and Constraints Impact on Design
Choices for the Final Product: In the development
of the Prolog Visualisation web application for the final
product, the defined requirements and constraints have
played a significant role in shaping design choices.



ENGR 489 (ENGINEERING PROJECT) 2023 6

These requirements and constraints guided the devel-
opment process, ensuring that the web application met
its intended objectives and delivered a seamless user
experience.

• Functional Requirements: The defined functional
requirements heavily influenced the design choices
in the final product. Due to the complexity of
implementing the one-size-fits-all layout strategy
detailed in the preliminary report, the decision was
made to adopt a user-driven layout, which provides
users the flexibility to define their graph layouts.
This adaptable design approach aligns closely with
the requirement for the graphical notation to display
the structure of entered Prolog code meaningfully.
On top of enabling users to take control of the visual
layout, the design still accommodates to diverse
Prolog input codes, making the tool more versatile.

• Non-Functional Requirements: The final product
continues to excel in terms of efficiency, reliability,
and user-friendliness. The system’s performance re-
mains a priority, ensuring the rapid parsing, gener-
ation, and visualisation of Prolog code while also
offering smooth interactions with minimal latency.
The reliability and stability of the application have
been meticulously maintained, creating a seamless
user experience with minimal errors or downtime.
The user interface is not only visually appealing but
now more adaptable, allowing users to dictate their
layout preferences, thus further enhancing its intu-
itiveness. These non-functional requirements have
steered the design choices, resulting in a web appli-
cation that promises a high standard of functionality
and performance.

• Compatibility Constraint: The requirement for
compatibility with various browsers and devices
significantly affected design decisions. The respon-
sive design of the user interface and the adoption
of web standards that account for varying browser
behaviours and device specifications ensure that the
application provides a consistent and user-friendly
experience across different platforms and screen
sizes. These choices result in a web application that
is accessible and usable on a wide range of devices
and web browsers, addressing the compatibility con-
straint effectively.

The final design choices of the Prolog Visualisation web
application have been heavily influenced by the require-
ments and constraints outlined. They were important in
ensuring that the application was not only functional and
efficient but also adaptable to different user preferences
and capable of providing a consistent, reliable, and user-
friendly experience across diverse platforms and devices.

B. Sustainability Considerations:

This section delves into the considerations of sustainability
in the design of the Prolog Visualisation web application.

It assesses how the project addresses environmental, social,
economic, and technical sustainability aspects in its design.

1) Environmental Sustainability: The Prolog Visualisa-
tion web application, by its design and nature, doesn’t
significantly impact environmental sustainability. This is
primarily because it does not rely on cloud-based servers
or involve resource-intensive computations. The web ap-
plication operates on the user’s local device, performing
Prolog code parsing and visualisation within the user’s
web browser. As such, it doesn’t consume excessive
energy or material resources associated with cloud-based
services or large-scale data centres. Hence, the project’s
environmental impact is minimal, considering that it is
essentially a client-side application that doesn’t require
extensive server infrastructure.

2) Social Sustainability: Regarding social sustainability,
particularly in terms of privacy and equity, the Pro-
log Visualisation web application follows a privacy-
conscious approach. It does not collect, store, or trans-
mit any user data. The only input it receives is the
Prolog code entered by users, which is inherently non-
sensitive information. As a result, there are no privacy
issues or concerns related to individuals, communities,
or societies associated with the project. Furthermore,
the web application is designed to be openly accessible
to all users without bias or discrimination, promoting
equity in its accessibility and usage. It provides a free
and inclusive tool for anyone interested in visualising
Prolog code, thus aligning with principles of social
sustainability.

3) Economic Sustainability: The Prolog Visualisation
project has been developed with an awareness of both
short-term and long-term economic requirements. The
project’s open-source nature and utilisation of commonly
available web technologies help ensure that it remains
cost-effective for both developers and users. It doesn’t
require expensive software licenses or proprietary sys-
tems, which could otherwise present economic chal-
lenges. Additionally, the absence of cloud-based servers
or other resource-intensive infrastructure keeps operating
costs low. Long-term sustainability is also supported
by its simplicity and avoidance of resource-intensive
technologies, making maintenance more affordable and
feasible.

4) Technical Sustainability: The technical sustainability
of the Prolog Visualisation web application is under-
pinned by its open-source nature and sensible tech-
nology choices. The project is open source, with its
complete source code available in a public repository,
ensuring transparency and accessibility for developers
and contributors. This open nature supports technical
sustainability by allowing for potential future deploy-
ments or extensions. Additionally, the project relies on
well-established and widely used technologies such as
HTML, CSS, JavaScript, and libraries like D3.js. These
choices enhance its longevity, as these technologies are
expected to remain supported and compatible, contribut-



ENGR 489 (ENGINEERING PROJECT) 2023 7

ing to the project’s ongoing technical sustainability. The
absence of complex or proprietary technologies also
simplifies maintenance and adaptation, making it easier
for future developers to work with the codebase.

The Prolog Visualisation web application demonstrates a com-
mitment to sustainability in multiple aspects. While its impact
on environmental and social sustainability is minimal due to its
client-side nature and privacy-conscious design, it aligns with
economic sustainability by being cost-effective and upholds
technical sustainability through its open-source architecture
and technology choices. These considerations collectively po-
sition the project as a responsible and sustainable solution for
visualising Prolog code.

C. Implementation

VI. EVALUATION

A. Performance Metrics

The performance evaluation of the Prolog Visualisation web
application involves a comprehensive comparison of the model
output with the actual output for two example Prolog code
snippets, ’transform.pl’ and ’sift.pl’. These comparisons are
significant in assessing the quality, accuracy, and effectiveness
of the tool. They also involve recording the time taken for
parsing and visualising the results, offering insights into the
efficiency of the application.

1) Comparison of Model Output to Actual Output:
a) transform.pl: I initially rearranged the nodes and

edges within the Prolog Visualisation web applica-
tion to match the layout of the model output as seen
in Fig 4. I successfully achieved a layout similar
to the model output as portrayed in Fig 5 below,
but I observed several distinctions between the two
outputs.

Fig. 2. Model output for transform.pl.

Fig. 3. Actual output for transform.pl.

i) The model output features labels for both nodes
and edges, while the actual output lacks labels
for the edges. These edge labels in the model
output provide users with additional informa-
tion, indicating whether a connection involves
the ’head’ or ’tail’ of a list node.

ii) In the actual output, the head and tail variable
nodes of list nodes are displayed on the graph.
This is not the case in the model output. For
instance, in the actual output, nodes labelled
’X,’ ’Y,’ ’T,’ and ’Result’ represent the heads
and tails of list nodes, which are absent in
the model output. Instead in the model output,
these variables are labelled ’head’ (represented
by node ’T’ in the actual output), ’tail’ (repre-
sented by node ’Result’ in the actual output),
’language 1 word’ (represented by node ’X’
in the actual output), and ’language 2 word’
(represented by node ’Y’ in the actual output).

iii) Furthermore, the list nodes in the model output
are depicted in a square shape to distinguish
them as a different type compared to other
nodes. In contrast, the actual output represents
list nodes in a circular shape, similar to other
nodes in the entered Prolog code, such as
variables or arguments.”

b) sift.pl: Similar to when I evaluated transform.pl
previously, I initially rearranged the nodes and
edges within the Prolog Visualisation web appli-
cation to match the layout of the model output
as seen in Fig 6. I successfully achieved a layout
similar to the model output as portrayed in Fig 7,
but I observed several distinctions between the two
outputs.



ENGR 489 (ENGINEERING PROJECT) 2023 8

Fig. 4. Model output for sift.pl.

Fig. 5. Actual output for sift.pl.

i) The model output includes labels for nodes,
just as the actual output does. However, the
model output goes a step further by providing
labels for edges, which are absent in the actual
output. These edge labels provide users with
additional information, indicating whether a
connection involves the ’head’ or ’tail’ of a list
node connecting to another node. Furthermore,
the model output provides specific edge labels,
such as ’input list’ indicating that the tail of the
list node serves as input for the ’sift/process’
node and ’filtered list’ indicating the output of
the ’sift/process’ node. Additionally, the model
output visually represents the ’left operand’
edge entering the ”<” condition node from the

left, with an arrowhead pointing left, and simi-
larly, the ’right operand’ edge entering from the
right with an arrowhead pointing to the right
side of the condition node.

ii) Once again, the actual output depicts the head
and tail variable nodes of list nodes on the
graph, which is not found in the model output.
This contrast arises because in the model out-
put, these variables are represented as edges.
For instance, in the actual output, the node
labelled ’X’ corresponds to the edge labelled
’head’ in the model output and the ’Tail’ node
corresponds to the edge labelled ’tail’ in the
model output.

iii) Furthermore, list nodes in the model output
are portrayed in a square shape to distinguish
them as a distinct type compared to other
nodes. Conversely, in the actual output, they
are represented in a circular shape, similar to
other nodes in the entered Prolog code, such as
variables or arguments.”

c) Evaluation Significance: The comparison between
the model output and the actual output holds sig-
nificant importance in assessing the quality and
accuracy of the Prolog Visualisation web applica-
tion. This performance metric plays a crucial role
in evaluating the tool’s effectiveness in rendering
Prolog code visually. It allows for identifying both
commonalities and differences between the two
outputs, which are essential in the following ways:

• Quality Assessment: Comparing the model and
actual outputs offers a means of evaluating the
tool’s correctness in visualising Prolog code. It
provides a basis to assess whether the visual
representation accurately captures the structural
elements, relationships, and logic of the entered
code. Discrepancies between the two outputs can
indicate areas for improvement and enhance-
ment.

• User Experience: The presence or absence of
labels for both nodes and edges in the model
and actual outputs significantly impacts user
experience. Labels enhance user understanding
by providing additional information, such as
identifying whether a connection involves the
’head’ or ’tail’ of a list node. Thus, it influences
the clarity and interpretability of the visualised
Prolog code.

• Representation of Variables: Notably, the rep-
resentation of head and tail variable nodes of list
nodes directly influences the completeness of the
visual output. While the actual output displays
these nodes, their absence in the model output
may have implications for user comprehension.
Therefore, this metric highlights the need to
balance clarity and completeness.

• Visual Elements: The shape and design of



ENGR 489 (ENGINEERING PROJECT) 2023 9

list nodes in the model and actual outputs af-
fect the visual aesthetics of the representation.
This metric highlights the significance of visual
consistency and design choices, particularly in
ensuring that list nodes are appropriately distin-
guished from other nodes.

2) Time Taken for Parsing and Visualising:
a) transform.pl:

• The time taken for parsing was
44.09999996423721 ms.

• The total time taken for visualisation was
72.19999998807907 ms.

b) sift.pl:
• The time taken for parsing was

34.39999997615814 ms.
• The total time taken for visualisation was

59.80000001192093 ms.
c) Evaluation Significance: The time taken for pars-

ing and visualising Prolog code serves as an essen-
tial metric to evaluate the efficiency and respon-
siveness of the Prolog Visualisation web applica-
tion. The evaluation significance of this metric is
as follows:
• Efficiency Assessment: Recording the time

taken for parsing and visualising provides in-
sights into the efficiency of the application’s
core processes. The parsing time reflects the
speed at which the application processes the
Prolog code. A shorter parsing time indicates
higher efficiency. Similarly, the visualising time
represents the speed at which the application
generates the visual representation. A quicker
visualisation time suggests efficient rendering.

• User Experience: Efficiency in parsing and
visualisation directly contributes to a smooth
and responsive user experience. Users expect
prompt feedback when interacting with the tool.
Recording these times ensures that the applica-
tion meets user expectations for responsiveness.
Faster processing times enhance user satisfaction
and usability.

• Optimisation: Understanding the time required
for parsing and visualisation helps identify po-
tential bottlenecks in the application. It guides
development in optimising the tool’s perfor-
mance, in this case, by addressing areas where
processing speed can be improved. This, in
turn, results in a more user-friendly and efficient
application.

In summary, the comparison of model output to actual output
and the recording of parsing and visualisation times serve
as comprehensive performance metrics. They provide a thor-
ough evaluation of the Prolog Visualisation web application’s
correctness, efficiency, and user-friendliness. The identified
differences and timings will help guide improvements and
optimisations to enhance the tool’s performance and effective-
ness.

B. Results: Empirical and Analytical Assessment

1) Comparison of Model Output to Actual Output:
In the comparison of the model output to the actual
output, the Prolog Visualisation web application was as-
sessed for its correctness, accuracy, and effectiveness in
rendering Prolog code visually. This evaluation provided
significant insights into the technical aspects of the tool.
The examination of ’transform.pl’ revealed several dis-
tinctions between the model output and the actual output.
Notably, while the model output included labels for both
nodes and edges, the actual output lacked labels for
edges. This technical aspect influenced user experience
and interpretability. The presence of edge labels in the
model output provided users with additional informa-
tion, improving the clarity of the visualised code.
Furthermore, the assessment uncovered differences in
the representation of head and tail variable nodes of list
nodes. In the actual output, these nodes were displayed
on the graph, but in the model output, they were rep-
resented as edges. This distinction highlighted the need
to balance visual completeness with user understanding,
emphasising a technical choice in the application’s de-
sign.
The representation of list nodes, displayed as squares
in the model output and circular shapes in the actual
output is also another distinction. It highlighted the need
to balance accuracy for visualisations between the two
outputs.

2) Time Taken for Parsing and Visualising: The empiri-
cal results obtained from recording the time taken for
parsing and visualising entered Prolog code provided
an analytical assessment of the application’s efficiency
and responsiveness. These technical perspectives played
a critical role in understanding the tool’s performance.
The parsing time, which was 44.1 ms for ’transform.pl’
and 34.4 ms for ’sift.pl,’ reflected the speed at which
the application processed the Prolog code. The parsing
process is a fundamental technical aspect of the appli-
cation’s functionality, and shorter parsing times indicate
higher efficiency in this core process.
The total time taken for visualisation was 72.2 ms for
’transform.pl’ and 59.8 ms for ’sift.pl.’ This time ac-
counted for the speed at which the application generated
the visual representation of the Prolog code. Visualising
time is another critical technical perspective that influ-
ences the user experience. Quicker visualisation times
enhance user satisfaction and usability, demonstrating
the application’s responsiveness.
The evaluation of these technical aspects also high-
lighted the efficiency and optimisation of the Prolog
Visualisation tool. Understanding the time required for
parsing and visualisation allow for the identification
of potential areas for improvement and performance
optimisation.

In summary, the empirical and analytical results of the
Prolog Visualisation web application, drawn from the com-
parison of model output to actual output and the time taken



ENGR 489 (ENGINEERING PROJECT) 2023 10

for parsing and visualising entered Prolog code, provide a
holistic assessment of the solution’s technical performance.
These results shed light on the correctness, user experience,
efficiency, and optimisation of the tool, offering a view of its
technical aspects.

C. Limitations and Further Improvements

This section recognises the limitations and considers
opportunities for further improvements in the final product of
the Prolog Visualisation web application.

Limitations:
1) User Collaboration: The final product primarily caters

to individual users, and the tool lacks collaborative fea-
tures. Introducing user accounts within the application
could enable users to save and share their visualisations
with others. Implementing a dedicated section for users
to showcase their visualisations and fostering interactive
discussions through comment sections would promote
user collaboration and community learning. The absence
of such collaborative elements represents a limitation
in the tool’s potential for fostering shared learning
experiences.

2) Error Handling and Validation: The final artefact
of the project also exhibits limitations in terms of
error handling. Robust error handling and validation
mechanisms play a pivotal role in providing users with
meaningful feedback and improving the overall user
experience. The existing tool lacks comprehensive error
handling capabilities, which can lead to user confusion
in case of issues during parsing or mistakes in the Prolog
code. Enhancing the error handling functionalities would
address these limitations and contribute to a more user-
friendly experience.

3) Labelling Consistency: The final product of the Prolog
Visualisation web application exhibits a limitation in
the consistency of labelling. While the model output
provides labels for both nodes and edges, the actual
output does not include edge labels. This inconsistency
between the model and actual outputs can impact user
experience by influencing the clarity and interpretability
of the visualised Prolog code.

4) Visual Aesthetics: Another limitation relates to the
visual aesthetics of the application. While the design
of the final product aims for clear and informative
representations, there is room for improvement in terms
of visual appeal and customisation. Providing users with
options to customise the appearance of graphs generated
by the application, such as node shapes, colours, or
layout styles, would enhance the tool’s visual aesthetics,
aligning it with individual preferences and improving
user engagement.

Further Improvements:
1) Scalability Enhancements: Improving the scalability of

the visualisation component is a priority. Implementing
techniques such as zooming and panning can enhance
the user experience by allowing users to navigate and

explore larger graphical visualisations, even on smaller
devices. This ensures that the tool remains user-friendly
and functional for a wider range of Prolog code com-
plexities.

2) Integration with Online Prolog Resources: To support
users in their learning journey, integrating the web appli-
cation with online Prolog resources would be beneficial.
This involves incorporating links or references to online
Prolog documentation, tutorials, and other learning ma-
terials directly within the application. Thus, users can
conveniently access these resources while working on
their Prolog projects, promoting continuous learning and
skill development.

VII. CONCLUSION

In conclusion, the final product for the Prolog Visualisation
web application offers a user-friendly solution for visually
representing Prolog code. Through a comprehensive design
and implementation process, this tool successfully provides a
platform for users to interact with and understand the structural
elements and logic of Prolog programs. The application’s
evaluation, based on performance metrics and empirical re-
sults, highlights its strengths in accuracy and efficiency, while
also shedding light on areas for enhancement. Acknowledging
limitations and suggesting future improvements ensures that
this project remains committed to continuous development,
furthering its potential as a valuable resource for Prolog
learners.

REFERENCES

[1] T. Kühne, “A Visual Notation for Declarative Behaviour
Specification.” Accessed: May. 28, 2023. [Online]. Available:
https://homepages.ecs.vuw.ac.nz/ tk/publications/papers/visual-notation-
kuehne.pdf

[2] S. Holland, “1992-PPIG-4th-Holland.pdf.” Accessed: May. 28, 2023. [On-
line]. Available: https://www.ppig.org/files/1992-PPIG-4th-Holland.pdf.

[3] J. Tidwell, “Chapter 6: Doing Things: Actions and Commands,” in
Designing Interfaces: Patterns for Effective Interaction Design, O’Reilly
Media, Inc, 2005, pp. 245-247.

[4] J. Tidwell, “Chapter 6: Doing Things: Actions and Commands,” in
Designing Interfaces: Patterns for Effective Interaction Design, O’Reilly
Media, Inc, 2005, pp. 369.

[5] D. Stone, C. Jarrett, M. Woodroffe and S. Minocha, “Chatpter 6 —
Thinking about requirements and describing them,” in User Interface
Design and Evaluation, Elsevier, 2005, pp. 114-120.

[6] Y. Adachi, “Prolog Visualization System using LogicHart Dia-
grams,” arXiv (Cornell University), Mar. 2009, [Online]. Available:
https://arxiv.org/pdf/0903.2207

[7] “Node.js,” [Online]. Available: https://nodejs.org/en. [Accessed 29 May
2023].

[8] “Express - Node.js web application framework,” [Online]. Available:
https://expressjs.com/. [Accessed 29 May 2023].

[9] “Tau Prolog: A Prolog interpreter in JavaScript,” [Online]. Available:
http://tau-prolog.org/. [Accessed 29 May 2023].

[10] “Parser Generator for JavaScript,” [Online]. Available: https://pegjs.org/.
[Accessed 29 May 2023].

[11] “D3.js - Data-Driven Documents,” [Online]. Available: https://d3js.org/.
[Accessed 29 May 2023].

[12] “Visual Studio Code - Code Editing. Redefined,” [Online]. Available:
https://code.visualstudio.com. [Accessed 29 05 2023].

[13] “Git,” [Online]. Available: https://git-scm.com/. [Accessed 29 May
2023].


