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Diffusion Based Human Motion Generation
Reilly John Oldham

Abstract—Efficiently generating realistic human motion
presents a significant challenge across various domains, includ-
ing animation and robotics. Traditional handcrafted motion
sequences for animation are notoriously time-intensive and skill-
demanding. On the other hand, motion capture technology, while
being very effective for real-word data, often incurs high costs
for the equipment and may produce noisy data requiring further
work.

This project focuses on the development of autoregressive con-
ditional diffusion models tailored to human motion generation.
We conduct a comprehensive examination of existing state-of-
the-art motion models that utilize Diffusion and Normalising
Flows while acknowledging other generative models. We identify
limitations and opportunities for enhancement in these models
and propose generalisable solutions. Our research contributes
to the ongoing evolution of generative diffusion techniques,
particularly in the area of autoregressive generative models.

Furthermore, we provide an additional tangible demonstration
of autoregressive diffusion using a toy model showed in an
intuitive way that does not require animated sequences. This
will further illustrate the model’s potential for time-series tasks
and its ability to be applied to other domains while producing
convincing results. By thoroughly evaluating our model and
its capabilities, we aim to provide a valuable contribution to
the field with explorations into important hyperparameters and
model architectures. This work underscores the importance of
understanding and addressing challenges in predictive time-series
tasks, thereby advancing our collective knowledge in this area.

Index Terms—Diffusion, Normalising Flows, Human Motion,
Score-based models, Multivariate, Time-series

I. INTRODUCTION

ASignificant problem in the world of game development,
animation, robotics, and other related fields is the re-

alistic generation of human like movement. Creating lifelike
human motion through manual animation requires a significant
amount of skill, time, and thought on how to create the
movements [1]. Because of this, it could be beneficial for many
creatives to be able to automatically, or semi-automatically
create lifelike human motion with little to no effort. Existing
methods for generation of human motion such as mocap suits
are quite useful, but these suits are very expensive, require a
human to act out the motion, and the data collected from the
suits can be noisy which necessitates post capture clean-up of
the data [1].

Currently there are models that exist that can create these
sequences such as MoGlow [2]. However, as discussed in the
MoDiff paper [3] and will be further discussed here, there are
associated issues and drawbacks with current models. There-
fore, to address these challenges we have developed a novel
model-based approach through the use of an autoregressive
diffusion model. This report will show that this is a viable
solution with room for further refinement and improvement.

This project was supervised by Bastiaan Kleijn

A. Model Choice

Diffusion in recent years has come to the forefront of
generative model research as it has many advantages over
General Adversarial Networks (GANs), Variational Autoen-
coders (VAEs), and Normalising Flows which were previously
the main focus of research [4]. Diffusion transforms a given
noise distribution into the desired data distribution such as an
image, audio, or in the context of this project, a human motion
sequence.

By iteratively transforming the noise distribution to the
target distribution these models can more accurately estimate
the data likelihood and produce better samples.

Comparatively, VAEs use the reconstruction loss, commonly
Mean Squared Error (MSE), which can result in a failure
to capture complex distributions resulting in poor samples.
This is due to the tendency for MSE to capture the average
or midpoint of the distributions, whereas a likelihood model
would separate the distributions. Furthermore, VAEs can suffer
from posterior collapse where the latent variables become
independent of the generated samples thus being unable to
capture the full complexity of the data [4].

GANs on the other hand can create high-quality samples
equal to or better than diffusion models, however they can
suffer from training instability where the critic and generator
no longer work together causing mode collapse [4]. This
means the creation of a good model will require fine tuning
of the architecture and parameters.

The reliability of diffusion models in their ability to ac-
curately learn and replicate the target distribution without
significant issues has led to its current focus in research. With
state-of-the-art performance, in different modalities diffusion
would be the ideal model for human motion exploration.

Our model’s design is influenced by prior research, partic-
ularly MoGlow, which demonstrates that using an autoregres-
sive component is effective in generating realistic samples.
Our contribution extends this work by integrating a similar
architecture into the realm of diffusion, presenting a novel
approach to this task.

B. Project Outcomes

This project has effectively addressed the issue of time-
series generative modeling related to recalling prior actions.
This was achieved by introducing an autoregressive component
within the diffusion model. Employing an LSTM network
as this autoregressive element, the model becomes capable
of incorporating past actions as context for shaping future
predictions. Consequently, the model can produce human
motion sequences that are both realistic and coherent, as will
be shown in the evaluation section.
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The problem statement of generating sculptable motion se-
quences is addressed by the incorporation of path conditioning
to the model in the form of ∆x, ∆y, and ∆r tuples. These
tuples specify the translation and rotation of the model at each
frame, which the model has learned and can accurately predict
future sequences conditioned on these. This allows anyone
using this model the ability to specify a path to follow, and a
realistic walking or running sequence will be generated.

To assess this project, we utilize a combination of quantita-
tive and qualitative criteria. These criteria aim to demonstrate
the model’s alignment with previously unseen ground truth
data. Through a user survey rating the realism of the sequences
we found that the model achieved a rating of 3.71 out of
5 whereas the ground truth received a score of 3.95 Table
I. This shows that subjectively the model performs very
closely to the ground truth data. We have also pinpointed
areas for model enhancement, which we will subsequently
address. Additionally, we’ve developed a simplified model to
illustrate the model’s autoregressive capabilities without the
use of animated sequences, thereby highlighting its potential
applicability to various continuous domain time-series tasks.

C. Sustainability Goals

The main focus of this project is to create a predictive
model for human motion generation, which has significant ap-
plications in game development, animations, and robotics. It’s
important to note that while environmental and sustainability
concerns are a top priority, this project doesn’t directly impact
those issues.

However, if this model or a similar one were to be deployed
in the real world, especially in gaming for real-time motion
generation, the cumulative impact of numerous users could
be substantial. This underscores the necessity to consider the
model’s efficiency in both training and inference. At present,
real-time inference for this model is not possible, but through
code optimisations and potential techniques like InstaFlow
by Liu et al. [5], a diffusion technique which only requires
one denoising iteration, we can further enhance the model’s
efficiency.

One notable improvement in this project is the speed of
the training process, which is much faster than the original
base model. This is achieved by using a different diffusive
solver which will be discussed later. This enhancement has
streamlined the training process, making it more efficient thus
following Green Coding principles decreasing the environmen-
tal impact though the use of less computational resources.

D. Tools and Methodologies

Implementation of a generative model such as diffusion
from scratch would likely have taken too long in a time-limited
project like this. To this end we have employed multiple tools
and methodologies that have helped reduced the time taken to
produce this model.

The core of our model utilised TimeGrad’s implementation
[6] which is built in Python on top of the GluonTS library, a
well-established library for probabilistic forecasting. Working
with Python for this project was a great choice due to its

familiarity, flexibility, and library support. GluonTS overall
was a good library but the original TimeGrad implementation
was broken and lack of documentation of GluonTS which
contributed to stalled development at some stages of the
proejct. Nonetheless in the end these libraries sped up the
development of this project and are the tools that contributed
the most to the success of this project.

Additionally, HuggingFace Diffusers [7] was extremely
helpful as a resource both for papers and implementations
for alternate diffusion solvers. This enables our design to
implement any solver from this library which again greatly
cut down on work an enabled us to address the core problem
of the project directly.

For efficient training we were able to make use of the
compute servers provided by ECS. Our model was trained
and developed on the Gryphon server using an RTX A6000
for CUDA acceleration. This allowed us to have fast and easy
access to compute resources facilitating this project heavily as
it gave us the ability to quickly iterate over different ideas and
solutions to problems we encountered.

The usage of Git and GitLab was not hugely significant
but they still played a valuable role in this project. These
tools allowed for version control enabling work to be done
concurrently on both the model implementation and other sec-
tions such as visualization. This enabled our projects iterative
methodology by allowing us to address different components
simultaneously and transition to iterative development when
required.

II. BACKGROUND THEORY

Prior to delving into the literature review, we will explore
the essential foundational elements necessary for compre-
hending the subject matter. Through an examination of key
equations, we aim to establish a mathematically grounded
understanding that will facilitate the linkage between the “lay-
mans” explanation and the practical implementation of these
methodologies. This section will consist of explanations of
Normalising Flows and Diffusion for generative modelling,
followed by a section on Autoregression consisting of the
different autoregressive solutions.

A. Normalising Flows

Normalising flows in simple terms is a method in which we
can take data from a known distribution, such as a Gaussian,
and transform it to a more complex target distribution like a
human motion sequence. This transformation is accomplished
by a series of transformations in which there is an associated
inverse transformation. Training the functions to turn the target
distribution into noise allows us to use the inverse of those
functions to transform the noise distribution to the target
distribution [8].

Formally, given a latent distribution Z we can transform this
with a non-linear function f , which has a well-defined inverse
and a one-to-one mapping, to a more complex distribution
X [9]. This transformation is conducted by chaining multiple
simpler functions to transform the latent distribution into the



ENGR 489 (ENGINEERING PROJECT) 2023 3

target distribution. This sequence is described in equations (1)
and (2).

x = fθ(z) = fn ◦ fn−1 · · · ◦ f1(z) (1)

z = fθ(x)
−1 = f−1

1 ◦ . . . f−1
n−1 ◦ fn(x)−1 (2)

This method exploits the change of variables (3) formula
which describes that we map x to the density of z under p(z)
multiplied by some scalar magnitude which is the inverse of
the absolute magnitude of the Jacobian matrix [9]. Given we
take the inverse poses one key issue, which is that we cannot
invert a matrix which is not square, meaning our latent samples
must be the same dimensionality as the target samples. This
reduces interpretability of the model as our latent sample di-
mensionality is the same as our target dimensionality, though,
as we will find with diffusion this is the same. However, this
also does encourage diversity allowing for a wider range of
samples compared to a VAE.

px(x) = pz(z)

∣∣∣∣det(∂f−1(z)

∂z

)∣∣∣∣−1

(3)

For the training of these functions we can, take the log of
both sides (4) and this will give us the exact log-likelihood
evaluation in a tractable way [9]. Given this we can optimise
the model parameters with respect to the maximum log-
likelihood. Additionally, this method allows us exact posterior
inference of z through the inverse mapping on x.

log px(x) = log pz(z) +

N∑
i=1

log

∣∣∣∣det(∂f−1
i (z)

∂zi

)∣∣∣∣−1

(4)

B. Diffusion

Diffusion or Denoising Diffusion Probabilistic Models
(DDPMs), similar to Normalising Flows, aims to transform
a known distribution into a more complex target distribution.
However, the means in which diffusion approaches this task
is significantly different. The central concept revolves around
systematically and gradually destroying the structure of the
data through an iterative forward process, then a backwards
process learns to reverse the noise iteratively to reconstruct
the data’s original structure. This iterative process results in a
model that is both flexible and tractable.

There are two main theoretical frameworks for solving
diffusion; diffusion probabilistic models and denoising score
matching models. Our solution uses the Ordinary Differential
Equation (ODE) approach which falls under the denoising
score matching models. To give an intuitive explanation of
both diffusion and the ODE approach we will start from the
Markovian interpretation and show how to get to the ODE
solution.

1) Markovian Interpretation: The Markovian interpretation
of diffusion typically involves the use of two Markov chains.
Markov chains are mathematical system for transitioning be-
tween states according to a probabilistic rule, in this case a
transition kernel. One chain is for the forward process which is
responsible for destroying the data’s structure. The other is for
the reverse chain which reconstructs the noisy and distorted
data into a more structured form [10].

Formally, for the forward process we can find the joint
distribution of all random variables from x1 to xT given the
original sample x0 (5) [10]. Through the iterative application
of the transition kernel (6) we gradually inject noise into the
sample destroying the structure of the data. The β from the
transition kernel (6) describes the noise schedule which is
reduced after each step.

q(x1, . . . , xT |x0) =

T∏
t=1

q(xt|xt−1) (5)

q(xt, |xt−1) = N (xt;
√

1− βtxt−1, βtI) (6)

From this forward process we can derive an approximate
inverse of the forward process with a reverse process that is
also in the form of a Markov chain [10]. This is defined as
(7) which takes the approximately Gaussian sample xT and
predicts the joint distribution of x0 to xT . This again has an
associated transition kernel defined as (8) which is usually
defined as a neural network with parameters θ to predict the
µ and Σ to reverse the noise [10]. Though for the covariance
matrix in practice this is set to a specific value such as the
identity matrix I so we only need to predict µ.

q(x0, . . . , xT ) = pθ(xT )

T∏
t=1

pθ(xt−1|xt) (7)

q(xt, |xt−1) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (8)

In the training process of Markov chain-based diffusion
models, the primary objective is to optimize the Evidence
Lower Bound (ELBO) [10]. The ELBO serves as the objective
function for learning the model’s parameters, specifically the
transition kernel. By maximising the ELBO, the model learns
to generate data that closely resembles the target distribution.
Computing this however is very cumbersome and quite in-
efficient which is why score-based generative models are the
preferred solution. Score-based models are both more tractable
and require less diffusion steps resulting in an efficient com-
putation of the diffusion problem.

2) Stochastic Differential Equations: The Stochastic Differ-
ential Equation (SDE) solution to diffusion can be interpreted
and derived as a continuous case of the Markov implemen-
tation, though with some key changes and insights. Reducing
the size of the time steps for the beta schedule so that it is
effectively a continuous function of the time-step t we can
fine the forward formula as follows (9) where we have some
functions defined by (10) [11].

With dw being the standard Wiener process of infinites-
imally small noise this effectively models a particle’s (or
“pixel” in the image case) evolution through space as it
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diffuses from high to low entropy through Brownian motion
[11]. The SDE intuitively connects diffusion to the idea that
we are solving the diffusive process we know from physics in
reverse to arrive at a structured distribution.

dx = f(x, t)dt+ g(t)dw (9)

f(x, t) = −1

2

√
β(t)x and g(t) =

√
β(t) (10)

We can therefore derive the reverse time SDE as (11) which
includes the score function ∇x log (p(x, t)) [11]. This score
function is the central concept of both the SDE and ODE
approach.

dx =
(
f(x, t)− g2(t)∇x log (p(x, t))

)
dt+ g(t)dw (11)

The score function function has an analytical solution which
is implemented by a neural network to estimate the score at
each time-step. The idea of the score function is to evaluate
the log probability of the density function at each time-step
which will allow us to converge on the target distribution [11].
Connecting this to Langevan equations through substitutions
of f(x, t) to λx and p(x, t) to p(x) ∝ exp −V (x)

kT , with V (x)
as a potential, we can say that log p(x) is a potential and the
score function ∇x log (p(x, t)) is a force [11]. While these
are a few new concepts to understand, this effectively says
that our score function evaluates the potential of the current
time-step and applies a force that moves it towards the target
distribution.

3) Ordinary Differential Equations: While SDEs are faster,
better, and more general than the Markov approach through a
tractable likelihood estimation it would be better if we could
reduce the number of diffusion steps further. The main issue
here is that because SDEs are a stochastic process we do not
always take the direct path to the target distribution, this is
what ODEs aim to solve.

To arrive at the backward SDE equation (11) the Fokker-
Plank equation was used which describes the time evolution
for probability distributions. This was then written in a form
that uses the time evolution of the probability distribution to
describe the evolution of x. Using this method there is also an
ODE solution for x that corresponds to the same Fokker-Plank
equation for p(x, t) which is defined as (12) [11].

dx

dt
= f(x, t)− 1

2
g2(t)∇x log (p(x, t)) (12)

This equation removes the nondeterministic Wiener process
which allows for a one-to-one mapping of noise to target.
Without the nondeterministic component we have a direct
mapping with is also invertible by reversing the minus sign
in-front of the score function. Similar to Normalising Flows
we can now have exact posterior inference of the latent z from
our sample x. With this deterministic mapping we can now
also take larger diffusion steps without affecting the quality
again reducing the number of steps requried.

However, while ODEs are very efficient and have a lot of
benefits it is worth noting that there are theoretical problems

with them. One of which is that SDEs are self-healing whereas
ODEs are not, which means SDEs are less sensitive to random
fluctuations. Additionally, SDEs should produce better quality
samples due to their stochastic nature adding random noise.
Again though, these are only theoretical problems and are not
usually encountered in practice.

C. Autoregression

Because this is a time-series task it is a given that we
have an autoregressive component to allow past actions to
influence future predictions. There are a number of autoregres-
sive techniques which will be discussed here to give context
to the choices made for this project and to allow a deeper
understanding of the literature review. This section will consist
of the basic Recurrent Neural Network (RNN) followed by
Long Short-Term Memory (LSTM), Gated Recurrent Units
(GRU), and Transformers.

1) Recurrent Neural Network: The RNN is the most basic
autoregressive model which takes in the previous hidden state
and the current input to create a new hidden state (13). This
hidden state is kept track inside the neural network to be used
for future predictions [12]. For the output representation we
again run the hidden state through a neural network (14).

ht = tanh(Wxhxt +Whhht−1 + bh) (13)

yt = Whyhy + by (14)

This method is very simple, and because of that suffers in a
few ways. The memory of past actions decays uniformly as we
iteratively update the hidden state without any additional mod-
ifiers [12]. This means that for longer term time dependencies
RNNs suffer. For our solution this would not be ideal as there
are likely long term temporal relationships in human motion
such as running speed. Additionally, this method can suffer
from vanishing/exploding gradients due to the weight term in
the output resulting in a model that might not converge and
remain sub-optimal [12].

2) Long Short-Term Memory: LSTMs are more complex
and address the issues of the uniform information decay by
introducing a forgetting factor ft and a new-contribution factor
it. This allows importance to be placed on new information
and control the rate at which this information is decayed. The
calculation for the current contribution Ct, analogous to the
hidden state from RNNs, is as follows (15) [12].

Ct = ftCt−1 + itC̄t (15)

Each of these newly introduced elements describing the
decay factor and new contribution factor are modelled by
neural networks. This allows for a dynamic value for each
new input allowing LSTMs to be much more expressive in its
output representation.

For the output we have ht which is the same as the yt output
from the RNN and should not be confused by the hidden state.
There is another factor introduced in the calculation (16) which
is the factor of the state to the output which is similar to the
RNN calculation but without an explicit weight term [12].
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ht = ottanh(Ct) (16)

LSTMs therefore do not encounter the problem of ex-
ploding or vanishing gradients because their output lacks
the explicit weight term. This characteristic, along with their
effectiveness in capturing long-term temporal dependencies
and resilience against gradient issues, renders LSTMs a highly
suitable choice for this model. Furthermore, implementing this
would be a novel approach for diffusion based human motion
generation which we can gain further insights on time-series
modelling with.

3) Gated Recurrent Unit: GRUs, like LSTMs, are another
simple feed-forward neural network approach to model time-
series dependencies. Their approach can be thought of as a
simpler LSTM with the use of “gates” and the hidden state is
also the output state.

The formula for the output of a GRU is as follows (17)
[12]. zt represents the update gate which controls how much
of the previous state should be retained and how much of
the current state should contribute. This allows the model
to dynamically decide whether to retain old information or
incorporate new information. The new contribution factor h̄t is
calculated similar to Ct from the LSTM with one key change.
This change is that there is also a reset gate rt included in
the calculation. This reset gate controls which elements from
the previous hidden state are allowed to continue to the new
contribution.

ht = (1− zt)ht−1 + zth̄t (17)

The use of gates rather than factors is the key difference but
in practice neither LSTMs or GRUs are the definitively better
memory unit. GRUs do solve the issue of exploding/vanish
gradients as well due to the lack of a weight term in the output
equation which means that for this project GRUs and LSTMs
are on level ground. For this project LSTMs were selected
with further reasoning to be discussed in the design section.

4) Transformers: Transformers are significantly different
from all the of RNN based approaches mentioned previously.
Introduced in the paper “Attention Is All You Need” by
Vaswani et al. [13]. the transformer network have become
the dominant architecture for natural language processing and
time-series tasks. For current human motion models with
diffusion the transformer models are the basis of their au-
toregressive abilities.

The main divergence from the RNN approach is the use
of self-attention layers which allow the model to effectively
”pay attention” to specific parts of the input sequence. Their
non-sequential approach to modelling connections between the
input stream allows for parallel evaluation.

The self-attention mechanism applies a linear transforma-
tion of the input data according to some query, key, and value
matrices (Q, K, and V ). The equation (18) describes this with
a normalising constant dk which is then passed through a
softmax turning this into a probability based representation
of how important each input is.

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (18)

One issue with this approach is that there is no inherent
sequence ordering which would result in poor performance for
autoregressive tasks. The solution to this is to use positional
encoding as part of the attention calculation, from the paper
these were calculated as (19) and (20). Additionally, there
is another modification for autoregression which includes
masking vectors to prevent attention calculations on future
vectors.

PE(pos, 2i) = sin
( pos

100002i/dmodel

)
(19)

PE(pos, 2i+ 1) = cos
( pos

100002i/dmodel

)
(20)

Overall, transformers produce state-of-the-art results in au-
toregressive tasks which is why they have been chosen for
existing models. Combining these with multiple heads to
effectively pay attention to multiple parts of the input sequence
(21) allows further flexibility and performance for representing
time-series dependencies. Though as we are looking at a novel
method the transformer was not chosen for the autoregressive
component.

The following sections will continue to discuss the key
concepts described here and how they were implemented in
specific papers for human motion generation and generative
models. For further information and in depth explanations all
sources for this section are within the references section.

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO (21)

III. LITERATURE REVIEW

In this section of the report we will delve into the existing
literature surrounding human motion generation and diffusive
models to give a comprehensive review of the methodologies
and techniques involved in this project. Building off the
previous tutorial style section we will examine the practical
uses of these components for generative modelling of human
motion sequences. By examining the existing literature we can
motivate the design of our model by addressing weaknesses
and find inspiration for evaluation techniques.

A. MoGlow

MoGlow by Henter et al. [2] introduces a method for human
motion generation using the Normalising Flows framework ex-
tended with an autoregressive component to allow for temporal
dependencies on previous frames. This autoregressive compo-
nent is an LSTM which motivates our model as this paper has
proven that you can get state-of-the-art results results without a
transformer. Furthermore, this paper provides multiple insights
into pitfalls of the training process and provides motivation for
our model’s design in regards to autoregression.

The overall architecture of the model consists of a Normalis-
ing Flows model with the LSTM for autoregression. Previous
poses of xt−τ :t−1 are fed in to the LSTM and the output,
ht−1 of which is concatenated with the control inputs ct−τ :t

[2]. This is then used as the conditioning information for the
Normalising Flows model. The size of the LSTM MoGlow
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used was a two layer 512 node neural network which is what
we have used in our model due to the success here.

One of the main insights from this paper was the notion of
data dropout. It was found that the MoGlow model had poor
adherence to the control signal causing foot sliding artefacts
and the model ignoring motion controls [2]. This suggests that
the model was relying overly on the autoregressive context.
To fix this they applied a data drop on the poses during
training. Higher than 50% dropout solved this issue with better
results seen at 95% dropout [2]. Keeping this in mind we also
included a dropout of 95%.

Choosing a good context window size for predictive models
is imperative for good results. While MoGlow has not justified
their choice in their context window size τ they have used the
value of 10 frames. The motion data this model used to train
on was an amalgamation of the HDM05 and CMU databases
with a frame rate of 20fps [2]. This results in a context length
of 0.5 seconds which as shown by the results of this paper
appears to be sufficient. Other motion models we will see also
use the same 0.5 second context window so for our model this
will also be acceptable.

As one of our goals is sculptable human motion, the ability
to condition the model is vital. MoGlow also introduces
the ∆x, ∆y, and ∆r tuples which were derived from the
recorded motion. Our model will therefore use this data and
conditioning information as collecting our own mocap data
is out of the scope of this project. This dataset consists of
21 bones with the x, y, and z components resulting in a
dimensionality of R63 for the motion sequences and R3 for
the conditioning information resulting in a total input size of
R66.

The final insights that were gained from this paper are the
evaluation metrics which is critical for determining whether a
model accurately represents the system we are modelling. To
this extent, they employed both quantitative and qualitative
metrics for their analysis. For the qualitative metric they
conducted a user survey to rate the perceived naturalness of the
animation on a scale from 1 to 5. This included animation of
their model, ablation models, and ground truth data included
to accurately assess the model subjectively. For quantitative
metrics they analysed the foot sliding artefacts and bone
length analysis to verify the consistency of the frames. Their
implementation of these metrics were not described so we will
make further comments on these in the evaluation section.

B. TimeGrad

TimeGrad by Rasul et al. [6] is the foundation of the
produced model. This paper introduces a solution to autore-
gressive multivariate probabilistic time series forecasting with
diffusion. The central concept of this model is to use an
GRU with the past predictions and covariate information. The
GRUs output is then used as conditioning information for the
diffusion process which produces state-of-the-art performance
in probabilistic forecasting.

A key component of diffusion models that was not discussed
in the background theory was the use of a U-Net. Proposed
in the paper “U-Net” Ronneberger et al. [14], U-Nets have

become widely used in all areas of generative modelling. In
the case of diffusion they are used to estimate the noise to
be subtracted at each time-step of the denoising process. The
overall architecture is a convolutional neural network (CNN)
which contracts the data with an encoder to a bottleneck which
is then expanded again using a decoder with skip connections.
These skip connections allow the network to combine feature
maps from the encoding allowing the model to maintain finer
detail and overall context.

The U-Net architecture that TimeGrad uses has 8 residual
blocks for the encoder end decoder with skip connections
connecting them both [6]. Given this models effectiveness on
data with a similar dimensionality to ours, we will opt to keep
this architecture as it is a proven model.

For evaluation techniques TimeGrad proposes the Contin-
uous Ranked Probabality Score (CPRS) which is a proper
scoring function [6]. Their claim is that this is a better eval-
uation technique than likelihood for probabilistic forecasting
as not all methods they compare against yield analytical fore-
cast distributions or likelihoods are not meaningfully defined.
Therefore, this will be used as one of our evaluation techniques
and the theory behind it will be discussed further in that
section.

One issue with this paper is that it uses the Markov diffusion
solver compared to an ODE or SDE solver. This results
in a model that takes significantly longer to train and can
potentially be less performant. Therefore, as an improvement
to this model we will substitute in the Diffusion Exponential
Integrator Sampler (DEIS) Multistep Scheduler, a fast ODE
solver proposed in the paper ”Fast Sampling of Diffusion
Models with Exponential Integrator ” Zhang et al. [15].
Additionally, we will change the model to use an LSTM rather
than the GRU due to the effectiveness of LSTMs seen in
MoGlow.

C. MotionDiffuse

MotionDiffuse by Zhang et al. [16] was the first paper to our
knowledge to use diffusion to attempt the problem of human
motion generation. One distinct difference from MoGlow, and
consequently our model, is the alternative approach of textual
input for the conditioning rather than the ∆x, ∆y, and ∆r
tuples. This alternative approach allows for finer control of
the specific walking style and actions of the generated figure,
albeit at the cost of losing control of the exact path it should
follow.

For incorporating textual conditioning and the autoregres-
sive context they propose a Cross-Modality Linear Trans-
former. There are several components of this transformer
which include the Text Encoder, Linear Self-attenuation with
Cross-attenuation, and a Body Part-independent Controller.
The Linear Self-attenuation block utilises a global context
rather than a fixed context window to provide semantic mean-
ing over time [16]. This allows for the model to follow the text
prompts over an extended period of time. For the Text Encoder
they used the pre-trained weights of OpenAI’s CLIP model
[17] where the first 7 layers were frozen and the remaining
were allowed to be trained. The output of this Cross-Modality
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Linear Transformer is then used to condition the diffusion
process resulting dynamic length part aware time-series human
motion sequences.

This approach does produce convincing results, however,
as observed in the accompanying demo video for this paper
longer sequences have visible hitching artefacts [16]. This is
possibly due to global context causing issues when producing
the block based sequences. A better implementation of this
would likely solve this issue such an explicit autoregressive
component which our model implements.

MotionDiffuse cannot directly be compared to either
MoGlow or our model due to the difference in conditioning
information. However, this still serves as an establishing paper
for diffusion based human motion and provides insights into
alternate ways to condition motion models.

D. MoDiff

MoDiff by Yin et al. [3] is a transformer based diffusion
model for human motion generation from same institute as
MoGlow, though with different authors. This paper does men-
tion TimeGrad as an alternative approach and they developed
their own model from scratch for this. However, this paper
has not released its code publicly or created a paper on
the TimeGrad implementation so any implementation details
have not been revealed. Instead this project will show the
capabilities of a TimeGrad based approach.

As previously mentioned, MoDiff uses a transformer and
similar to MotionDiffuse they use a Cross-Modal Transformer
with independent encoders for both the motion context and the
control context. For the context window they use the same 10
frame window as MoGlow with the same data making our
model and this model directly comparable. The encodings
created by the Cross-Modal Transformer are then used as
conditioning alongside the step embedding for the diffsion
process [3].

Another change compared to MoGlow is a linear scheduler
for the data dropout compared to a fixed rate. Other hyper-
parameters that were insightful were the number of diffusive
steps which was set to 100, the same as MotionDiffuse.

The evaluation of the MoDiff paper closely resembles
the MoGlow paper. Under this analysis both MoDiff and
their TimeGrad implementation end up performing better than
MoGlow in both quantitative and qualitative tests. This paper
also claims to be better than TimeGrad in the temporal domain
for longer sequences due to its transformer based autoregres-
sive architecture. However, since no design or analysis for their
custom implementation of TimeGrad has been documented it
is not possible to confirm their results.

IV. DESIGN

This section will discuss the general design of our model
with references to how the different components connect to
represent the system. Choices made for our model will be
justified with references to the existing research that we have
discussed previously. Specifics on model parameters and data
will in the following implementation section.

Fig. 1: Model Architecture

1) The Model: The architecture of our model can be
described visually through Fig 1 which incorporates the flow
of previous sequence information in to the LSTM to then be
fed as conditioning information in the diffusion process.

Motivating the design of this model we take some inspira-
tion from the MoGlow paper with regards to our selection
of the autoregressive network. While a GRU would likely
have given similar autoregressive performance we opted not
to use this and use the proven approach of an LSTM. In our
model implementation we have allowed for the autoregressive
component to be a LSTM or GRU without additional work.

For the autoregressive conditioning we input both the pre-
vious sequences and their associated conditioning information
with the current time-step’s conditioning information. This
reduces the representation to one hidden state rather than
including the previous conditioning values as direct input to
the model. This could theoretically allow for dynamic context
window length which MoGlow is unable to do due to its fixed
size window input.

Another key change from the TimeGrad model was the use
of an alternative diffusion solver in the form of the DEIS
Multistep Scheduler [15]. This is a fast ODE solver which
claims to produce realistic samples in only 10 diffusive steps.
Allowing for fast training and inference times would be greatly
advantageous, especially in a time-limited project such as this.
However, the quality of samples provided by this method
evaluated using the Fréchet inception distance (FID), a metric
for evaluating images, on the CIFAR10 dataset is is 3.37 [15]
which is lower compared to some SDE solvers such as the
VE SDE solver [11] with a score of 2.20. For a less time-
dependant project it would be better to use a better performing
solver. In our implementation we have not tightly coupled
the solver with our implementation, this allows for solver
substitutions opening this area for further work.

This faster diffusion solver also contributes to our sus-
tainability goals by reducing the training and inference time
for the model. Previously mentioned in the sustainability
goals section, options to further improve this would be to
use methods such as InstaFlow [5] for one shot inference.
Issues with this approach similar to our fast ODE solver still
include metrics showing worse performance. On a different
dataset InstaFlow achieved an FID of 13.9 which shows further
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research improvements need to be made in this domain before
it would be a viable substitution.

Our model design makes no assumptions on the data it will
be trained on allowing it to be a generalisable model for all
time-series tasks and not just for human motion generation.
The next section will discuss the implementation details of our
model at length and the simplicity of translating it to different
domains.

V. IMPLEMENTATION

This section will describe the implementation of both the
full motion model and the toy model for an additional com-
parison. This will include key discussion on the data and it’s
representation, model parameters, and finally how our motion
inference works.

1) The Data: Our data for the motion synthesis comes
from the MoGlow paper [2] which utilises a pooled dataset
from the Edinburgh Locomotion MOCAP Database, CMU
Motion Capture Database, and HDM05 datasets. With addi-
tional preprocessing implemented by MoGlow we have created
additional ∆x, ∆y, and ∆r tuples for conditioning of the
model. With 21 bone represented by x, y, z coordinates we
arrive at a 63 dimensional vector per time-step.

Our training dataset therefore consists of 13710 unique clips
from our dataset and with each clip being 4 seconds at 20fps.
Additionally, our test set consists of 31 unique clips that are
5 seconds in length allowing for validation to be done.

The toy model we have created uses synthetic data based
on a triangular distribution. It is a sequence of 32 dimensional
vectors representing the PDF of a triangular distribution with a
total spread of 5 units. At each time-step a random translation
of ± 2 along the vector is conducted on the triangular
distribution. This data incorporates conditioning based on the
step, and is able to be visualized efficiently as shown in Fig
2. This makes it an ideal candidate for showing how autore-
gression works visually while showing the generalisability of
our model.
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Fig. 2: Toy Model Example Sequence

The intuitive representation of a time-series sequence would
be sequential lists of the vectors, in matrix form that is
represented by (22).

X =


x11 x12 · · · x1t

x21 x22 · · · x2t
...

...
. . .

...
x661 x662 · · · x66t

 (22)

However, within GluonTS our data must be transposed
before entering the model which would leave our motion
data in the form of (23). This key distinction should not be
overlooked as without transposition the model will not run
and this information is not documented within GluonTS so it
is very easy to miss.

XT =


x11 x21 · · · x661

x12 x22 · · · x662
...

...
. . .

...
x1t x2t · · · x66t

 (23)

2) Motion Model: The motion model was trained over 9
hours using an RTX A6000 from the Gryphon compute server.
This section will discuss the main hyperparemeters chosen in
this model to produce this result and why we have chosen these
values. See appendix for Juypter Notebook of the model.

Following the insights gained from the MoGlow paper, we
elected to use a dropout rate of 95% to address the problem
of autoregressive dominance. Furthermore, we employed the
same 10 frame context window for predictions. Additionally,
our LSTM neural network use the same architecture of a 2
layer 512 network. It is likely that we can use a smaller neural
network but given that MoGlow has found this size to work
well we elected to use this as well.

Implementation of the diffusion solver comes from Hug-
gingFace’s “diffusers” library [7]. Our implementation accepts
one of their solvers as a hyperparameter which will be used
to train the model. The use of this library allows our model
to work with any diffusion solver HuggingFace have imple-
mented which opens up our model for future investigation of
alternative solvers. For this motion model though, we used the
DEISMultistepScheduler implementation for training.

The number of diffusive steps we take is set to 150 to ensure
a good quality sample is provided given the lower FID results
indicated in the paper for the solver [15]. We have not made
any comparisons with a smaller number of diffusive steps, but
it is again likely to use a smaller value while ensuring high
quality samples.

Our selection of batch size was based off prior experience of
64 providing adequate results and it being close to MoGlow’s
batch size of 100. Through this we worked backwards to find
the number of batches per epoch to be 215 by taking our
training dataset size // batch size so that we cover all training
samples per epoch. Other motion models trained for multiple
days, generally around 3, given our time-sensitive project we
chose 2500 epochs to reach 9 hours of training.

Due to some generation bugs earlier in development we
use a prediction length of 10. Those issues have since been
resolved so we could step down to a prediction length of 1
without any differences in predictive power, but due to the time
to re-train the model we opted to keep the 10 frame prediction
window.
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3) Toy Model: Our toy model follows a similar setup to the
full motion model where it uses the same diffusive solver and
diffusive steps, although it differs in the size of the LSTM and
some other parameters which will be discussed. See appendix
for Juypter Notebook of the model.

Given the simplicity of the data we have selected a con-
siderably smaller networks size for our LSTM with a 2 layer
16 node neural network. Additionally, we only had a 2 frame
context window as we only need to know where the previous
distribution was for the next sample. The prediction length for
this was set to 8 so we can tell with one generation whether
it is following the conditioning value. Finally, the number of
epochs used was 200 due to fast convergence. Training this on
a consumer GTX 1070 took only 20 minutes which shows this
models effectiveness with considerably shorter training times.
The original implementation of TimeGrad would take around
1 minute per epoch, which would have made it infeasible for
training our motion model in a reasonable amount of time.

4) Motion Inference: Motion inference was conducted on
the 31 unique test samples, with the link to these in the
appendix. Generation these samples was conducted in a few
steps. This can be described by the following algorithm 1.

Algorithm 1 Generate Human Motion with Conditioning

PrevSeq ← First ContextWin frames from TestSeq
PrevCond ← First ContextWin frames from TestSeq
while More samples to predict do

CondData ← Extend PrevCond with Future Cond
MotionPoses ← Extend PrevSeq with NaN for PredLen
InputData ← Concatenate(CondData, MotionPoses)
PredictedMotion ← MotionModel(InputData,

N samples)
AvgMotion ← Average(PredictedMotion, axis=0)
PrevSeq ← AvgMotion
PrevCond ← CondData

end while

We average the motion over a set number of samples,
currently 100, as we found the model is quite jittery on a
frame per frame basis. This means our model is now semi-
deterministic, while it’s approach is still probabilistic our
averaging gives us E[X]. During training we do not use
multiple samples, so the raw output from the model is still
deterministic and for comparison we have included the no
averaging model in our analysis.

VI. EVALUATION

For our evaluation we will present both qualitative and
quantitative measures of the models performance in the form
of user serveys and probabilistic rankings. We will also discuss
alternative evaluation metrics such as quantitative bone length
and footstep sliding anylsis implemented by MoGlow. Below
we will include some select frames from a test sequence for
demonstrate the model running and walking. A link to our full
collection of motion sequences can be found in the appendix.

Fig. 3: Generated Sample (Frames 1 and 2)

Fig. 4: Generated Sample (Frames 3 and 4)

Fig. 5: Generated Sample (Frames 5 and 6)

Fig. 6: Generated Sample (Frames 7 and 8)

A. Qualitative Evaluation

Our qualitative analysis was conducted from a user survey
from 27 honours students. The given task was to rate the
naturalness of the motion sequences provided from 1 to 5, with
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1 being completely unnatural and 5 being that it is definitely
real motion. We included the averaging, no averaging, and
ground truth sequences so that we can get direct comparisons
for the naturalness of the model.

TABLE I: Average Ratings of Naturalness of Generated Hu-
man Motion

Model Rating (1-5)
Averaging 3.71
Ground Truth 3.95
No Averaging 2.90

Shown in Table I we can clearly observe that the averaged
motion is rated significantly higher than the non averaged
motion with a score of 3.71 compared to 2.90. Additionally,
it appears that it was difficult for people to rate ground truth
as the real data with a score of 3.95 out of 5. Comparing our
averaged model to the ground truth we do get a very close
result of 3.71 to 3.95 which suggests that our model is quite
effective at generating motion similar to the ground truth. One
set of ratings gave our model all 5’s and the ground truth a 4,
which confirms that it is quite difficult to tell the real motion
apart. However, there is is still a 0.24 score difference which
suggests that our model is not fully on par with real human
motion.

Some raters gave feedback on the sequences they were
shown, using this and personal observations of the animated
sequences we can theorise on what could make this model
more natural. During sharp corners the model did not lean
in to corners as heavily as you’d expect for some sequences.
A few sequences have the model running, slowing down for
a corner, then continuing to walk the rest of the sequence
causing foot sliding as it should have been running.

The samples in the survey were only a subset of the
overall. Some of these had quite poor foot sliding artefacts
and adherence to the control signals, mainly in regards to slow
speed actions. Due to this they were not included and were
instead noted as a topic for discussion.

Based on this feedback and additional analysis with the
context of our architecture and the comment we made com-
paring it to MoGlow earlier, we can theorise on the main issue
here. The previous poses in the autoregressive component is
dominating the conditioning values. In the MoGlow model
they separated our the conditioning values from the RNN
whereas we do not, which is likely causing our issues. This
is shown when previous poses are walking slowly and the
conditioning information tells the model to speed up but it
remains at the previous speed. The data dropout we applied
to address this issue is not as effective as it should be due to
it dropping out both conditioning and previous poses rather
than only the previous poses. An improvement to our model
would be the separation of the conditioning information from
our LSTM and directly conditioning on the previous values.

Overall though, through subjective qualitative analysis we
have found that our model performs very well compared to
the ground truth data, though in the no averaging case it’s
performance is sub-par. Comparing our qualitative results to
MoGlow’s user survey we can find that their ground truth
and model are rated higher but raters are still able to identify

between the two with a similar margin to our own results. As
an indicator of this methods validity though, these results show
our model is very promising if given further development time.

B. Quantitative Evaluation

Our quantitative results will be analysis on our CPRSsum
scores. This will be followed by comments on the bone length
and foot sliding analysis done by MoGlow and why that has
not been conducted here.

1) CRPS Evaluation: From the TimeGrad paper they define
CPRS (Continuous Ranked Probability Score) as (24) which
ranks the compatibility of x with the cumulative distribution
function F . Their analysis uses the CPRSsum which sums
across all dimensions of the model rather than examining a
single vector’s CPRS score.

CRPS(F, x) =
∫ ∞

−∞
(F (y)− 1(y − x))

2
dy (24)

CRPSsum = Et

[
CPRS(F̂sum(t),

∑
i

x0
i,t)

]
(25)

Recapping CRPS from the literature review, it is a proper
scoring function to be used when not all methods present
analytical forecast distributions or where likelihoods are not
meaningfully defined. One issue with the use of this metric
is that no other motion model have used this measure for
evaluation, so we are unable to directly compare this. We
can, however, compare it to experimental results from the
TimeGrad paper.

Our underlying probabilistic model (no averaging) achieved
a CPRSsum of 0.040, which is in the same ball-park range of
other similarly dimensioned data presented in the TimeGrad
paper. For a more meaningful comparison we can run our
model on TimeGrad’s Electricity dataset. With this we obtain
a score of 0.018 compared to their 0.0206. Additionally, our
score is better than a follow up paper to TimeGrad called
ScoreGrad by Yan et al. [18] where they achieved a score of
0.0192. This quantitatively shows that our model is better than
the original implementation and existing follow-up pieces.

2) Bone Length and Foot Sliding Analysis: Both bone
length and foot sliding analysis are great metrics to measure
both the consistency of the bone lengths over the and whether
there is excessive sliding of the foot, as observed in our
model, . However, MoGlow did not release their method for
calculating these metrics, so any metrics produced would not
be comparable. Preliminary findings for bone lengths also
suggest that the motion data itself has large variances, possible
due to the pooled dataset, which would cause validity issues
of the variances produced. Therefore for our evaluation we
have opted to exclude these metrics. Additionally, from the
qualitative findings we have already established poor foot
sliding artefacts in some conditions, so further analysis of this
would not provide new insights.

C. Toy Model Examples

During the development of the full motion model we
created a smaller toy model to demonstrate autoregression
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with diffusion and to test the effects of conditioning on the
network. Shown in Fig 7 is the real vs predicted movement of
the triangular distribution across the vector space. Intuitively,
this shows how the autoregressive component takes previous
actions, in this case the location of the triangular distribution,
to produce continuous samples without discontinuities in time.
Using the conditioning value of the step size ± 2 we can
control the diffusion process to move the distribution either
left or right. Abstracting this to our motion model, it takes in
the previous frames and their conditioning then predicts future
samples obeying our conditioned values.

Fig. 7: Toy Model Predicted Sequence

VII. FUTURE WORK

Highlighted throughout this paper we have provided some
insights on areas that can be improved and possible feature
additions to this model. Here we will recap those methods
providing justification as to why these should be investigated.

A. Foot Sliding Artefacts

Addressing this issue would require the modification of
the architecture, mainly seperating the conditioning from the
RNN and having model directly condition on the control
inputs. Alternatively, there may be other ways to solve the
autoregressive dominance of the previous poses which could
be the focus of further research. MoGlow’s implementation
results in a fixed context window size despite the ability for
LSTMs to represent longer range time dependencies, so a
solution that did does not explicitly condition on the context
window would be ideal.

B. Alternative Diffusion Solvers

While our results using the DEIS fast ODE solver are
quite good, it is possible that we are sacrificing some level
of detail in our system. So a further investigation into better
solvers would be valuable. Real-time evaluation of the model
is paramount, if a model like this were to be used in a game
environment, so further research into methods like InstaFlow
[5] would greatly benefit this model. However, at some point
we may need to have some trade-off between execution speed
and quality.

Additionally, a longer training time could possibly fix the
jitters experienced in the non-averaged model which would
allow us to have a purely probabilistic model.

C. Textual Conditioning

Textual conditioning is not a requirement but it would
allow for more expressive control over the actions of the
model. This would require a global context, so a transition
to a transformer based network may be required for efficient
computation across the entire sequence. From the same authors

of MoGlow Listen, Denoise, Action! by Alexanderson et al
[19] was developed which is an audio conditioned model for
generating dance sequences could be adapted for this task with
the addition of CLIP [17] conditioning.

VIII. CONCLUSION

In conclusion, we have presented our model which shows
the potential of autoregressive conditional diffusion models for
generating human motion sequences. Through a combination
of qualitative and quantitative metrics we found that our model
can generate motion that is difficult to subjectively differentiate
from real human motion. With our user surveys indicating our
averaged model achieved a naturalness score of 3.71 our of 5
compared to the ground truth data which achieved a score of
3.95. Additionally, quantitative metrics have shown our model
produces better results in time-series forecasting than existed
diffusion based generative models.

However, there are still key areas for improvement. Foot
sliding artefacts remain an issue for this model when changing
speeds and therefore need to be address. Different solvers
and their effect on model performance and speed should be
investigated.
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