
1
ENGR 489 (ENGINEERING PROJECT) 2023

Immersive and Interactive 360 Video Editing for
Virtual Reality

Connor Nobbs

Abstract— 360 videos are an increasingly more common way of
viewing content on the internet. They also pair very well with
virtual reality, as VR offers a higher level of immersion that suits
the video format when compared to a standard computer
monitor. The usage of virtual reality is also on the rise, both in
entertainment and education. Logically, editing 360 videos in
virtual reality would offer this same immersion, potentially
allowing for better edited videos. Current video editing tools are
either not available in virtual reality or only offer limited
functionality. Many of these tools also do not handle the unique
challenges that editing 360 videos pose. Making edits with these
limitations can lead to interrupted workflows and mis-edits.
During this project a prototype interface has been built. This
prototype allows for pixel-wise 360 image and video editing,
previously untested in virtual reality. The project was built in
Unity engine and uses two C++ implementations of video editing
techniques: colour editing that differentiates between foreground
and background, and a usage of optical flow that allows a user
drawn piece of ‘graffiti’ to remain consistently placed between
video frames. User testing has been done to test both the user
experience and effectiveness of the prototype, as well as getting
aesthetic opinions on the video edits. This user testing has been
anonymised and it, as well as limitations of the system have been
documented, giving a clear path for future work.

Index Terms— 360 Video, Video Editing, Virtual Reality

I. INTRODUCTION

The problem and motivation
hree-sixty degree video is steadily becoming a more
popular form of entertainment and education. 360
videos offer more information (the full 360 view) and

are more immersive than traditional 2d videos. 360 videos have
now become freely and easily available on major platforms
such as YouTube and Facebook. 360 videos are being used and
shown in a variety of ways from teaching technical skills, to
experiencing tourist locations without travelling, to film
festivals.
In addition, the number of people using VR is steadily
increasing. As of 2022 there is estimated to be over 171 million
VR users worldwide[1] and there were over 16 million VR
headsets shipped in 2022[2]. Meta, ByteDance and Sony are the
largest companies in the VR/AR sector[3]. Other companies
such as HTC and Apple are either preparing to release headsets
or are building new versions of their current models. VR is used
for a wide variety of tasks including education, gaming and
training in healthcare, the military and the trades.
With the increased consumption of 360 videos, users need ways
to create and edit these videos, quickly and easily. This project

This project was supervised by Fang Lue Zhang

focused on the latter. 360 videos are typically stored in a 2d
format meaning that they can be edited in standard video
editors. But there are limitations to this process. When 360
videos are stored in 2d, they become distorted, meaning that the
view of the video can be misleading to the user, leading to mis-
edits.

Fig. 1. An equirectangular image projected on a 2d plane
demonstrating the warping of such a projection.

2d videos have 4 defined edges and no wrapping across borders.
360 videos do have wrapping on all sides, meaning that 2d
video edits will not work correctly when a video edit reaches a
border. Also, when cutting between different 360 videos the
two clips must be rotated properly so the transition is smooth,
and the user’s view remains consistent, this is something
completely unique to 360 videos. Finally, 360 videos cover the
complete field of view of a scene and so they must have a much
higher resolution to have the same viewing quality as a 2d video
that only looks at part of a scene. Facebook recommends a 4096
by 2048 resolution for monoscopic 360 video[4]. The Meta
Quest 2, a very common headset offers a resolution of 1832 by
1920[5] per eye so using high resolution videos is possible and
recommend. As the field of view of these videos is so large the
video quality ends up much lower than a standard video of the
same resolution. So much larger videos are needed to keep the
same viewing quality. Consequently, video editing techniques
must be even further optimized than 2d techniques so that edits
can still be made in a reasonable timeframe. 

There are a range of video editing tools available that allow 360
video editing. Both Adobe Premier Pro and Apple Final Cut Pro
can handle video edits for 360 videos and handle many of the
previously mentioned challenges posed by 360 videos. Both of
these tools however, are still used through a traditional 2d
screen. To view your edits free of distortion, you must put on a
virtual reality headset, check the changes, take the headset off,
and repeat this for every change. Other issues with this process,

T

2
ENGR 489 (ENGINEERING PROJECT) 2023

taken from interviews in [6] were having to regularly export
titles to external pieces of software to alter them to work within
360 video and incorrectly aligning a clip would lead to incorrect
alignment propagating down the entire movie. All these issues
slow down the workflow and lead to fewer and potentially
lower quality videos being produced.

There is one system, created by Adobe that allows users to make
video edits in VR. This system is only able to make a limited
number of simpler video edits, more complex edits must still be
made through a 2d screen.

Solution

The solution is to build a complete system that allows a full
range of 360 video edits to be made directly in VR. This was
far beyond the scope of this project so instead a system was
built that allowed for user input and video editing that
previously had to be done through a 2d screen, to be done in
VR instead. This user input and video editing was all pixel-
wise editing, namely edits that require individual pixels to be
selected and manipulated. Four main requirements were
defined for this project:

 Build a system that allows pixel-wise video edits to

be made to 360 videos in VR. Pixel wise edits are the
unique video editing techniques that the project was
concerned with so the system must be able to handle
them entirely in VR.

 Implement at least two video editing techniques to
use with the project. These would allow the system to
be thoroughly tested. They will also be useful
research in their own right, handling some of the
issues discussed with applying 2d video editing tools
to 360 videos.

 Build a system that allows additional video editing
techniques to be easily added. This system will not
complete and so building it in an open fashion will
make future development easier and make it
simpler for researchers to use the system with
techniques they wish to test.

 Collect feedback on both the system and aesthetic
opinions of 360 video. Collecting feedback on the
usability of the system gives future developers a good
starting point on where to improve the system and
collecting feedback on aesthetic opinions will help
validate (or potentially invalidate) further research in
this space.

II. RELATED WORK

Benefits of 360 video

360 video and VR work very well together, creating
experiences far more immersive than a standard computer
setup. Research has shown that 360 videos of
family/friends/loved ones 360 videos seen through VR can
lower students negative emotional affect [7]. 360 videos,
viewed in VR were used to teach participants how to tie knots

in[8]. The participants learning with VR and 360 video were
more likely to learn the skill than those taught with 2d videos.
Finally, the study in[9] compared two groups of medical
students observing gentle Caesarean Sections, one group
observing in person and one through 360 video. The two groups
did not have a significant difference in knowledge gained,
meaning that 360 video can potentially be used for remote
learning of these procedures or similar ones.

Usage of VR for detailed tasks
For pixel-wise video edits accuracy is an important factor
otherwise video edits will not turn out as intended. The
experiment run in[10] tested participants ability to select
regions on a 3d object using either a mouse, hand tracking in
virtual reality or a virtual reality controller and stylus setup.
They concluded that using hand tracking is the worst option
due to the hand detection being inaccurate. Using a mouse was
the most accurate but has limitations since it only has 2
dimensions of input.

Vremiere and CloverVR
In 2017 Adobe released CloverVR, an interface for Adobe
Premier Pro that allows some video editing directly in virtual
reality. This was likely built off Vremiere[6], the presenter for
the 2016 preview [11] of CloverVR was one of the authors of
the Vremiere paper. CloverVR is an interface that allows users
to make edits such as cutting between clips, trimming videos,
and rotating 360 videos so they line up when transitioned to.
CloverVR does not have the full functionality of Premier Pro
so other, often more complicated edits must still be made in
the standard 2d application.

Fig 2. The users view in CloverVR showing the videos
timeline interface at the bottom.

III. DESIGN

Requirements

This project is a system that allows users to make video edits
to 360 videos directly in VR. It consists of an interface that
allows user input and viewing 360 videos, and video editing
techniques created primarily to demonstrate the functionality
of the system and for effective user testing.
The project had 4 main goals all of which were achieved:
Build a system that allows pixel-wise video edits to be made to
360 videos in VR:

3
ENGR 489 (ENGINEERING PROJECT) 2023

The system is very far off being a polished or commercially
viable project, but a user can successfully view a video, select
pixel regions of the video, input other data such as a color
value, make the video edits and view the edited video only
using a VR headset and controller. There are limitations to this
that are discussed in the limitations section of this report.
Implement at least two video editing techniques to use with the
project:
Two video editing techniques required for the project were
successfully built, one that tracks a user drawn piece of graffiti
throughout the video and another that separates the foreground
and background of a video and applies color edits only to the
background. These are both pixel-wise video editing techniques,
other techniques like cutting a videos length would have been
possible but making techniques to test the unique features of this
project was a logical choice.
Build a system that allows additional video editing techniques
to be easily added:
The interface has been kept as separate from the video editing
techniques as possible. The two techniques integrate with the
interface as executables. Future techniques can be added in a
similar style, requiring about 10 lines of code to be added to
the interface to handling calling the executable. This
adaptability has already been partially integrated with another
piece of research. If a technique requires user input beyond
what the system offers, much more work will need to be done
to allow for this.
Collect feedback on both the system and aesthetic opinions of
360 video:
User testing was carried out at the end of the timeline.
Participants were taken through a use case using the two video
editing techniques and then answered interview questions
after. The interview questions covered details and feedback for
the system, the usage of VR for 360 video editing in general,
aesthetic opinions of 360 videos (particularly the edits
participants made) and how participants would use them.

Tools
While these are technical choices all these tool decisions were
made early in the design phase and so affected other design
choices. Hence why they are included here.
The interface was built using Unity Engine and C#. Using a
game engine simplified development greatly and saved time.
The choice of Unity Engine as opposed to its competitors was
due to Unity being fairly simple and it having thoroughly
vetted VR libraries. The video editing techniques were made
in C++. The OpenCV library was well used for image
processing as it is very powerful. OpenCV is available for
Python, C++ and java. C++ was used due to prior experience
with it and to optimize the runtime of video edits as much as
possible. The hardware used was a Quest 2 VR headset and
controller connected to a Windows PC. This choice was
simply due to availability. The Quest 2 is also a good choice
due to its popularity so this project and future iterations will be
built for a common headset. The benefits of any alternative
setup weren’t worth the time or budget. The additional PC is
required as the Quest 2 does not have sufficient processing
power to handle the system. So, tethering it to a more
powerful PC was required.

Design

The first major design choice was how to display and store the
360 videos. 360 videos are stored in their 2d format and then
projected onto a 3d object. There are two main ways to store
360 videos: equirectangular and cubemap formats.
Equirectangular frames are projected onto the inside of a
sphere, cubemaps onto the inside of a cube. Cubemaps are
technically 6 square images but they are all stored in a single
image to group them as seen in Fig. 3.

Fig. 3. An example of cubemap vs equirectangular images

This means that cubemaps can be stored in many different
ways by shifting what faces of the cube are stored in what part
of the image. Cubemaps store frames without distortion but
have a more complex geometry to display, raycast to and
make edits to. Finally, you can see in Fig. 3 not all borders are
connected in the 2d frame, and the excess white pixels can
also lead to mis-edits if complicated bounds checking is not
implemented. Equirectangular images have a standard format
when in 2d and have a simpler geometry in either of their
forms, so this is the better choice. Finding publicly available
equirectangular videos to use in the project was also quite
easy.
Equirectangular frames are quite simple in either of their states
but converting between the 2d and 3d representations of them
is less so. Users of the system view the video in 3d and
consequently select pixels in 3d. These 3d cartesian
coordinates need to be converted to a 2d pixel so that selection
masks can be created. 3d coordinates must first be converted
to spherical coordinates (latitude and longitude) before being
scaled and transformed. Finally mirroring and offsets were
added so that the mask and the 2d equirectangular frame aren't
out of phase.
Unity Engine has a limited frame rate and so user selection
will only be picked up once per frame. A user drawing on the
video will typically move the controller more than one pixel
per frame leading to individual pixels being selected, not the
lines of pixels the user has drawn. So, lines must be drawn
between the current pixel and the pixel of the previous frame
to make a continuous selection. The math for this is very
common, with plenty of examples on the internet. Unity
Engine does not have this functionality built into it however,
so it still had to be written from scratch.
Pixel selection was inputted with the VR controller and a ray
cast from it. The alternatives were using a mouse or hand
tracking. The Quest 2 has the ability to track your hand instead
of a controller and use various hand gestures instead of
pressing buttons on the controller. Hand tracking is inaccurate
as discussed in[10] and was immediately ignored. The
decision to use a controller and not the more accurate mouse
was made so as not to limit users. Using a mouse would force
users to operate near a desk so they have a flat surface to use

4
ENGR 489 (ENGINEERING PROJECT) 2023

the mouse. It would also limit how much they could rotate. It
is difficult to move a mouse and select pixels with it when you
are facing directly away from the desk.
A lot of the interactions in the system are done through a
menu. Components on the menu are selected with a ray cast
from the controller, making it similar to clicking a menu with
a mouse. Menus can be difficult to select with a VR controller.
So, making a large and simple menu was important. The
alternative was using various interactable objects around the
area such as 3d buttons which activate upon virtual collision
with a controller. Interactables are all unique GameObjects in
Unity which makes creating them much more time consuming.
They also take up more space meaning the view of the 360
videos would potentially be more obscured. Menus in Unity
also have a lot of standardisations meaning that future
developers of the system will have a much easier time adding
new features.
A proper control schema is also important. Using as many user
inputs as possible means that more functionalities could be
removed from the menu. So, functionality such as
pausing/unpausing the video, changing video frames and
zooming in on the video (note zooming did not make it to the
final implementation) were tied to buttons and other inputs on
the controller instead of the menu. This also made user
interaction faster as users did not have to go through the menu
for certain functionality.
Another important design choice was how to incorporate
video editing with the interface. Unity Engine uses C#, my
video editing techniques do not for previously mentioned
reasons. There is also no guarantee of what languages will be
used for future video editing techniques. Python is a common
choice here as OpenCV and Pythons machine learning
libraries allow image processing models to be built easily.
Building the techniques into a binary format before integrating
them with the interface means that any language can be used
for development, and it can still be called from the interface.
This was a key step in making the system adaptable, fulfilling
a project requirement.

IV. IMPLEMENTATION

The interface takes full advantage of Unity’s VR libraries in
order to work with the Quest 2 headset and controller used
throughout development and testing.  
The structure of the interface was re-done throughout
development. The system was first built using the start() and
update() functions Unity runs by default. This meant all
checks and code were potentially being executed once per
frame. A switch was made to state machine inspired code as
the interface has clearly defined modes (main menu, paused
menu and viewing the video). Some of this state machine
stayed as the modes are still present in the final artefact.
Finally, a lot of functionality was shifted to event-based
systems. Events allowed for more separation between
components and made the code easier to understand.  
The equirectangular videos were treated as standard video
textures within unity. They can be applied as materials to a
sphere and project correctly by changing a few material
settings. That being said a custom made sphere was still made

using Blender. Blender was the modelling as it is free. The
sphere itself has a higher than average triangle count to
smooth the projection as well as inversed UV values so the
materials is applied to the inside of the sphere.
There are two spheres in the project. A slightly larger sphere
displays the video and the smaller one has the texture showing
the selected pixels. This second sphere is what the ray cast
from the controller collides with. Having this second texture is
necessary so a separate texture can be laid over the video.
Otherwise every time a pixel is selected every frame in the
video would have to be changed to show this update which
would slow the system down significantly. Updating the
videos to show the selection would also change the videos
themselves, unless copies were made. The selections
themselves should not change the videos, only the edits made
utilising the selections.
There are three separate layers you can make selections with.
These form 3 three different masks which can be utilised by
editing techniques. The three masks are names background,
foreground and layer 3 but they can be used for any purpose.
Using specifically 3 masks was a primarily a technical choice
as it makes displaying them simpler. The selection texture that
displays all the selections to the user in VR combines the 3
layers, displaying each layer as one of the red, green and blue
channels. This gives a clear color distinction between the 3
layers, handles multiple layers being applied to the same pixel
by simply having two non-zero values for that pixel and
makes deleting layers easier. To delete a layer the given
channel for that layer is set to 0 for every pixel.
Accurate pixel selection was another challenge. There was an
attempt to implement a zoom feature. Offering a smaller field
of view and enlarging it would allow users to draw more
accurately. This feature was not of the highest priority and the
time it would have taken to implement it meant it was not
finished. The zoom was a small circle displaying the view of a
camera closer to the video sphere than the users view.
Selecting pixels with the zoom would mean raycasting to the
sphere, taking the current angle of the ray then transforming to
fit the not zoomed field of view. Then finally casting this
second ray would find you the coordinate on the video sphere.
Another smaller bug encountered when making the pixel
selection accurate was the ray not being displayed in both
screens in the VR headset. Only your right eye could see it and
so mistakes would happen. This bug was quickly solved.
The other major feature that had to be scrapped during
development was the smooth rewinding and fast-forwarding of
videos. Videos in Unity Engine are handled through
VideoPlayer components. These load and run videos and pass
the texture of each frame to a specified material. In this case it
was the material of the video sphere. VideoPlayers have a
playback speed variable which dictates how fast the video is
playing. Setting this variable to a negative value is platform
dependent[12] and was not available. You can directly change
the current frame of a video player allowing you to rewind
more manually. This often is slower than restarting the video
and letting it play however. So, the functionality to restart the
video and fast forward (at slow speeds) was added.
The video editing techniques themselves were built from
scratch with OpenCV, a computer vision and image

5
ENGR 489 (ENGINEERING PROJECT) 2023

processing library. The system comes with a ‘demo’ of 5 360
degree videos. These are publicly available videos provided by
the projects supervisor.  New videos cannot be added in during
runtime, but the demo of 5 videos is not hardcoded meaning
that new videos can simply be pasted into the Resources folder
and the system will handle them.
The ability to use either the left- or right-hand controller for
input was added late in the project. This functionality was
added by now checking for both controllers simultaneously
and assigning them to unique GameObjects. Additional logic
was added to check button inputs from both controllers and
decide on an output based on these. Most outputs were simple
or statements.
The graffiti tracking takes a black and white mask of the
graffiti as its primary input. It calculates the center pixel of the
graffiti and then tracks this position throughout the video
using OpenCV’s implementation of optical flow. An example
of optical flow tracking is shown in Fig. 4.

Fig. 4. A demonstration of optical flow. Each coloured line
shows where a pixel has moved throughout the video.

The graffiti is then shifted according to the vector calculated.
Finally, the graffiti is colored, based on a separate input color,
and added to the frame. This technique has a runtime of about
15 seconds, most of the calculations on the image matrix were
converted to pointer-based loops (instead of using .at()) which
greatly improved the runtime. The choice to base all the
movement on a single pixel does typically lead to inaccurate
tracking. This was the best choice both for optimization
reasons and to avoid an exponential increase of difficulty in
development. Truly accurate tracking and mapping of the
graffiti would mean handling affine or perspective
transformations. Accurately guessing these many dimensional
transformations only given 2d pixel coordinates and pixel
colors is a challenging task[13]. Good optical flow for 360
videos specifically is also a quite recent topic and while work
is being done to train accurate models[14]. These were not
available for this project. Work was done to make this
technique wrap around so that the graffiti could move over the
edges of the 2d projection. The first attempt was to convert the
equirectangular frames to cubemap frames. The edges of all
the squares neatly fit together so handling the edge cases
would be accurate. Once the graffiti was shifted for a specific
frame it could be converted back into an equirectangular
frame. Four separate attempts were done, to convert to and
from cubemap frames and handle the maximum of 24 edge

cases (depending on the layout of the cubemap images certain
edges can be lined up in the matrix so certain edge cases can
be ignored). This method was dropped due to the time spent
and the lack of results, the code is still present in the project,
just unused. The second way used only the equirectangular
frames. The left and right sides of equirectangular images map
directly to each other so you can handle edge cases by
extending the left side with some of the right side and vice
versa. The top and bottom can be approximately extended
also. To extend the top of the image take a section of the top
part of the images (rows 0-100 were used in this case), flip this
section in both the x and y axis the attach it to the top. The
bottom of the image can be approximately extended using
itself with the same process. This extension is in the final code
but does not function correctly. When the pixel being tracked
by optical flow goes over a border the code does fail. This is a
solvable problem, just requiring time.
The background-separation color editing takes a black and
white mask of a rectangle as its primary input. This rectangle
roughly defines the background area of the image. This
rectangle is used by OpenCV’s GrabCut() function to create a
more accurate mask of the background.

Fig. 5. A source frame (a), rectangle mask (b) and the
separation mask (c) produced by GrabCut() given the two
inputs. Red border in (b) and (c) added for clarity.

Then it applies a tint to the background region of the movie
frame as defined by the calculated mask. As seen in Fig. 6.

6
ENGR 489 (ENGINEERING PROJECT) 2023

Fig. 6. A frame before and after being modified with the
colour editing technique. Note how the largest elephants head
is not changed despite it being in the background region.

Grabcut works in two steps: the initial run which takes a
rectangle and calculates the background as best as it can, and
then the user can mark parts of the image which the first run
got wrong as incorrect, and the algorithm will iteratively build
a more accurate mask. My initial code took approximately 8
minutes to run just for the first step of GrabCut(). The second
step was not implemented (which does lead to some
incorrectly colored parts of the movie) as the focus was on
optimization. As with the graffiti tracking, whenever the
matrix is looped pointers are used, but this only made small
improvements to the runtime. GrabCut treats each frame of the
movie completely separately meaning it can be run in parallel
very easily. Multi-threading with six threads cut the runtime
down to about three minutes. Finally, the frame and mask are
now downsized before being passed to GrabCut() and then the
mask produced is upsized again. This brought the runtime
down to about 50 seconds, at the cost of a slightly more
pixelated result. 
The techniques were used in the final project as packaged
executable files. These are called by the Unity interface as an
external process as shown in Fig. 7.

Fig. 7. Timeline of the video editing process

This was a clean way to bridge the gap between the two parts.
This choice means that techniques do not have to be written in
a specific language, giving future developers more options. It

does limit the system to Windows, but within the university
where this project will be used, non-Windows computers that
have access to both Unity Engine and a VR setup are
uncommon, so this is a non-issue.

V. SUSTAINABILITY

There are two scopes to discuss here: this project and a
commercial VR 360 video editing tool.

This project has been built for future work, the requirement for
adaptability has already been mentioned, significant work has
been done to future proof it so that changes can be made on it
well into the future. Recent versions of Unity Engine and
OpenCV were used so that project will be supported well into
the future. Work has been done to not lock the project onto a
specific VR headset because each VR setup has its own ids for
the buttons on their controllers. Within Unity these can be
standardised meaning different controllers can be handled
without making hard coded cases for each one. This
standardisation likely applies to future controllers as well. This
project was built with a Meta Quest 2 in mind but with the
Quest 3 now available[15] and other headsets from various
companies on their way, futureproofing this is important. 
These generics have not been tested due to a lack of varied
hardware carry out the testing.

The current project uses a single controller for all its input
meaning either hand can be used for the full functionality. As
left and right controllers are mirrored this is also
standardisable so users can use their preferred hand to make
edits. This is all the accessibility offered with given the
projects time and resources. A commercial product would
have to consider accessibility much more seriously. The study
run in[16] did an in-depth exploration of using VR with a
range of impairments. Impairments such as involuntary body
and eye movements, users limited range of movement,
mobility aids such as wheelchairs and hearing/vision
impairments were identified as accessibility barriers.

This is a system that does not scale, consequently its
environmental impact is quite minimal, the optimizations
made to the project are likely to have lowered its emissions
slightly. Video editing is an intensive process, there is no
getting around this, high end CPUs and GPUs are sometimes
used for video editing, these units typically pull hundreds of
watts of power. Minimising this power usage was done with
optimisation and minimising the number of edits users need to
make. Instructions to minimise the edits were given verbally
during the interviews. A completed system would need to
handle this within itself.

There are multiple economic reasons for 360 video editing in
VR, as mentioned in my introduction. These are the primary
motivators for this project, giving video editors tools to make
their content as well and as quickly as possible will save time
and lead to better final products.

7
ENGR 489 (ENGINEERING PROJECT) 2023

VI. EVALUATION

Quantitative
The quantitative metrics are the runtimes of my video editing
techniques. The goal was to get them as close to real-time
edits as possible so users can see the results and make further
edits as fast as possible, keeping the workflow smooth. The
graffiti tracking technique was built in an optimized fashion
from the beginning, using prior experience from CGRA352.
The final runtime was about 15 seconds, with the library
functions taking roughly 20% of this. There are likely more
ways to optimize this further, but this would require much
more additional skill and knowledge with C++. Also the
diminishing returns of further improvements (considering the
time required to make them) meant the runtime was left as it
was. The background color editing originally had a runtime of
8 minutes with the library functions taking 95% of this time.
As this technique treats each frame individually, it was easily
parallelizable, bringing the runtime down to 3 minutes using a
setup akin to simple batch processing. The second step was
downsizing the mask being fed into the library
function bringing the runtime to 50 seconds. The downsized
mask contained a quarter of the original pixel count and so
roughly quartered the runtime. This second optimization is
lossy unfortunately.
Neither of these techniques were real-time or near real-time
but they were optimized to a point where the user testing was
structured to have the longer runtimes running in the
background while participants did other tasks.

Qualitative
This evaluation was a series of user tests and interviews to
gauge opinion on the project, VR video editing in general and
360 video. Ethical approval was sought out and given for the
user testing and interviews. The sample size was too small for
statistical significance, but the semi-structured interviews
collected a varied range of well thought out opinions on these
topics. Participants found the controls and interactions logical
for the most part. To handle the selection inaccuracies
participants recommended adding movement smoothing,
reducing the controller's sensitivity (this would have to be
toggleable) and better hardware. Three out of the five
participants said they thought the VR video editing setup was
worth it, if they didn’t have to pay for a new VR setup. The
participants had a wide range of experience with video editing
and most of them liked the techniques demonstrated. Opinions
were given to use 360 video and video editing for
entertainment, education and VR ‘tourism’, seeing places and
tourist locations from around the world without needing to go
there. These are all use cases previously mentioned in this
report. A specific use case mentioned by a participant for the
pixel-wise video edits was to use them to annotate videos and
have the annotations move with the annotated content in the
video. Some issues mentioned with the system were the video
edits taking too long to run, the inaccuracy of pixel selection,
the lack of in-app feedback and the need for a more user-
friendly menu.

VII. FUTURE WORK

There are definite limitations with the final artefact. Unity
Engine was the best choice for the interface but solely because
of the time constraints of this project. Unity’s inability to
rewind videos and its issues with loading edited files during
runtime mean a truly user-friendly system is impossible with
Unity. Building this project in Unreal Engine would be a more
complicated process, but it would allow for videos to be
rewound and would give the option for C++ video editing
techniques to be included directly in the project (although pre-
built techniques would still need to be handled). An Unreal
project would still have significant overhead however. Given
enough time, building this project entirely in C++ potentially
using OpenGL for rendering and another library for VR would
also remove Unity Engines limitations. Building the project
entirely in C++ would mean a much smaller, more optimized
project that could natively run video editing techniques written
in C++.  Once again it would still need a way to run
techniques written in other languages to keep its adaptability.
Video editing is an intensive process, The runtimes of the two
video editing techniques were optimized to a degree, but
neither of them are close to real time. Further optimization is
certainly possible, a good direction to go in would be to utilize
the GPU. Operations on images work very well on the GPU.
Both optical flow and GrabCut can work on the GPU[17][18]
and doing so would vastly improve the runtime. Computing on
the GPU was not used for this project due to inexperience and
the time constraints. ML models for both feature tracking and
foreground-background separation also exist or could be
developed. Once trained these models could potentially
shorten the runtime.
The two techniques developed also need some work. The
color editing does not produce perfect results as seen
previously in Fig. 6. The background/foreground mask
produced by GrabCut is not perfect and so the color is applied
to some areas it shouldn’t be. The fix is to use the second step
of GrabCut mentioned in the implementation. Also, the
rectangle region used in the first step of GrabCut is hardcoded.
Giving users the ability to draw a rectangle in the interface and
passing that to the technique would make it much more
versatile.
The graffiti tracking doesn’t handle two problems with 360
videos. First of all, it does not wrap around, work was done to
allow for this, but it crashes most of the time when presented
with an edge case. Secondly the graffiti mask passed to the
executable distorts when shifted significantly throughout the
video. Currently the graffiti is simply translated in the 2d
space when being shifted. This leads to it being stretched
when placed on the severely warped areas of an
equirectangular frame and viewed in the interface. The graffiti
mask needs to be similarly warped to the frame each time to
prevent this.

V. CONCLUSION

So, to conclude this project has created an interface that allows
users to select pixels of equirectangular images while the video
is in its proper viewing form. They can also input other pieces
of information such as a color value. They are able to do all this

8
ENGR 489 (ENGINEERING PROJECT) 2023

completely immersed in VR. They are also able to use video
editing techniques and view the edits they make. Two pixel-
wise video editing techniques were created and used along with
the system. The system has been created in a relatively open
fashion and has been documented for future development and
utilisation of the system by researchers of new or improved 360
video editing techniques. Finally, user testing results
encouraged further research in this area and left helpful
feedback on where to begin improving the system.

VIII. ACKNOWLEDGMENTS

Thankyou to Fang Lue Zhang. His knowledge of image
processing was invaluable.

REFERENCES

[1] J. Katatikarn, “Virtual Reality statistics: The ultimate list
in 2023,” Academy of Animated Art, 02-Nov-2022. [Online].
Available: https://academyofanimatedart.com/virtual-reality-
statistics/. [Accessed: 15-Oct-2023].
[2] “AR/VR headset shipments by market 2021-2026,”
Statista. [Online]. Available:
https://www.statista.com/statistics/1301629/ar-vr-headset-
shipments-by-market. [Accessed: 15-Oct-2023].
[3] “AR/VR headset companies shipment share worldwide
2022-2023, by quarter,” Statista. [Online]. Available:
https://www.statista.com/statistics/1407105/ar-vr-headset-
companies-shipment-share. [Accessed: 15-Oct-2023].
[4] “Facebook,” Facebook.com. [Online]. Available:
https://www.facebook.com/help/828417127257368.
[Accessed: 15-Oct-2023].
[5] Meta.com. [Online]. Available:
https://www.meta.com/nz/quest/products/quest-2/tech-
specs/#tech-specs. [Accessed: 15-Oct-2023].
[6] C. Nguyen, S. DiVerdi, A. Hertzmann, and F. Liu,
“Vremiere: In-headset virtual reality video editing,” in
Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems, 2017.
[7] C. P. Evans, E. Chiarovano, and H. G. MacDougall, “The
potential benefits of personalized 360 video experiences on
affect: A proof-of-concept study,” Cyberpsychol. Behav. Soc.
Netw., vol. 23, no. 2, pp. 134–138, 2020.
[8] S. Yoganathan, D. A. Finch, E. Parkin, and J. Pollard,
“360° virtual reality video for the acquisition of knot tying
skills: A randomised controlled trial,” Int. J. Surg., vol. 54, pp.
24–27, 2018.
[9] V. Arents, P. C. M. de Groot, V. M. D. Struben, and K. J.
van Stralen, “Use of 360° virtual reality video in medical
obstetrical education: a quasi-experimental design,” BMC
Med. Educ., vol. 21, no. 1, 2021.
[10] H.-R. Rantamaa, J. Kangas, S. K. Kumar, H. Mehtonen,
J. Järnstedt, and R. Raisamo, “Comparison of a VR stylus with
a controller, hand tracking, and a mouse for object
manipulation and medical marking tasks in virtual reality,”
Appl. Sci. (Basel), vol. 13, no. 4, p. 2251, 2023.
[11] Adobe Creative Cloud, USA. #CloverVR. Adobe MAX
2016 (Sneak Peeks) | Adobe Creative Cloud. (Nov. 4, 2016).

Accessed: Oct. 15, 2023. [Online Video]. Available:
https://www.youtube.com/watch?v=tFkJXwH1VTE
[12] Unity Technologies, “VideoPlayer.playbackSpeed,”
Unity3d.com. [Online]. Available:
https://docs.unity3d.com/ScriptReference/Video.VideoPlayer-
playbackSpeed.html. [Accessed: 15-Oct-2023].
[13] A. Chauvet, Y. Sugaya, T. Miyazaki, and S. Omachi,
“Optical Flow-Based Fast Motion Parameters Estimation for
Affine Motion Compensation,” Applied Sciences, vol. 10, no.
2, p. 729, Jan. 2020, doi: 10.3390/app10020729.
[14] Li, Y., Barnes, C., Huang, K. and Zhang, F.L., 2022,
October. Deep 360∘ Optical Flow Estimation Based on Multi-
Projection Fusion. In European Conference on Computer
Vision (pp. 336-352). Cham: Springer Nature Switzerland.
[15] Meta.com. [Online]. Available:
https://www.meta.com/nz/quest/quest-3. [Accessed: 15-Oct-
2023].
[16] C. Creed, M. Al-Kalbani, A. Theil, S. Sarcar, and I.
Williams, “Inclusive AR/VR: accessibility barriers for
immersive technologies,” Univers. Access Inf. Soc., 2023.
[17] K. Pauwels and M. M. Van Hulle Laboratorium voor
Neuro- en Psychofysiologie, “Realtime phase-based optical
flow on the GPU,” Kuleuven.be. [Online]. Available:
https://gbiomed.kuleuven.be/english/research/50000666/5000
0669/50488669/neuro_research/neuro_research_mvanhulle/co
mp_pdf/GPU.pdf. [Accessed: 15-Oct-2023].
[18] S. Jose and T. Stich, “Graph Cuts with CUDA,”
Nvidia.com. [Online]. Available:
https://www.nvidia.com/content/gtc/documents/1060_gtc09.p
df. [Accessed: 15-Oct-2023].

Fig. 1. “Convert Equirectangular Projection to Cube Faces,”
Jamesfmackenzie.com. [Online]. Available:
https://www.jamesfmackenzie.com/2016/10/18/convert-
equirectangular-projection-to-cube-faces. [Accessed: 15-Oct-
2023].
Fig. 2. Image captured from: Adobe Creative Cloud,
USA. #CloverVR. Adobe MAX 2016 (Sneak Peeks) | Adobe
Creative Cloud. (Nov. 4, 2016). Accessed: Oct. 15, 2023.
[Online Video]. Available:
https://www.youtube.com/watch?v=tFkJXwH1VTE
Fig. 3. Researchgate.net. [Online]. Available:
https://www.researchgate.net/figure/Visual-representation-of-
equirectangular-and-cubemap-projections-for-the-captured-
360_fig1_335258068. [Accessed: 15-Oct-2023].
Fig. 4. “OpenCV: Optical Flow,” Opencv.org. [Online].
Available:
https://docs.opencv.org/3.4/d4/dee/tutorial_optical_flow.html.
[Accessed: 15-Oct-2023].
Fig. 5. Source frame from: “360 video database,” VHIL.
[Online]. Available: https://stanfordvr.com/360data.
[Accessed: 15-Oct-2023].
Fig. 6. Source frame from “360 video database,” VHIL.
[Online]. Available: https://stanfordvr.com/360data.
[Accessed: 15-Oct-2023].

