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Abstract— 360 videos are an increasingly more common way of 
viewing content on the internet. They also pair very well with 
virtual reality, as VR offers a higher level of immersion that suits 
the video format when compared to a standard computer 
monitor. The usage of virtual reality is also on the rise, both in 
entertainment and education. Logically, editing 360 videos in 
virtual reality would offer this same immersion, potentially 
allowing for better edited videos. Current video editing tools are 
either not available in virtual reality or only offer limited 
functionality. Many of these tools also do not handle the unique 
challenges that editing 360 videos pose. Making edits with these 
limitations can lead to interrupted workflows and mis-edits. 
During this project a prototype interface has been built. This 
prototype allows for pixel-wise 360 image and video editing, 
previously untested in virtual reality. The project was built in 
Unity engine and uses two C++ implementations of video editing 
techniques: colour editing that differentiates between foreground 
and background, and a usage of optical flow that allows a user 
drawn piece of ‘graffiti’ to remain consistently placed between 
video frames. User testing has been done to test both the user 
experience and effectiveness of the prototype, as well as getting 
aesthetic opinions on the video edits. This user testing has been 
anonymised and it, as well as limitations of the system have been 
documented, giving a clear path for future work.  
 

Index Terms— 360 Video, Video Editing, Virtual Reality  

I. INTRODUCTION 

The problem and motivation 
hree-sixty degree video is steadily becoming a more 
popular form of entertainment and education. 360 
videos offer more information (the full 360 view) and 

are more immersive than traditional 2d videos. 360 videos have 
now become freely and easily available on major platforms 
such as YouTube and Facebook. 360 videos are being used and 
shown in a variety of ways from teaching technical skills, to 
experiencing tourist locations without travelling, to film 
festivals.  
In addition, the number of people using VR is steadily 
increasing. As of 2022 there is estimated to be over 171 million 
VR users worldwide[1] and there were over 16 million VR 
headsets shipped in 2022[2]. Meta, ByteDance and Sony are the 
largest companies in the VR/AR sector[3]. Other companies 
such as HTC and Apple are either preparing to release headsets 
or are building new versions of their current models. VR is used 
for a wide variety of tasks including education, gaming and 
training in healthcare, the military and the trades.  
With the increased consumption of 360 videos, users need ways 
to create and edit these videos, quickly and easily. This project 
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focused on the latter. 360 videos are typically stored in a 2d 
format meaning that they can be edited in standard video 
editors. But there are limitations to this process. When 360 
videos are stored in 2d, they become distorted, meaning that the 
view of the video can be misleading to the user, leading to mis-
edits.   

 
Fig. 1. An equirectangular image projected on a 2d plane 
demonstrating the warping of such a projection.  
 

2d videos have 4 defined edges and no wrapping across borders. 
360 videos do have wrapping on all sides, meaning that 2d 
video edits will not work correctly when a video edit reaches a 
border. Also, when cutting between different 360 videos the 
two clips must be rotated properly so the transition is smooth, 
and the user’s view remains consistent, this is something 
completely unique to 360 videos. Finally, 360 videos cover the 
complete field of view of a scene and so they must have a much 
higher resolution to have the same viewing quality as a 2d video 
that only looks at part of a scene. Facebook recommends a 4096 
by 2048 resolution for monoscopic 360 video[4]. The Meta 
Quest 2, a very common headset offers a resolution of 1832 by 
1920[5] per eye so using high resolution videos is possible and 
recommend. As the field of view of these videos is so large the 
video quality ends up much lower than a standard video of the 
same resolution. So much larger videos are needed to keep the 
same viewing quality. Consequently, video editing techniques 
must be even further optimized than 2d techniques so that edits 
can still be made in a reasonable timeframe.   

There are a range of video editing tools available that allow 360 
video editing. Both Adobe Premier Pro and Apple Final Cut Pro 
can handle video edits for 360 videos and handle many of the 
previously mentioned challenges posed by 360 videos. Both of 
these tools however, are still used through a traditional 2d 
screen. To view your edits free of distortion, you must put on a 
virtual reality headset, check the changes, take the headset off, 
and repeat this for every change. Other issues with this process, 
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taken from interviews in [6] were having to regularly export 
titles to external pieces of software to alter them to work within 
360 video and incorrectly aligning a clip would lead to incorrect 
alignment propagating down the entire movie. All these issues 
slow down the workflow and lead to fewer and potentially 
lower quality videos being produced.   

There is one system, created by Adobe that allows users to make 
video edits in VR. This system is only able to make a limited 
number of simpler video edits, more complex edits must still be 
made through a 2d screen. 

 
Solution 

The solution is to build a complete system that allows a full 
range of 360 video edits to be made directly in VR. This was 
far beyond the scope of this project so instead a system was 
built that allowed for user input and video editing that 
previously had to be done through a 2d screen, to be done in 
VR instead. This user input and video editing was all pixel-
wise editing, namely edits that require individual pixels to be 
selected and manipulated. Four main requirements were 
defined for this project:   

 
 Build a system that allows pixel-wise video edits to 

be made to 360 videos in VR. Pixel wise edits are the 
unique video editing techniques that the project was 
concerned with so the system must be able to handle 
them entirely in VR.  

 Implement at least two video editing techniques to 
use with the project. These would allow the system to 
be thoroughly tested. They will also be useful 
research in their own right, handling some of the 
issues discussed with applying 2d video editing tools 
to 360 videos.  

 Build a system that allows additional video editing 
techniques to be easily added. This system will not 
complete and so building it in an open fashion will 
make future development easier and make it 
simpler for researchers to use the system with 
techniques they wish to test.  

 Collect feedback on both the system and aesthetic 
opinions of 360 video. Collecting feedback on the 
usability of the system gives future developers a good 
starting point on where to improve the system and 
collecting feedback on aesthetic opinions will help 
validate (or potentially invalidate) further research in 
this space.  

 

II. RELATED WORK 

 
Benefits of 360 video 

360 video and VR work very well together, creating 
experiences far more immersive than a standard computer 
setup. Research has shown that 360 videos of 
family/friends/loved ones 360 videos seen through VR can 
lower students negative emotional affect [7]. 360 videos, 
viewed in VR were used to teach participants how to tie knots 

in[8]. The participants learning with VR and 360 video were 
more likely to learn the skill than those taught with 2d videos. 
Finally, the study in[9] compared two groups of medical 
students observing gentle Caesarean Sections, one group 
observing in person and one through 360 video. The two groups 
did not have a significant difference in knowledge gained, 
meaning that 360 video can potentially be used for remote 
learning of these procedures or similar ones.  
 

Usage of VR for detailed tasks 
For pixel-wise video edits accuracy is an important factor 
otherwise video edits will not turn out as intended. The 
experiment run in[10] tested participants ability to select 
regions on a 3d object using either a mouse, hand tracking in 
virtual reality or a virtual reality controller and stylus setup. 
They concluded that using hand tracking is the worst option 
due to the hand detection being inaccurate. Using a mouse was 
the most accurate but has limitations since it only has 2 
dimensions of input.   
 

Vremiere and CloverVR 
In 2017 Adobe released CloverVR, an interface for Adobe 
Premier Pro that allows some video editing directly in virtual 
reality. This was likely built off Vremiere[6], the presenter for 
the 2016 preview [11] of CloverVR was one of the authors of 
the Vremiere paper. CloverVR is an interface that allows users 
to make edits such as cutting between clips, trimming videos, 
and rotating 360 videos so they line up when transitioned to. 
CloverVR does not have the full functionality of Premier Pro 
so other, often more complicated edits must still be made in 
the standard 2d application.  

 
Fig 2. The users view in CloverVR showing the videos 
timeline interface at the bottom.  
 

III. DESIGN 

 
Requirements 

This project is a system that allows users to make video edits 
to 360 videos directly in VR. It consists of an interface that 
allows user input and viewing 360 videos, and video editing 
techniques created primarily to demonstrate the functionality 
of the system and for effective user testing.   
The project had 4 main goals all of which were achieved:  
Build a system that allows pixel-wise video edits to be made to 
360 videos in VR:  
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The system is very far off being a polished or commercially 
viable project, but a user can successfully view a video, select 
pixel regions of the video, input other data such as a color 
value, make the video edits and view the edited video only 
using a VR headset and controller. There are limitations to this 
that are discussed in the limitations section of this report.  
Implement at least two video editing techniques to use with the 
project:  
Two video editing techniques required for the project were 
successfully built, one that tracks a user drawn piece of graffiti 
throughout the video and another that separates the foreground 
and background of a video and applies color edits only to the 
background. These are both pixel-wise video editing techniques, 
other techniques like cutting a videos length would have been 
possible but making techniques to test the unique features of this 
project was a logical choice.  
Build a system that allows additional video editing techniques 
to be easily added:  
The interface has been kept as separate from the video editing 
techniques as possible. The two techniques integrate with the 
interface as executables. Future techniques can be added in a 
similar style, requiring about 10 lines of code to be added to 
the interface to handling calling the executable. This 
adaptability has already been partially integrated with another 
piece of research.  If a technique requires user input beyond 
what the system offers, much more work will need to be done 
to allow for this.  
Collect feedback on both the system and aesthetic opinions of 
360 video:  
User testing was carried out at the end of the timeline. 
Participants were taken through a use case using the two video 
editing techniques and then answered interview questions 
after. The interview questions covered details and feedback for 
the system, the usage of VR for 360 video editing in general, 
aesthetic opinions of 360 videos (particularly the edits 
participants made) and how participants would use them.  
 

Tools 
While these are technical choices all these tool decisions were 
made early in the design phase and so affected other design 
choices. Hence why they are included here.  
The interface was built using Unity Engine and C#. Using a 
game engine simplified development greatly and saved time. 
The choice of Unity Engine as opposed to its competitors was 
due to Unity being fairly simple and it having thoroughly 
vetted VR libraries. The video editing techniques were made 
in C++. The OpenCV library was well used for image 
processing as it is very powerful. OpenCV is available for 
Python, C++ and java. C++ was used due to prior experience 
with it and to optimize the runtime of video edits as much as 
possible. The hardware used was a Quest 2 VR headset and 
controller connected to a Windows PC. This choice was 
simply due to availability. The Quest 2 is also a good choice 
due to its popularity so this project and future iterations will be 
built for a common headset. The benefits of any alternative 
setup weren’t worth the time or budget. The additional PC is 
required as the Quest 2 does not have sufficient processing 
power to handle the system. So, tethering it to a more 
powerful PC was required.  
 

Design 

The first major design choice was how to display and store the 
360 videos. 360 videos are stored in their 2d format and then 
projected onto a 3d object. There are two main ways to store 
360 videos: equirectangular and cubemap formats. 
Equirectangular frames are projected onto the inside of a 
sphere, cubemaps onto the inside of a cube. Cubemaps are 
technically 6 square images but they are all stored in a single 
image to group them as seen in Fig. 3.  

 
Fig. 3. An example of cubemap vs equirectangular images  
 
This means that cubemaps can be stored in many different 
ways by shifting what faces of the cube are stored in what part 
of the image. Cubemaps store frames without distortion but 
have a more complex geometry to display, raycast to and 
make edits to. Finally, you can see in Fig. 3 not all borders are 
connected in the 2d frame, and the excess white pixels can 
also lead to mis-edits if complicated bounds checking is not 
implemented. Equirectangular images have a standard format 
when in 2d and have a simpler geometry in either of their 
forms, so this is the better choice. Finding publicly available 
equirectangular videos to use in the project was also quite 
easy.  
Equirectangular frames are quite simple in either of their states 
but converting between the 2d and 3d representations of them 
is less so. Users of the system view the video in 3d and 
consequently select pixels in 3d. These 3d cartesian 
coordinates need to be converted to a 2d pixel so that selection 
masks can be created. 3d coordinates must first be converted 
to spherical coordinates (latitude and longitude) before being 
scaled and transformed.  Finally mirroring and offsets were 
added so that the mask and the 2d equirectangular frame aren't 
out of phase.  
Unity Engine has a limited frame rate and so user selection 
will only be picked up once per frame. A user drawing on the 
video will typically move the controller more than one pixel 
per frame leading to individual pixels being selected, not the 
lines of pixels the user has drawn. So, lines must be drawn 
between the current pixel and the pixel of the previous frame 
to make a continuous selection. The math for this is very 
common, with plenty of examples on the internet. Unity 
Engine does not have this functionality built into it however, 
so it still had to be written from scratch.  
Pixel selection was inputted with the VR controller and a ray 
cast from it. The alternatives were using a mouse or hand 
tracking. The Quest 2 has the ability to track your hand instead 
of a controller and use various hand gestures instead of 
pressing buttons on the controller. Hand tracking is inaccurate 
as discussed in[10] and was immediately ignored. The 
decision to use a controller and not the more accurate mouse 
was made so as not to limit users. Using a mouse would force 
users to operate near a desk so they have a flat surface to use 
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the mouse. It would also limit how much they could rotate. It 
is difficult to move a mouse and select pixels with it when you 
are facing directly away from the desk.   
A lot of the interactions in the system are done through a 
menu. Components on the menu are selected with a ray cast 
from the controller, making it similar to clicking a menu with 
a mouse. Menus can be difficult to select with a VR controller. 
So, making a large and simple menu was important. The 
alternative was using various interactable objects around the 
area such as 3d buttons which activate upon virtual collision 
with a controller. Interactables are all unique GameObjects in 
Unity which makes creating them much more time consuming. 
They also take up more space meaning the view of the 360 
videos would potentially be more obscured. Menus in Unity 
also have a lot of standardisations meaning that future 
developers of the system will have a much easier time adding 
new features.  
A proper control schema is also important. Using as many user 
inputs as possible means that more functionalities could be 
removed from the menu. So, functionality such as 
pausing/unpausing the video, changing video frames and 
zooming in on the video (note zooming did not make it to the 
final implementation) were tied to buttons and other inputs on 
the controller instead of the menu. This also made user 
interaction faster as users did not have to go through the menu 
for certain functionality.  
Another important design choice was how to incorporate 
video editing with the interface. Unity Engine uses C#, my 
video editing techniques do not for previously mentioned 
reasons. There is also no guarantee of what languages will be 
used for future video editing techniques. Python is a common 
choice here as OpenCV and Pythons machine learning 
libraries allow image processing models to be built easily. 
Building the techniques into a binary format before integrating 
them with the interface means that any language can be used 
for development, and it can still be called from the interface. 
This was a key step in making the system adaptable, fulfilling 
a project requirement.  
 

IV. IMPLEMENTATION 

The interface takes full advantage of Unity’s VR libraries in 
order to work with the Quest 2 headset and controller used 
throughout development and testing.    
The structure of the interface was re-done throughout 
development. The system was first built using the start() and 
update() functions Unity runs by default. This meant all 
checks and code were potentially being executed once per 
frame. A switch was made to state machine inspired code as 
the interface has clearly defined modes (main menu, paused 
menu and viewing the video). Some of this state machine 
stayed as the modes are still present in the final artefact. 
Finally, a lot of functionality was shifted to event-based 
systems. Events allowed for more separation between 
components and made the code easier to understand.    
The equirectangular videos were treated as standard video 
textures within unity. They can be applied as materials to a 
sphere and project correctly by changing a few material 
settings. That being said a custom made sphere was still made 

using Blender. Blender was the modelling as it is free. The 
sphere itself has a higher than average triangle count to 
smooth the projection as well as inversed UV values so the 
materials is applied to the inside of the sphere. 
There are two spheres in the project. A slightly larger sphere 
displays the video and the smaller one has the texture showing 
the selected pixels. This second sphere is what the ray cast 
from the controller collides with. Having this second texture is 
necessary so a separate texture can be laid over the video. 
Otherwise every time a pixel is selected every frame in the 
video would have to be changed to show this update which 
would slow the system down significantly. Updating the 
videos to show the selection would also change the videos 
themselves, unless copies were made. The selections 
themselves should not change the videos, only the edits made 
utilising the selections. 
There are three separate layers you can make selections with. 
These form 3 three different masks which can be utilised by 
editing techniques. The three masks are names background, 
foreground and layer 3 but they can be used for any purpose. 
Using specifically 3 masks was a primarily a technical choice 
as it makes displaying them simpler. The selection texture that 
displays all the selections to the user in VR combines the 3 
layers, displaying each layer as one of the red, green and blue 
channels. This gives a clear color distinction between the 3 
layers, handles multiple layers being applied to the same pixel 
by simply having two non-zero values for that pixel and 
makes deleting layers easier. To delete a layer the given 
channel for that layer is set to 0 for every pixel. 
Accurate pixel selection was another challenge. There was an 
attempt to implement a zoom feature. Offering a smaller field 
of view and enlarging it would allow users to draw more 
accurately. This feature was not of the highest priority and the 
time it would have taken to implement it meant it was not 
finished. The zoom was a small circle displaying the view of a 
camera closer to the video sphere than the users view. 
Selecting pixels with the zoom would mean raycasting to the 
sphere, taking the current angle of the ray then transforming to 
fit the not zoomed field of view. Then finally casting this 
second ray would find you the coordinate on the video sphere.  
Another smaller bug encountered when making the pixel 
selection accurate was the ray not being displayed in both 
screens in the VR headset. Only your right eye could see it and 
so mistakes would happen. This bug was quickly solved.  
The other major feature that had to be scrapped during 
development was the smooth rewinding and fast-forwarding of 
videos. Videos in Unity Engine are handled through 
VideoPlayer components. These load and run videos and pass 
the texture of each frame to a specified material. In this case it 
was the material of the video sphere. VideoPlayers have a 
playback speed variable which dictates how fast the video is 
playing. Setting this variable to a negative value is platform 
dependent[12] and was not available. You can directly change 
the current frame of a video player allowing you to rewind 
more manually. This often is slower than restarting the video 
and letting it play however. So, the functionality to restart the 
video and fast forward (at slow speeds) was added.  
The video editing techniques themselves were built from 
scratch with OpenCV, a computer vision and image 



5 
ENGR 489 (ENGINEERING PROJECT) 2023 
 
processing library. The system comes with a ‘demo’ of 5 360 
degree videos. These are publicly available videos provided by 
the projects supervisor.  New videos cannot be added in during 
runtime, but the demo of 5 videos is not hardcoded meaning 
that new videos can simply be pasted into the Resources folder 
and the system will handle them.  
The ability to use either the left- or right-hand controller for 
input was added late in the project. This functionality was 
added by now checking for both controllers simultaneously 
and assigning them to unique GameObjects. Additional logic 
was added to check button inputs from both controllers and 
decide on an output based on these. Most outputs were simple 
or statements. 
The graffiti tracking takes a black and white mask of the 
graffiti as its primary input. It calculates the center pixel of the 
graffiti and then tracks this position throughout the video 
using OpenCV’s implementation of optical flow. An example 
of optical flow tracking is shown in Fig. 4.  

 
Fig. 4. A demonstration of optical flow. Each coloured line 
shows where a pixel has moved throughout the video.  
 
The graffiti is then shifted according to the vector calculated. 
Finally, the graffiti is colored, based on a separate input color, 
and added to the frame. This technique has a runtime of about 
15 seconds, most of the calculations on the image matrix were 
converted to pointer-based loops (instead of using .at()) which 
greatly improved the runtime. The choice to base all the 
movement on a single pixel does typically lead to inaccurate 
tracking. This was the best choice both for optimization 
reasons and to avoid an exponential increase of difficulty in 
development. Truly accurate tracking and mapping of the 
graffiti would mean handling affine or perspective 
transformations. Accurately guessing these many dimensional 
transformations only given 2d pixel coordinates and pixel 
colors is a challenging task[13]. Good optical flow for 360 
videos specifically is also a quite recent topic and while work 
is being done to train accurate models[14]. These were not 
available for this project. Work was done to make this 
technique wrap around so that the graffiti could move over the 
edges of the 2d projection. The first attempt was to convert the 
equirectangular frames to cubemap frames. The edges of all 
the squares neatly fit together so handling the edge cases 
would be accurate. Once the graffiti was shifted for a specific 
frame it could be converted back into an equirectangular 
frame. Four separate attempts were done, to convert to and 
from cubemap frames and handle the maximum of 24 edge 

cases (depending on the layout of the cubemap images certain 
edges can be lined up in the matrix so certain edge cases can 
be ignored). This method was dropped due to the time spent 
and the lack of results, the code is still present in the project, 
just unused. The second way used only the equirectangular 
frames. The left and right sides of equirectangular images map 
directly to each other so you can handle edge cases by 
extending the left side with some of the right side and vice 
versa. The top and bottom can be approximately extended 
also. To extend the top of the image take a section of the top 
part of the images (rows 0-100 were used in this case), flip this 
section in both the x and y axis the attach it to the top. The 
bottom of the image can be approximately extended using 
itself with the same process. This extension is in the final code 
but does not function correctly. When the pixel being tracked 
by optical flow goes over a border the code does fail. This is a 
solvable problem, just requiring time. 
The background-separation color editing takes a black and 
white mask of a rectangle as its primary input. This rectangle 
roughly defines the background area of the image. This 
rectangle is used by OpenCV’s GrabCut() function to create a 
more accurate mask of the background.   

 
Fig. 5. A source frame (a), rectangle mask (b) and the 
separation mask (c) produced by GrabCut() given the two 
inputs. Red border in (b) and (c) added for clarity. 
 
Then it applies a tint to the background region of the movie 
frame as defined by the calculated mask. As seen in Fig. 6. 
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Fig. 6. A frame before and after being modified with the 
colour editing technique. Note how the largest elephants head 
is not changed despite it being in the background region. 
 
Grabcut works in two steps: the initial run which takes a 
rectangle and calculates the background as best as it can, and 
then the user can mark parts of the image which the first run 
got wrong as incorrect, and the algorithm will iteratively build 
a more accurate mask. My initial code took approximately 8 
minutes to run just for the first step of GrabCut(). The second 
step was not implemented (which does lead to some 
incorrectly colored parts of the movie) as the focus was on 
optimization. As with the graffiti tracking, whenever the 
matrix is looped pointers are used, but this only made small 
improvements to the runtime. GrabCut treats each frame of the 
movie completely separately meaning it can be run in parallel 
very easily. Multi-threading with six threads cut the runtime 
down to about three minutes. Finally, the frame and mask are 
now downsized before being passed to GrabCut() and then the 
mask produced is upsized again. This brought the runtime 
down to about 50 seconds, at the cost of a slightly more 
pixelated result.   
The techniques were used in the final project as packaged 
executable files. These are called by the Unity interface as an 
external process as shown in Fig. 7.  

 
Fig. 7. Timeline of the video editing process  
 
This was a clean way to bridge the gap between the two parts. 
This choice means that techniques do not have to be written in 
a specific language, giving future developers more options. It 

does limit the system to Windows, but within the university 
where this project will be used, non-Windows computers that 
have access to both Unity Engine and a VR setup are 
uncommon, so this is a non-issue.  

V. SUSTAINABILITY 

There are two scopes to discuss here: this project and a 
commercial VR 360 video editing tool.  
 
This project has been built for future work, the requirement for 
adaptability has already been mentioned, significant work has 
been done to future proof it so that changes can be made on it 
well into the future. Recent versions of Unity Engine and 
OpenCV were used so that project will be supported well into 
the future. Work has been done to not lock the project onto a 
specific VR headset because each VR setup has its own ids for 
the buttons on their controllers. Within Unity these can be 
standardised meaning different controllers can be handled 
without making hard coded cases for each one. This 
standardisation likely applies to future controllers as well. This 
project was built with a Meta Quest 2 in mind but with the 
Quest 3 now available[15] and other headsets from various 
companies on their way, futureproofing this is important.  
These generics have not been tested due to a lack of varied 
hardware carry out the testing.  
 
The current project uses a single controller for all its input 
meaning either hand can be used for the full functionality. As 
left and right controllers are mirrored this is also 
standardisable so users can use their preferred hand to make 
edits. This is all the accessibility offered with given the 
projects time and resources. A commercial product would 
have to consider accessibility much more seriously. The study 
run in[16] did an in-depth exploration of using VR with a 
range of impairments. Impairments such as involuntary body 
and eye movements, users limited range of movement, 
mobility aids such as wheelchairs and hearing/vision 
impairments were identified as accessibility barriers.  
 
This is a system that does not scale, consequently its 
environmental impact is quite minimal, the optimizations 
made to the project are likely to have lowered its emissions 
slightly. Video editing is an intensive process, there is no 
getting around this, high end CPUs and GPUs are sometimes 
used for video editing, these units typically pull hundreds of 
watts of power. Minimising this power usage was done with 
optimisation and minimising the number of edits users need to 
make. Instructions to minimise the edits were given verbally 
during the interviews. A completed system would need to 
handle this within itself. 
 
There are multiple economic reasons for 360 video editing in 
VR, as mentioned in my introduction. These are the primary 
motivators for this project, giving video editors tools to make 
their content as well and as quickly as possible will save time 
and lead to better final products.  
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VI. EVALUATION 

Quantitative 
The quantitative metrics are the runtimes of my video editing 
techniques. The goal was to get them as close to real-time 
edits as possible so users can see the results and make further 
edits as fast as possible, keeping the workflow smooth. The 
graffiti tracking technique was built in an optimized fashion 
from the beginning, using prior experience from CGRA352. 
The final runtime was about 15 seconds, with the library 
functions taking roughly 20% of this. There are likely more 
ways to optimize this further, but this would require much 
more additional skill and knowledge with C++. Also the 
diminishing returns of further improvements (considering the 
time required to make them) meant the runtime was left as it 
was. The background color editing originally had a runtime of 
8 minutes with the library functions taking 95% of this time. 
As this technique treats each frame individually, it was easily 
parallelizable, bringing the runtime down to 3 minutes using a 
setup akin to simple batch processing. The second step was 
downsizing the mask being fed into the library 
function bringing the runtime to 50 seconds. The downsized 
mask contained a quarter of the original pixel count and so 
roughly quartered the runtime. This second optimization is 
lossy unfortunately.   
Neither of these techniques were real-time or near real-time 
but they were optimized to a point where the user testing was 
structured to have the longer runtimes running in the 
background while participants did other tasks.  

Qualitative 
This evaluation was a series of user tests and interviews to 
gauge opinion on the project, VR video editing in general and 
360 video. Ethical approval was sought out and given for the 
user testing and interviews. The sample size was too small for 
statistical significance, but the semi-structured interviews 
collected a varied range of well thought out opinions on these 
topics. Participants found the controls and interactions logical 
for the most part. To handle the selection inaccuracies 
participants recommended adding movement smoothing, 
reducing the controller's sensitivity (this would have to be 
toggleable) and better hardware. Three out of the five 
participants said they thought the VR video editing setup was 
worth it, if they didn’t have to pay for a new VR setup. The 
participants had a wide range of experience with video editing 
and most of them liked the techniques demonstrated. Opinions 
were given to use 360 video and video editing for 
entertainment, education and VR ‘tourism’, seeing places and 
tourist locations from around the world without needing to go 
there. These are all use cases previously mentioned in this 
report. A specific use case mentioned by a participant for the 
pixel-wise video edits was to use them to annotate videos and 
have the annotations move with the annotated content in the 
video. Some issues mentioned with the system were the video 
edits taking too long to run, the inaccuracy of pixel selection, 
the lack of  in-app feedback and the need for a more user-
friendly menu.  
 

VII. FUTURE WORK 

There are definite limitations with the final artefact. Unity 
Engine was the best choice for the interface but solely because 
of the time constraints of this project. Unity’s inability to 
rewind videos and its issues with loading edited files during 
runtime mean a truly user-friendly system is impossible with 
Unity. Building this project in Unreal Engine would be a more 
complicated process, but it would allow for videos to be 
rewound and would give the option for C++ video editing 
techniques to be included directly in the project (although pre-
built techniques would still need to be handled). An Unreal 
project would still have significant overhead however. Given 
enough time, building this project entirely in C++ potentially 
using OpenGL for rendering and another library for VR would 
also remove Unity Engines limitations.  Building the project 
entirely in C++ would mean a much smaller, more optimized 
project that could natively run video editing techniques written 
in C++.  Once again it would still need a way to run 
techniques written in other languages to keep its adaptability.  
Video editing is an intensive process, The runtimes of the two 
video editing techniques were optimized to a degree, but 
neither of them are close to real time. Further optimization is 
certainly possible, a good direction to go in would be to utilize 
the GPU. Operations on images work very well on the GPU. 
Both optical flow and GrabCut can work on the GPU[17][18] 
and doing so would vastly improve the runtime. Computing on 
the GPU was not used for this project due to inexperience and 
the time constraints. ML models for both feature tracking and 
foreground-background separation also exist or could be 
developed. Once trained these models could potentially 
shorten the runtime. 
The two techniques developed also need some work. The 
color editing does not produce perfect results as seen 
previously in Fig. 6. The background/foreground mask 
produced by GrabCut is not perfect and so the color is applied 
to some areas it shouldn’t be. The fix is to use the second step 
of GrabCut mentioned in the implementation. Also, the 
rectangle region used in the first step of GrabCut is hardcoded. 
Giving users the ability to draw a rectangle in the interface and 
passing that to the technique would make it much more 
versatile.  
The graffiti tracking doesn’t handle two problems with 360 
videos. First of all, it does not wrap around, work was done to 
allow for this, but it crashes most of the time when presented 
with an edge case. Secondly the graffiti mask passed to the 
executable distorts when shifted significantly throughout the 
video. Currently the graffiti is simply translated in the 2d 
space when being shifted. This leads to it being stretched 
when placed on the severely warped areas of an 
equirectangular frame and viewed in the interface. The graffiti 
mask needs to be similarly warped to the frame each time to 
prevent this.  

V. CONCLUSION 

So, to conclude this project has created an interface that allows 
users to select pixels of equirectangular images while the video 
is in its proper viewing form. They can also input other pieces 
of information such as a color value. They are able to do all this 
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completely immersed in VR. They are also able to use video 
editing techniques and view the edits they make. Two pixel-
wise video editing techniques were created and used along with 
the system. The system has been created in a relatively open 
fashion and has been documented for future development and 
utilisation of the system by researchers of new or improved 360 
video editing techniques. Finally, user testing results 
encouraged further research in this area and left helpful 
feedback on where to begin improving the system.  
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