
ENGR 489 (ENGINEERING PROJECT) 2023 1

Diffusion Based Audio Generation
Ruben Nithyaganesh

Abstract—Generating data from complex data distributions
has been a long-standing problem in the field of artificial
intelligence, with generative models offering many opportunities
in rapid content creation, increasing efficiency, and many other
use cases. Diffusion models are one class of generative models
that have seen great success in recent years. In this work, we look
to leverage current state of the art diffusion methods to generate
musical audio. By estimating the gradient of an unknown target
distribution, diffusion models have the capacity to generate new
data samples from complex data distributions. Recent work has
seen improvements to diffusion methods, particularly in training
and sampling procedures that have allowed for improvements in
sampling quality and cost. We present the usage of contemporary
diffusion techniques for the purpose of musical audio generation
and discuss the effectiveness of diffusion models in this setting.
Our work comprises of converting a dataset of classical piano
pieces into a set of spectrogram images that our used within
a diffusion-based setup to generate novel spectrogram images.
We convert generated spectrogram images back to raw audio,
resulting in audio sequences that resemble audio from our
training set. Finally, we discuss opportunities for future work
for diffusion methods, particularly regarding our current model
and improvements that could be made to it.

I. INTRODUCTION

Generative modelling with artificial intelligence has become
a major area of research in the field of deep learning. The
common goal of generative models is as follows: given a set
of samples, generate new samples that resemble that of the
original set. Many variants of generative models exist such as
GANs, VAEs, and Normalising Flow models. In recent years
diffusion models have become among some of the best per-
forming generative methods, outperforming existing methods.
Due to the nature of their design, diffusion models bypass
specific limitations that have constrained previous systems. In
our work we look to use existing diffusion methods to facilitate
the generation of musical audio. We use the MAESTRO
dataset, a collection of classical piano performances as the
training data to our model. Our objective is to then be able
to generate audio segments that resemble the piano music in
our training set. We are able to convert the raw audio into
spectrogram images using the Short Time Fourier Transform
(STFT) that we use as input into our model. Our model is
then trained to generate novel spectrogram images, which can
be converted back to raw audio via the Griffin-Lim algorithm.
In addition to using diffusion methods, we define a method
of generating arbitrary length audio sequences by generating
blocks of audio that are generated conditioned on the block
of audio that came before it.

II. RELATED WORK

In this section we review work relating to our project.
Primarily we describe the formulation of diffusion methods,

This project was supervised by Bastiaan Kleijn

and the audio processing concepts used in our work. We also
include discussion about any relations this project may have
to sustainability concerns as described in [13].

A. Diffusion Models with Stochastic Differential Equations

We begin by describing diffusion models through a frame-
work of stochastic differential equations. Diffusion models
work by a process of corrupting data points taken from a target
data distribution in a well-defined iterative fashion, such that
at the end of the process the samples are transformed into
approximately pure Gaussian noise. The task of a diffusion
model is then to learn a reversal process that takes the
corrupted data laying on the Gaussian distribution back to the
target distribution. With this learned reversal process new data
samples can be synthesised by sampling data from Gaussian
noise and running this data through the reversal process.
Thus, diffusion models define a method of taking a previously
complex and intractable data distribution, and formulating a
process to sample new data points from it.

The process of corrupting the target data distribution is
commonly referred to as the forward process, and is defined
(in the ‘variance preserving’ case) as follows:

q(xt|xt−1) := N (xt :
√

1− βtxt−1, βtI) (1)

Here we obtain data point xt by applying a small amount
of Gaussian noise to the previous data point xt−1. Thus, the
forward process is a Markov process where the next data
point is determined purely from the previous data point in
the sequence. The process begins by sampling a data point
from our target distribution x0 ∼ q(x). With the forward
process we then obtain a series of increasingly noisy samples
x1, x2, ..., xT . βt defines a variance schedule that dictates the
amount of noise applied at each time step.

We can represent the forward process in closed form by:

xt =
√

1− βtxt−1 +
√
βt N (0, I) (2)

Song et al [12] show that this forward process can be written in
the form of a Stochastic Differential Equation (SDE), in which
the change in the data point is described in the infinitesimal
limit:

xt =
√
1− β(t)∆txt−1 +

√
β(t)∆tN (0, I)(βt:=β(t)∆t)

(3)

≈ xt−1 −
β(t)∆t

2
xt−1 +

√
β(t)∆tN (0, I) (4)

dxt = −1

2
β(t)xtdt+

√
β(t) dwt (5)

ENGR 489 (ENGINEERING PROJECT) 2023 2

Where dwt is the standard Wiener process (represents infintes-
imal noise). The equation shown in (5) conforms to the form
of a general SDE, which is given by

dx = f(x, t)︸ ︷︷ ︸
drift coefficient

dt+ g(t)︸︷︷︸
diffusion coefficient

dωt (6)

In equation (5) f(x, t) = − 1
2β(t)xt and g(t) =

√
β(t). The

SDE corresponding to these specific settings of the drift and
diffusion coefficients is referred to as the ’Variance Preserving’
SDE. The key insight into formulating the forward noising
process into an SDE, is the fact that an equivalent ’reverse
SDE’ can be derived that reverses the noising process.

dx = [f(x, t)− g2(t)∇x log qt(xt)]dt+ g(t)dω (7)

Which in the Variance Preserving SDE case presented in (5),
corresponds to a reverse SDE given by

dx = [−1

2
β(t)xt − β(t)∇x log qt(xt)]dt+

√
β(t)dω (8)

The reverse SDE consists of the same drift and diffusion
terms, but introduces ∇x log qt(xt), which is known as the
score function, a vector field indicating the direction of in-
creasing probability density. The score function is not directly
accessible due to the intractability of qt(x) however. Diffusion
methods propose that we can approximate the score function
through a parameterized model sθ(xt, t). Naively, we could
learn this model by optimising the objective

Et∼U(0,T)Ext∼qt(xt)||sθ(xt, t)−∇x log qt(xt)||22 (9)

However, we don’t have access to the true score function
∇x log qt(xt) as we don’t have access to the true underlying
data distribution qt(xt). Song et al. [11] proposed denoising
score matching as a solution to this problem, where we take
advantage of the fact that we can diffuse a data sample x0

into a noised xt using the forward process.
In the case of the forward SDE defined in (5), we can

parameterize the process into one that takes an initial data
point x0 and returns a noised data point xt at a given time
step t:

qt(xt|x0) = N (xt; γtx0, σ
2
t I) (10)

γt = e−
1
2

∫ t
0
β(s)ds

σ2
t = 1− e−

∫ t
0
β(s)ds

A noised sample xt can be obtained in closed form by:

xt = γtx0 + σtϵ ϵ ∼ N (0, I) (11)

With q(xt|x0) being tractable, we can now define the objective
as:

Et∼U(0,T)Ex0∼q0(x0)Ext∼qt(xt|x0)||sθ(xt, t)−∇x log qt(xt|x0)||22
(12)

Optimising this objective will mean sθ(xt, t) ≈
∇x log qt(xt|x0). The score function can be written
explicitly as:

∇x log qt(xt|x0) = −∇x
(xt − γtx0)

2

2σ2
t

= −xt − γtx0

σ2
t

(13)

Substituting our closed form representation of xt in terms of
x0 we get:

−γtx0 + σtϵ− γtx0

σ2
t

= − ϵ

σt
(14)

Interestingly, we see the value of ∇x log qt(xt|x0) is the noise
ϵ added to our original data point x0 when sampling xt, scaled
by the inverse of σt. With this in mind, we can parameterize
our network in the following fashion:

sθ(xt, t) := −ϵθ(xt, t)

σt
(15)

sθ(xt, t) can be optimised by minimising the following objec-
tive

Et∼U(0,T)Ex0∼q0(x0)Eϵ∼N (0,I)
1

σ2
t

||ϵ− ϵθ(xt, t)||22 (16)

Given a noised sample xt and time step t, our parameterised
model is tasked with predicting the noise values that were
added to xt. Once we obtain an optimised model sθ(xt, t) ≈
∇x log qt(xt|x0) we can substitute it in the Reverse SDE from
(8) to generate new data samples.

dxt = −1

2
β(t)[xt + 2sθ(xt, t)]dt+

√
β(t)dw̄t (17)

We can sample new data points by solving the Reverse SDE,
one such way to do this is through the Euler-Maruyama
method:

xt−1 = xt +−1

2
β(t)[xt + 2sθ(xt, t)]∆t+

√
β(t)∆tN (0, I)

(18)

We sample xT ∼ N (0, I), and use the Reverse SDE to obtain
the next sample xt−1. Once we reach x0, our data sample
should resemble a data point that exists within the original
complex data distribution we are interested in sampling from,
x0 ∼ q(x).

Song et. al further define a ‘probability flow’ ODE, by
way of the Fokker-Planck equation, that describes the same
evolution of a data point x over time, but without the stochastic
component present in the SDE. The general form of the
probability flow ODE is defined as

dx = [f(x, t)− 1

2
g2(t)∇x log qt(xt)]dt (19)

The probability flow ODE can be reversed in time by simply
adding a minus sign to the term.

B. A unified diffusion framework

For our work we utilise a framework for diffusion models
proposed by Karras et. al [5]. In this work the probability flow
ODE in (19) is defined as the following:

dx =
˙s(t)

s(t)
x− s(t)2σ̇(t)σ(t)∇x log p

(
x

s(t)
;σ(t)

)
dt (20)

Here f(x, t) is reformulated to
˙s(t)

s(t) and g(t) is reformulated to

s(t)

√
2 ˙σ(t)σ(t), and p(x;σ) represents the data distribution of

the training data perturbed with N (0, σ2I). The ODE in (20)
is defined such that the respective s(t) and σ(t) schedules

ENGR 489 (ENGINEERING PROJECT) 2023 3

correspond directly to the scaling of x at time t and the
standard deviation of noise added to the data at time t. This
framework offers an arguably more coherent view of the ODE
as the scaling and noise schedules define more explicitly the
evolution of x. Karras et. al show that various settings of
the schedules s(t) and σ(t) correspond to existing diffusion
methods. Karras et. al further derive and equivalent SDE in
this framework as

dx± = −σ̇(t)σ(t)∇x log p (x;σ(t)) dt︸ ︷︷ ︸
ODE from (1) with s(t) = 1

(21)

± β(t)σ(t)2∇x log p (x;σ(t))︸ ︷︷ ︸
noise decay

+
√
2β(t)σ(t)dωt︸ ︷︷ ︸

noise injection term

(22)

Here dx+ moves forward in time, while dx− moves backward.
In this framework β(t) describes the relative rate at which
existing noise is replaced with new noise. To make this SDE
equivalent to the SDEs of Song et al. β(t) =

˙σ(t)
σ(t) . Intuitively

this setting means the score function vanishes from the forward
SDE making it consistent with the SDE defined by Song et. al.

Within this framework the settings of s(t) = 1 and σ(t) = t
were found to be effective choices of schedules for defining
the ODE and SDE. While previous diffusion methods solve
the SDE and ODE through Euler methods akin to that in (18),
Karras et. al present an improved sampling algorithm that was
found able to achieve improved sampling performance. With
the improvements presented by this work, we choose to utilise
this framework alongside the improved sampling algorithm
presented within it.

Another finding from the work in [5] that we employ is their
parameterization and preconditioning of the neural network
model. For this parameterisation, we consider the model
Dθ(x;σ) that attempts to be the optimal denoising function
that minimizes the equation Ey∼pdata

En∼N (0,σ2I)||Dθ(y +
n;σ)− y||22, where the score function can be obtained by

∇x log p(x;σ(t)) =
(D(x;σ)− x)

σ2
(23)

This parameterisation differs from that shown in (15) as the
network now attempts to output the denoised image, rather
than the noise values added to the image. The preconditioning
of the network is defined as follows

Dθ(x;σ) = cskip(σ)x+ cout(σ)Fθ(cin(σ)x; cnoise(σ)) (24)

This parameterization of the denoiser network allows the raw
neural network to estimate either the original signal, the noise
added to the signal, or something between the two. The loss
function using this parameterisation is expressed with respect
to the raw neural network layers Fθ as

L = Eσ,y,n[λ(σ)cout(σ)
2||Fθ(cin(σ) · (y + n); cnoise(σ))

(25)

− 1

cout
(y − cskip(σ) · (y + n))||] (26)

Where λ(σ) is an additional loss weighting function. We
define the settings for these preconditioning parameters in the
Design section.

C. Benefits of Score Based Modelling

In the diffusion model described above, we work closely
with the score function ∇x log q(x). Compared to other gen-
erative modelling methods, working with the score function
offers some distinct advantages [10]. One challenge when
modelling a distribution q(x) is that the distribution must be
normalised (the probability values assigned by q(x) to each
possible x must sum to one), and this requires calculating
a normalising constant for the model distribution that is
typically intractable at high dimensions. Previous generative
models have attempted to address this issue in various ways.
Flow based models [8] attempt to approximate a normalising
constant, which leads to inaccurate probability evaluation.
Other approaches such as Variational Auto-Encoders (VAEs)
[7] restrict the family of models that can be used to satisfy the
normalised constraint. While approaches such as Generative
Adverserial Networks (GANs) [2] look to only model the
generative process, meaning these models cannot be used to
evaluate the probabilities of data points, and GAN training has
been known to be unstable. Working with the score function
bypasses the need to calculate the intractable normalising
constant, but simultaneously does not restrict the family of
models that can be used and allows for probability evaluation.
In recent work, diffusion models have been able to beat GANs
in the domain of image synthesis[1].

D. Representation of Audio

One important consideration is the representation of audio
data. Audio is typically represented through waveforms and
spectrograms.

1) Waveforms: Waveforms describe an audio signal in
terms of audio pressure with respect to time. A waveform
can be represented by a tensor of shape [C, T] where C is the
number of audio channels and T is the number of samples (our
data is mono, so C = 1). T is determined by the sampling
rate and duration of the audio clip. A typical sampling rate is
48kHz, so a tensor containing 1 second of audio would contain
T = 48000 samples (for mono audio).

Fig. 1. Waveform representation of audio.

ENGR 489 (ENGINEERING PROJECT) 2023 4

2) Spectrograms: Spectrograms can be computed from
audio waveforms using the short-time-Fourier-Transform
(STFT). The STFT is used to determine the frequency and
phase of the sinusoidal components of a signal at different
windows in time and is performed (discretely) by splitting a
signal into equal sized frames (typically overlapping to reduce
artifacts), and performing a Fourier Transform on each frame.
The result of the STFT is a complex-valued matrix, carrying
with it the magnitude and phase information of the component
frequencies of a signal at different points in time. The STFT
in the discrete case can be expressed as

X(m,w) =

∞∑
n=−∞

x[n]w[n−m]e−iωn

with x[n] being the signal to be transformed, and w[n]
being a window function that isolates the signal to some local
time frame. Key parameters to the STFT include the window-
ing function, the window size, and the hop length between
windows. The STFT produces a complex valued matrix as
output, encoding both magnitude and phase information. It
is typical to discard the phase information as it is largely
random and contains little structure to be learnt by a deep
learning model, and utilise only the magnitude information.
The difficulty here is that to reconstruct a waveform the phase
is an important component to recovering the original signal.
An example of a magnitude spectrogram and its corresponding
phase spectrogram are depicted in Figure 2 and 3 respectively.

Fig. 2. Visualisation of magnitude components of spectrogram. Present are
clear structures that identify patterns in the audio waveform.

Fig. 3. Visualisation of phase components of spectrogram. Compared to the
magnitude spectrogram in Figure 2, there is little to no structure to the phase
data.

3) Griffin-Lim algorithm: In this work we are interested in
the generation of audio waveforms, and thus using a magnitude
spectrogram representation of audio necessitates reconstruct-
ing waveforms from their magnitude spectrogram. This can be
achieved with the Griffin-Lim algorithm, which is an iterative
algorithm that attempts to recover phase information given a
magnitude spectrogram. The Griffin-Lim algorithm offers only
an approximation of the original waveform and can be prone
to producing artefacts. In our work we observe that increasing
the resolution of spectrograms can aid in reducing the number
of artefacts produced.

E. Diffusion for Audio Generation

There have been various implementations of diffusion meth-
ods for audio generation to date. Some notable contributions
are ArchiSound [9], and Noise2Music [4]. Both approaches
utilise similar diffusion methods to take randomly sampled
Gaussian noise and iteratively denoise it into recognisable
audio. As is common among diffusion models they employ
a UNet architecture for the denoising neural network. One
common characteristic of these models is that they are not
autoregressive. This means that generated audio is of fixed
size, and there is no notion of probabilistic generation based on
data that has already occurred. The music generating models
in [9] and [4] are capable of generating a variety of audio
representing different genres and instruments. For our model
we attempt to work purely with piano audio. This is to limit
the amount of data needed to train and create a functioning
model that works with piano music. With the scope of the
project and the time available to us, we thought this was a
sensible decision (for reference, [4]’s training data amounts to
approx. 340k hours of audio).

1) ArchiSound: The work in [9] outlines the creation of
several models. Both (text) conditional and unconditional
audio generating models, a model for upsampling audio, a
vocoder model that converts mel-spectrograms into audio, and
an autoencoder that can compress audio into a compressed
latent representation.

ENGR 489 (ENGINEERING PROJECT) 2023 5

2) Noise2Music: The work in [4] outlines 4 parameterised
models. A waveform generator that generates text-conditioned
low fidelity audio and a corresponding cascader model that
generates higher fidelity audio conditioned on the generated
low fidelity audio and the same text conditioning. There is a
similar setup that works with spectrograms. A generator model
that produces a spectrogram conditioned on text, and a vocoder
model that produces 16kHz audio conditioned on the generated
spectrogram.
Both ArchiSound and Noise2Music employ a variety of mod-
els to facilitate audio generation. Our proposed method is a
lot simpler only consisting of one trained model, however we
look to define a method of generating arbitrary length audio
segments rather than fixed block sizes. More detail is given in
Section III.

F. Sustainability Concerns

We believe this project has minimal effect on many of
the stated goals in [13]. We do however recognise that deep
learning models in general require large amounts of computa-
tion, which can lead to large electricity consumption at large
scales. We maintain awareness of this, however we believe
that the scale of our model training and inference is well
within reasonable in this regard. We also express concern
regarding generative models and their potential implications
on the future job market, particularly for creative professions.
As generative algorithms improve, their wider use in place
of human artists may well become more common. Generative
technology is a rapidly developing field and the ethics behind
the usage of AI algorithms in place of human workers is
a contentious issue, particularly when generative algorithms
that create artistic pieces depend on existing pieces created by
humans to use as training data. For this project we do not state
any intention to replace human creativity, nor do we make the
claim that it would be ethical to do so.

III. DESIGN

In this section we describe the key design choices sur-
rounding our solution. We cover dataset construction and
data processing, model architecture, diffusion settings, and our
sampling process.

A. High-level design

The objective of our work is to create a generative model
for piano music using diffusion methods. Our approach to
this problem is to create a diffusion model that generates
spectrogram images that can be converted to waveforms via
the Griffin-Lim algorithm. Should our generative system be
capable of generating spectrograms that resemble that of true
piano audio, then the produced waveforms should in principle
sound like piano music. In light of previous diffusion based
audio generative models, our approach differs in that we look
to create a system that can generate arbitrary length sequences
of audio, rather than generating sequences of fixed size. Where
previous methods look to condition generation on provided
text, we look to condition generation based on the audio that

has been generated previously, such that long sequences of
audio can be generated iteratively by conditioning the gener-
ation of the current audio sequence with the audio sequence
that came before it.

B. Dataset

For our task we must first define a dataset for our model
to train on. We chose to work with the MAESTRO dataset,
a set of recorded classical piano performances, amounting to
around 200 hours of audio.

1) Waveform processing: The MAESTRO dataset comes in
the form of raw .wav files of varying length, in the order of 2 to
10s of minutes. The audio is in stereo (2 channels), sampled
at 44.1kHz. To limit the dimensionality and overall size of
this data, we opted to work with mono audio (1 channel) and
down sample all the audio to 8kHz. While this is a significant
reduction in sampling rate, we thought the savings in space
and dimensionality were justified. Nyquist’s theorem states
that we need a sampling rate at least double the frequency
of any signal we want to sample accurately. At a sampling
rate of 8kHz the theoretical highest frequency signal we could
accurately sample would be 4kHz. There is only one note on a
standard piano (C8 at 4186Hz) that exceeds this limit, thus we
considered down sampling to 8kHz viable as we would only
lose the ability to sample the fundamental frequency of one
note from the original audio samples. Down sampling involves
applying a low-pass filter to remove frequencies larger than
half the desired sampling rate (preventing aliasing), and then
removing every Nth sample where N is chosen to achieve
the desired sampling rate. Another processing step that was
performed was to split every 8kHz mono audio file into
segments of approx. 2 seconds. This was done so that every
sample was of consistent length and could be used in a model
working with fixed size input.

2) Spectrogram generation: Given our waveform process-
ing has been completed, we obtain a set of approx. 2 second
8kHz .wav audio files. To use as input to a neural network,
we would like to generate spectrograms whose dimensions
are a power of 2. Our neural network employs downsampling
and upsampling layers that halve the spatial dimensions at
each layer. Thus an input with dimensions of a power of 2
is convenient as up and downsampling will retain consistent
dimension sizes at each layer. This is important as the neural
network model employed involves skip connections that need
the dimensions of the downsampling and upsampling layers
to be consistent across every layer. We must set the STFT pa-
rameters such that they produce spectrograms with dimensions
in accordance with this requirement.

Dimensions Window WinSize HL

128x128 Hann 256 128
256x256 Hann 512 64

TABLE I
SETTINGS OF STFT

Table I displays the STFT settings we choose for two
dimension sizes of 128x128 and 256x256. Window refers

ENGR 489 (ENGINEERING PROJECT) 2023 6

to the windowing function that isolates the current window
from the entire audio signal, WinSize refers to the number of
samples captured in the sliding window, while HL indicates
the number of samples the window slides across each time. We
work with two dimension sizes 128x128 and 256x256, as we
used the smaller resolution spectrogram images to train and
test a smaller initial model, and then upscaled to higher res-
olution spectrogram images for a larger model. The resulting
spectrgrams given by our settings will actually produce images
of dimensions 129x128 and 257x256 respectively. For input
to our neural network we simply discard the top row of these
images. The width of the produced images is determined by
the window size, hop length, and the length of the input signal.
Keeping window size and hop length constant, the input signal
length of 2.096s is required to produce our desired width in
both cases. This is the reason for the choice of splitting our
waveforms into approximately 2 second segments.

Fig. 4. Depiction of a 256x256 spectrogram. Compared to the equivalent
128128 spectrogram in Fig. 5, the higher resolution offers more detail

Fig. 5. 128x128 spectrogram.

While using 128x128 spectrograms constitutes less compu-
tational complexity and shorter training and inference times,
they lead to worse waveform approximations with Griffin-Lim
in comparison to using 256x256 spectrograms. Thus there is a

trade-off here where faster sampling can be achieved using a
lower resolution spectrogram at the cost of audio quality. We
considered using spectrograms of even higher dimensionality,
but the gain in audio quality in comparison to increase in
dimensionality wasn’t justified.

3) Normalisation: The final step in our dataset definition
is applying normalisation to our produced spectrograms. As
mentioned previously the first step was to discard the top row
of produced spectrograms. In their raw form, our spectrograms
are complex-valued. We take the absolute value of each
complex number to produce a magnitude spectrogram. This
discards phase information. We then convert from amplitude
to dB scale, and finally normalise the data to lie between 0 and
1. With this completed, we define a pipeline for converting a
set of audio waveforms into sets of spectrogram images ready
to be used in a deep learning model.

Fig. 6. Data processing pipeline for producing spectrogram images as input
to neural network

C. Model Architecture

As described in Section II, we are interested in modelling
the score function through a parameterised model Dθ(x, t).
For this work we use the same architecture for the param-
eterised model as is seen in the work by Song et al [12],
with slight modification and addition. From a high level the
architecture of our model is that of a UNet, consisting of a
series of down-sampling and then up-sampling convolutional
blocks, such that the input and output dimensionality are
the same. There are skip connections between corresponding
up and down sampling blocks. A positional embedding that
encodes the current time-step t is used at each layer of the
UNet, and we also employ a new ‘Spectrogram embedding’
that is equivalently used at each layer. Our spectrogram
embedding is a new addition to the architecture that facilitates
conditioning generation on another spectrogram, effectively
creating an image conditional model. It is implemented with
a series of convolutional blocks, with a final fully connected
layer that transforms the final convolutional feature map into a
vector embedding that is passed to the main UNet layers. For

ENGR 489 (ENGINEERING PROJECT) 2023 7

our model we employed 5 down-sampling and up-sampling
layers. A high level overview of the employed architecture can
be seen in Fig. 7, while a depiction of our added spectrogram
embedding can be seen in Fig. 8.

1) UNet Architecture: We employ a UNet architecture
as it is ubiquitous among diffusion implementations. A key
constraint on the design of our model architecture is the fact
that the input and output dimensionalities are the same. This
alone encourages a UNet like structure. In addition to this
UNets are able to learn lower level feature of the input image
via the encoding layers, while more fine grained features are
preserved by the networks skip connections.

2) Spectrogram Embedding: The design of our spectrogram
embedding employs a similar structure to the encoder layer
of the main UNet, where convolutional blocks facilitate the
learning of useful features from an input image.
We considered an alternative to using a spectrogram em-
bedding where we append the previous spectrogram as an
additional channel in the noised image input. We thought
this was a sub-par solution as we wanted the encoding and
decoding layers to have access to all parts of of the condi-
tioning image. This is particularly because we hypothesised
that the end of the conditioning image should have a large
influence on the beginning of the denoised image, as this
would facilitate the generation of a spectrogram of which
its beginning ‘meshed’ well with the end of the previous
spectrogram. When we append these spectrograms together
and produce a final waveform, this would hopefully result in
a continuous audio sequence where the transition between each
’section’ is natural and not noticeable.
Had the conditioning spectrogram been inputted as an extra
channel, the nature of the convolutional layers in the UNet
architecture would mean that information about the end of the
spectrogram would only be locally accessible, and there would
be no way for this information to influence the computation
of the beginning of the generated image. In contrast, using an
embedding means that this information is not only injected into
each encoding and decoding layer, the embedding is capable
of influencing any part of the denoised image.

Fig. 8. Design of our implemented Spectrogram embedding as seen incorpo-
rated in the architecture displayed in Fig. 7. It receives a spectrogram image as
input, down-samples in a similar fashion to the down-sampling layers of the
main UNet, then applies a fully connected layer to transform the last feature
map into a single vector embedding.

D. Diffusion setup

As mentioned, we use the diffusion framework defined by
Karras et. al [5]. Under this framework, the main choices defin-
ing a diffusion method consist of the following: ODE solver,
time step discretisation, scale schedule s(t), noise schedule
σ(t), preconditioning functions cskip(σ), cout(σ), cin(σ), and
cnoise(σ), noise distribution during training, and loss weighting.
For our setup we follow the same settings for these compo-
nents as Karras et. al, which we define in the following section.

1) ODE Solver: We use the second order Heun sampler de-
scribed in [5]. We employ their ‘stochastic sampler’, however
opt for a parameter choice of Schurn = 0. This corresponds to
no added noise during sampling steps as would be the case
when solving an SDE, and is effectively solving the ODE
defined in (20).

2) Time step discretization: When solving the ODE or
SDE, we must define a set of discrete time steps to numerically
approximate a solution. These timesteps are defined as

σi<N = (σ
1
ρ
max +

i

N − 1
(σ

1
ρ

min − σ
1
ρ
max))

ρ and σN = 0 (27)

Where N is the total number of timesteps, and i is the ith
timestep. Formulating time steps in this manner means larger
timesteps are made over larger noise levels, while smaller
timesteps are made at smaller noise levels. we found that a
total of 40 times steps reliably yielded good samples from our
model.

3) Scale and noise schedules: Scale and noise schedules
are set to s(t) = 1 and σ(t) = t respectively.

4) Preconditioning values: Here we must set the precondi-
tioning parameters for the parameterization of Dθ as described
in (24).

cskip(σ) =
σ2

data

(σ2
data + σ2)

(28)

ENGR 489 (ENGINEERING PROJECT) 2023 8

Fig. 7. High level design of the neural network trained to be the optimal denoiser. Network receives as input a noised image, noise level σ and a previous
spectrogram. The noised image is passed through a series of up and down sampling convolutional layers. Meanwhile, the supplied σ and previous spectrogram
are transformed into respective embeddings, added together and passed to each of the encoding and decoding layers.

cout(σ) =
σ · σdata√
σ2

data + σ2
(29)

cin(σ) =
1√

σ2
data + σ2

(30)

cnoise(σ) =
1

4
ln(σ) (31)

cout and cin are chosen to ensure network inputs and training
targets have unit variance. cskip attempts to prevent the ampli-
fication of errors in Fθ, particularly for high σ. cnoise is said
to have been chosen empirically.

5) Noise distribution: During training, we sample noise
levels that are used to noise data and train the denoising
model. Where older methods simply sampled noise level
from a uniform distribution, Karras et. al define a log-normal
distribution in the hopes to target noise levels where more
effective learning can take place.

ln(σ) ∼ N (Pmean, P
2
std) (32)

6) Loss weighting:

λ(σ) =
(σ2 + σ2

data)

(σ · σdata)2
(33)

7) Parameters: These are the settings of the parameters for
the components that have been described.

σmin = 0.002, σmax = 80 (34)

σdata = 0.5, ρ = 7 (35)

Pmean = −1.2, Pstd = 1.2 (36)

σdata represents the standard deviation of the original, unper-
turbed data distribution of our training data.

We choose to use these parameter settings as Karras et.
al report SOTA performance on CIFAR-10 and ImageNet-64
datasets, as well as improved sampling speed compared to
previous methods with these settings. As such, we reason that
these parameter settings constitute good choices, reinforced by
the fact that we observed good results with these settings also.

8) Training: For our training we employ the loss function
defined in (25), except that the neural network Fθ receives
an additional input representing the ‘previous spectrogram’
of the one being input into the neural network. For training,
when sampling a spectrogram image from our dataset, we
also retrieve the spectrogram image for the audio immediately
preceding the sampled spectrogram. The currently sampled
spectrogram is noised and passed to the network, while the
‘previous spectrogram’ is passed as an unperturbed signal to
be used to create the conditioning spectrogram embedding.

E. Sampling

Our diffusion model defines a generative system where
we can generate spectrogram images corresponding to piano
music from sampled noise, conditioned on a spectrogram
image representing the audio preceding the current generation.
To create a new audio sequence, we generate an initial
spectrogram generation unconditioned on any previous spec-
trogram. We can then generate subsequent spectrograms by
conditioning the next generation on the previously generated
spectrogram. This process can be repeated an arbitrary number

ENGR 489 (ENGINEERING PROJECT) 2023 9

Fig. 9. Sampling 8 128x128 spectrograms with 24 sampling steps. Each spectrogram generation corresponds to approximately 2 seconds of audio. Each
generation is begun by sampling Gaussian noise (left of figure), and denoising by solving the ODE in the reverse direction.

of times to generate audio sequences in roughly 2 second
blocks. Once the chosen number of spectrograms have been
generated, they can be concatenated into a single spectrogram
and transformed into a waveform with the Griffin-Lim algo-
rithm. As the input to our model is normalised between [0, 1]
our generative model produces data in the same range. Thus
prior to input into the Griffin-Lim algorithm we normalise the
data to the range [-80, 0], and convert from dB to amplitude
scale. As mentioned previously we discard the top row of our
produced spectrograms so that they are square, here we also
add a top row by padding with zero before performing Griffin-
Lim.

IV. IMPLEMENTATION

In this section we describe the concrete components used
to implement our chosen design. Our final implementation
follows very closely to the design defined previously.

1) Programming Language: For development, we utilise
the Python programming langauge. Python is a very flexi-
ble language that allows for rapid development. There exist
various libraries readily available in Python that enable our
development, such as PyTorch.

2) Dataset Storage: We store our dataset as raw .wav files
using an Amazon S3 bucket. Having our data accessible in
the cloud is vital as it allows for access to our training data
from multiple machines without having to manually transfer
data between each machine, which is important as we conduct
training on the ECS GPU servers.

3) Model implementation: Our model is implemented in
PyTorch. We use PyTorch as it has arguably become a de
facto standard for deep learning research. Many existing works
are implemented in PyTorch and thus comparison between
implementations can more easily be performed if our model is
implemented in the same framework. PyTorch offers extremely
powerful tools for defining and training deep learning models,
and enables GPU hardware acceleration that is vital for making
training our model feasible in the time available.

4) Audio processing: For our audio processing needs we
use the Librosa library in Python. Librosa is a widely used
audio processing library that gives us access to all the audio

processing functionality we require such as down-sampling,
applying STFT, and the Griffin-Lim algorithm.

5) Training: Training was performed on the ECS GPU
servers.

V. EVALUATION

Compared to the more traditional machine learning tasks
of classification or regression, generative modelling can be
challenging to evaluate. The main difficulty stems from the
fact that because generative models aim to generate novel data
points, there aren’t any ground truth data that correspond to
the generated data to compare against. For generative models,
we only have the training data to assess against.

A. Frechet Audio Distance

Frechet Audio Distance (FAD) is an adaption of the com-
monly used Frechet Inception Distance used for image gen-
erative models [6]. FAD allows for evaluation of a set of
generated audio segments by comparing embedding statistics
produced by the generated data points compared to a training
set (or ‘background set’) when inputted into a classification
model, typically the VGGish model [3]. FAD is calculated
by computing multivariate Gaussians on the two sets of
embeddings, and then calculating the following

F (Nb,Ne) = ||µb − µe||2 + tr(Σb +Σe − 2
√
σbσe) (37)

B. Evaluation results

For our FAD evaluation we generated 17k 8kHz 2 second
samples using our 256x256 model, and evaluated these gener-
ations with a background set of 19k 8kHz 2 second samples
from our training set. With this we achieved an FAD score of
4.62. For reference, wavefroms generated from complete noise
obtained an FAD score of 169.48, while the best performing
model in [4] is reported to have achieved an FAD score of
2.134. It is important to note that the FAD evaluation in
[4] is computed for a different background evaluation set, so
direct comparison cannot be made here. Additionally, FID is
typically calculated on 50k generated samples, but this was not

ENGR 489 (ENGINEERING PROJECT) 2023 10

Fig. 10. Depicted above are three generations of approximately 8 seconds long (4 generated segments). Observe that the beginning of each sequence is identical.
I.e, these generations were all started with the same initial generation. Further observe that the subsequent generations are all different, demonstrating that
given the same initial starting point, due to the stochastic nature of the sampling process subsequent generations will vary. We argue that this indicates that
the model is not simply reproducing audio it has seen during training, but learning meaningful relationships in the data that allow it to generate different
sequences of feasible audio given the same starting conditions.

possible for us to generate in the time remaining for project
completion. However we believe our FAD score indicates
that our generations are reasonable and resemble that of our
training set.

C. Novelty of Generations

For generative modelling, one concern is that the model may
simply regurgitate samples from the training set, rather than
truly synthesising new data points. Depicted in Fig. 10 we
argue that our model is able to generate unique sequences of
audio, even given the same starting sequence. This would in-
dicate the model does not simply reproduce training examples,
but learns and generates general structures that correspond to
piano music.

VI. CONCLUSION AND FUTURE WORK

To conclude, we believe we have been able to success-
fully define a diffusion model for the generation of piano
audio. Compared to other diffusion based audio generative

methods our method is somewhat simpler. Where previous
methods train additional models for encoding, upsampling and
vocoding functionality, we solely train a diffusion model. We
also take a unique approach in working directly with audio
spectrograms (not Mel-Spectrograms), and training an image
conditional model that facilitates arbitrary sequence length
generation. However we believe there to be many avenues for
future work.

A. Vocoder model

Other generative audio models sometimes opt to transform
(typically a mel-spectrogram) back to a waveform using a deep
learning model, often referred to as a vocoder. Further work
could be performed to use a vocoder in place of the Griffin-
Lim algorithm in our design, and see if this produces better
quality waveforms.

ENGR 489 (ENGINEERING PROJECT) 2023 11

B. Higher resolution audio

At present our system only produces 8kHz audio. This is a
very low sampling rate and further work could be performed
into investigating ways to increase audio quality. This could
potentially be achieved by employing upsampling networks, or
introducing latent diffusion methods where training and sam-
pling is performed on a lower dimensional latent representation
of the audio data, allowing for the use of higher dimensional,
higher definition audio.

C. Training on more data

Training on a larger dataset will likely improve the model.
In particular training on a variety of musical genres and
possibly allowing for the conditional generation of music from
different genres or instruments. This extension will likely need
to coincide with an increased audio quality output as the detail
of particular instruments with high frequency components such
as the high hat will largely be lost at our current sampling rate
of 8kHz.

D. Improved sequential modelling

At present our system generates blocks of audio conditioned
only on the previous audio generation, in a Markov-like fash-
ion. Improved modelling of audio sequences would enable the
model to consider longer sequences of audio when generating
the next block. This could be achieved through a training and
sampling procedure that incorporated an LSTM of some kind,
where the output of the network at a given time encodes all
the important features of the audio that has been generated
previously.

REFERENCES

[1] Prafulla Dhariwal and Alexander Nichol. “Diffusion
models beat gans on image synthesis”. In: Advances
in Neural Information Processing Systems 34 (2021),
pp. 8780–8794.

[2] Ian Goodfellow et al. “Generative adversarial net-
works”. In: Communications of the ACM 63.11 (2020),
pp. 139–144.

[3] Shawn Hershey et al. “CNN Architectures for Large-
Scale Audio Classification”. In: 2017 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP). New Orleans, LA, USA: IEEE
Press, 2017, pp. 131–135. DOI: 10.1109/ICASSP.2017.
7952132. URL: https://doi.org/10.1109/ICASSP.2017.
7952132.

[4] Qingqing Huang et al. Noise2Music: Text-conditioned
Music Generation with Diffusion Models. 2023. arXiv:
2302.03917 [cs.SD].

[5] Tero Karras et al. “Elucidating the design space of
diffusion-based generative models”. In: arXiv preprint
arXiv:2206.00364 (2022).

[6] Kevin Kilgour et al. “Fréchet Audio Distance: A Metric
for Evaluating Music Enhancement Algorithms”. In:
arXiv preprint arXiv:1812.08466 (2018).

[7] Diederik P Kingma and Max Welling. Auto-
Encoding Variational Bayes. 2022. arXiv: 1312 .6114
[stat.ML].

[8] Yann LeCun et al. “A tutorial on energy-based learn-
ing”. In: Predicting structured data 1.0 (2006).

[9] Flavio Schneider. ArchiSound: Audio Generation with
Diffusion. 2023. arXiv: 2301.13267 [cs.SD].

[10] Yang Song. Centre for Brains, Minds + Machines
Diffusion and Score-Based Genrative Models. 2022.
URL: https://cbmm.mit.edu/video/diffusion-and-score-
based-generative-models (visited on 05/30/2023).

[11] Yang Song and Stefano Ermon. “Generative modeling
by estimating gradients of the data distribution”. In:
Advances in neural information processing systems 32
(2019).

[12] Yang Song et al. “Score-based generative modeling
through stochastic differential equations”. In: arXiv
preprint arXiv:2011.13456 (2020).

[13] Transforming our world: the 2030 Agenda for Sustain-
able Development. 2015. URL: https : / / sdgs . un . org /
2030agenda (visited on 06/02/2023).

