
ENGR 489 (ENGINEERING PROJECT) 2023 1

AR Sandbox Built Within Unreal Engine 5
Gareth McIntosh

Abstract—Augmented Reality (AR) is increasingly recognised
as a transformative interface for combining the physical and
virtual worlds, thereby elevating user engagement. AR Sandbox
leverages this capacity through a projection-based AR setup that
incorporates a Kinect V2 sensor, a projector, and a box of sand to
create an interactive Sandbox environment. In this setup, real-
time manipulations inside the physical Sandbox have a direct
impact on a digitally rendered visualisation that is then projected
onto the sand bed. The defining accomplishment of this project
is the porting of Sandbox software that ran on an outdated
OpenFrameworks v0.9.8 released in 2018, to the state-of-the-art
Unreal Engine 5 platform.

This technological leap accomplishes two objectives: it updates
the application with modern visual capabilities and enhances its
scalability and overall performance. The transition grants access
to a range of advanced graphical features, debugging tools, and
an extensive developer community supportive of Unreal Engine
5. Consequently, this means the project has been freed from the
maintenance hurdles that were associated with previous attempts
to update the OpenFrameworks system to newer versions. This
change opens the door for virtually endless possibilities of further
features and improvements. With the switch to Unreal Engine
5, the project now has huge potential for innovative changes
that could reshape how we interact with the augmented reality
Sandbox.

Index Terms—Augmented reality, heightmap, projection, depth
detection.

I. INTRODUCTION

AUGMENTED Reality (AR) technology enhances the
user’s perception of their physical environment by over-

laying digital information in real time [1]. This project specif-
ically utilises AR technology to project images onto a bed of
sand, achieved through a depth-sensing camera that reads the
sand’s heightmap and projection software that displays images
onto it. This allows users to interact with the sand and change
the projections in real time. The objective of this project

This project was supervised by Supervisor Dr. Simon McCallum

was to implement newer technologies in order to make long-
lasting improvements and reduce the need for frequent updates
to outdated frameworks. Specifically, this project ported a
working prototype of the code built on OpenFrameworks to
Unreal Engine 5.

A. Motivation
The AR Sandbox project offers a captivating and inter-

active experience that has proven to be highly engaging
for audiences, particularly among younger individuals. When
showcased at public events like open days and student outreach
events, the Sandbox’s ability to provide interactivity and
immediate feedback has generated significant interest. This
concept opens up a wide range of educational possibilities
across various fields. For instance, in the medical field, the
visualisation of a CT brain scan offers a unique learning tool.
The visualisation of Europe with height acting as a scale of
time creates exciting opportunities for historical exploration.
In addition, another implementation of the Sandbox software
utilised by the School of Geography, Environment, and Earth
Sciences adds a visualisation to simulate water flow through
land formations which provides a hands-on understanding
of hydrology. With its versatility and potential for endless
educational applications, AR Sandbox great promise. The only
limit with regard to societal benefits is one’s imagination.

B. The Problem
The main problem this project aimed to solve was the

difficulty of updating to newer versions of OpenFrameworks.
The existing software was based on Magic Sand [2] which was
built on OpenFrameworks v0.9.3 and was released in 2015 [3].
This was a problem as much of the code used in this software
had been deprecated in newer versions of OpenFrameworks.
Three past students spent significant amounts of time investi-
gating what it would take to update to newer versions of Open-
Frameworks. Each student documented their process and while



ENGR 489 (ENGINEERING PROJECT) 2023 2

Fig. 1. A screenshot of the Magic-Sand software taken from the project’s Github Repository. [2]

some found varying forms of success including updating to
OpenFrameworks v0.9.8 [4], the ultimate goal of updating to
v0.11.2 was unable to be achieved. The latest student to work
on this project discussed the fact that it may be potentially
impossible to update to v0.11.2 of OpenFrameworks due to the
nature of the segmentation faults and threading issues involved
and further mentioned that creating AR Sandbox software
from scratch may be the best solution moving forward.

C. Solution

To overcome this problem and ensure future-proofing of
the AR Sandbox, the developed solution involved porting the
existing codebase from OpenFrameworks to Unreal Engine 5
[5]. This transition to Unreal Engine 5 alleviates the difficulties
associated with the outdated frameworks, providing a long-
lasting improvement and reducing the need for frequent up-
dates. By implementing newer technologies, this project aims
to streamline the update process, saving time and resources
while allowing for easier extension and future development
of the project. This also has the potential to help the wider
community that works on the Magic Sand code on GitHub
[2].

The produced artefact is a working prototype that closely
resembles the capabilities and functionality of the previous AR
Sandbox software while being built within Unreal Engine 5.

II. RELATED WORK

Victoria University’s AR Sandbox has been under
development since 2018, during which four years involved
the contributions of other students’ honours projects, as well
as input from a Ph.D. student. Understanding the progress
made thus far was crucial for this year’s project as the goal
was to port the code that has been previously developed into
Unreal Engine 5 [5].

The initial implementation of the Magic-Sand software
involved the integration of an automated calibration system
powered by Artificial Intelligence (AI) algorithms. Thomas
Gilooly developed this system as part of his Ph.D. research.
Thomas successfully developed a fully functional automated
calibration system that leverages matrix transformations to
ensure swift and precise calibration of the Sandbox. To
achieve this, the calibration system utilises two distinct
libraries: Levmar [6] and dlib [7]. The levmar library
employs iterative techniques for locating the local minimum
of a function, working in conjunction with the dlib library,
which encompasses various machine learning algorithms.
These algorithms allow for accurate calibration of the sandbed.

The next project was undertaken by Nicholas Snellgrove
and he achieved the construction of a portable physical
Sandbox. As well as this he was the first student to attempt
to update the code to the latest version of OpenFrameworks,
v0.10.1 [3]. During the update process Nicholas ran into a
locking problem which he suspected was caused by changes
to the way C++ handled concurrency. In the end, the decision
was made that this update was going to be too difficult and
therefore take too much time so he settled for updating to
OpenFrameworks v0.9.8 instead [3].

Next, David Taing took a unique spin on the project
by integrating Virtual Reality capabilities [8]. Similar to
Nicholas, David initially attempted to upgrade Magic-Sand to
function with the latest version of OpenFrameworks, at this
time, v0.11.2, but encountered multiple errors. Consequently,
he shifted his focus toward VR implementation. David
implemented object detection that would allow users to
place objects onto the sand in order to appear in the VR
environment. He utilised the Unity Game Engine [9] to
develop this as he was familiar with the platform.



ENGR 489 (ENGINEERING PROJECT) 2023 3

Lastly, the previous work done on the AR Sandbox was
undertaken by Matthew Jay [10]. The goal of this iteration was
to again attempt an update to the latest version of OpenFrame-
works, as well as implement a custom visualisation import
feature. Matthew was successful in implementing this custom
visualisation feature but encountered several difficulties in
the attempted update to Open-Frameworks v0.11.2. These
problems he encountered were segmentation faults related to
memory and threading issues. He concluded his project by
stating that future work should not attempt this update again
but should instead investigate the possibility of creating the
Sandbox software from scratch in Unreal Engine [5].

III. DESIGN

Within this section, an account of the design decisions that
were made throughout the project’s lifecycle is provided.

A. Depth Sensing Camera

A fundamental element of the AR Sandbox the depth-
sensing camera, essential for measuring the sand’s height
within the Sandbox and facilitating its processing by the
Sandbox software.

Fig. 2. A diagram detailing the architecture of a Microsoft Kinect for Xbox
360 [11]

1) Kinect for Xbox 360: The existing AR Sandbox system
utilised a Kinect for Xbox 360 due to its availability and
compatibility with the existing Sandbox software.

This version of the Kinect utilises a Structured Light process
for determining the depth of objects in an image. This process
involves projecting a sequence of known patterns onto an
object, then observing the object from a camera in a different
direction to extract the depth information [12].

Fig. 3. A diagram detailing the architecture of a Microsoft Kinect for Xbox
One [13]

2) Kinect for Xbox One: As this project’s goal was to re-
build the Sandbox software from scratch, there was a unique
opportunity for the system to be designed to work with the
newer Kinect for Xbox One.

This newer version Kinect utilises the Time-of-Flight prin-
ciple to detect the depth. This technology measures the time
that light emitted by an illumination unit requires to travel to
an object and back to the sensor [12]. This technology would
provide more accurate depth detection for the project.

Fig. 4. A diagram detailing the architecture of a Microsoft Azure Kinect [14]

3) Azure Kinect: Another option for a newer depth sensing
camera that we had the opportunity to build the system around
was the Azure Kinect.

The Azure Kinect, developed by Microsoft, is a depth-
sensing camera that was released in 2019.

This version of the Kinect utilises a variation of ToF known
as Amplitude Modulated Continuous Wave (AMCW) ToF
[15]. In AMCW ToF, a modulated light signal is emitted,
and the depth information is determined by analysing both
the phase and amplitude of the reflected signal. This approach
can offer some advantages, such as improved accuracy and the
ability to handle challenging lighting conditions.



ENGR 489 (ENGINEERING PROJECT) 2023 4

4) Advantages and Disadvantages: The advantage of keep-
ing with the Kinect for Xbox 360 is that it is already utilised by
the Magic Sand software that is publically used and therefore
this project can provide benefits to a wider audience. Utilising
the Kinect for Xbox One or Azure Kinect, however, may
present a barrier of entry to people who want to use the
developed Unreal Engine solution in their existing Sandbox
setup.

The advantages of utilising either or these newer iterations
of the Kinect is that the depth sensing will be more accurate
leading to a more pleasant user experience.

5) Unreal Engine compatibility: The Neo Kinect Plugin is
the only plugin available on the marketplace for Unreal Engine
5 that can integrate input from a Kinect into the engine [16].
This plugin supports the Kinect for Xbox One but not the
Kinect for Xbox 360 or Azure Kinect [17]. There is however,
a plugin on Github that claims to integrate the Azure Kinect
into the engine [18].

Considering all these facts and also since we had one in the
HCI lab already, we decided to utilise the Kinect for Xbox
One for this project.

B. Software Frameworks

Unreal Engine 5 supports development in both C++ and
Blueprint, each coming with its own set of advantages and
disadvantages.

C++ offers greater performance and lower-level control
over game engine internals, attributes that are critical for
real-time applications like the AR Sandbox. This low-level
control would especially be beneficial in implementing pixel-
manipulation algorithms which the Sandbox relies upon.

On the other hand, C++ has a steeper learning curve and
since I was not as experienced in programming in C++
compared to Blueprint this would likely lead to more time
for development and debugging.

Blueprint, being native to Unreal Engine 5, provides a more
intuitive and integrated development environment, particularly
advantageous when constructing user interfaces (UI). Its visual
scripting approach allows for rapid prototyping and iteration,
simplifying the creation of UI elements and interactions.
Additionally, Blueprint’s real-time visual feedback allows for
instant adjustments to the UI, leading to a seamless design
workflow and ensuring a user-friendly interface that aligns
with the project’s objectives.

Another benefit of utilising Blueprint is its alignment with
the project’s primary objective: porting the original Sandbox
to Unreal Engine. Blueprint efficiently harnesses the engine’s
capabilities for graphical rendering, performance, and scal-
ability. It provides an intuitive and integrated development
environment, simplifying the process and ensuring the project
can make the most of the engine’s features.

Due to these reasons, the decision was made to attempt to
achieve as much as possible through Blueprint. If it was found
that Blueprint was incapable of a particular feature only then
did we resort to coding in C++.

C. AR Sandbox Architecture Design

The AR Sandbox System design can be expained by the
following architecture diagram.

Fig. 5. Architecture of the Sandbox system.

1) HUD Interaction: The HUD design for the system is not
complex. The calibration is able to be updated manually and
saved. If the calibration is updated these values are passed to
the internal system to be utilised in the depth calculations.
There is also the option to change the visualisation that is
being projected. When this is changed, the texture atlas for
that visualisation will be read and stored.

2) Main Loop: The main loop of the system begins with
the Kinect input. This depth frame taken from the Kinect then
gets converted to a height map. The layer index is calculated
for each pixel in the height map and this is used to sample the
texture atlas. These sampled pixels create the visualisation
texture which is then projected onto the sand. This loop is
occuring on every event tick which is approximately 60 times
per second. This means that when the sand is moved the kinect
will detect this and the visualisation will be updated instantly.

D. Visualisation layers

Each visualisation is represented in layers where each layer
is a seperate .tif file.

E. Height Map

The height map is passed as input by the Kinect, each pixel
has a depth value that can range from a distance of 0.5 metres
to 4.5 metres [19].

The depth information for each pixel from the height map
is used to find the pixel’s associated layer index as determined
by the following formula:

layerIndex = (normalisedDepth × (NumLayers − 1))



ENGR 489 (ENGINEERING PROJECT) 2023 5

F. Visualisation texture

The visualisation texture which is projected onto the sand
surface is generated by fetching, for each pixel, the RGB
colour from the appropriate layer as determined by the cal-
culated layer index.

G. Volume Texture Approach

Unreal Engine 5 includes support for a 3D texture known
as a volume texture. By vertically combining each layer image
for a visualisation into one extended image file, these volume
textures can be created. The idea for this approach was to
create these textures for each visualisation then grab the height
map depth information from the Kinect and essentially carve
these into the volume textures leaving behind, from a top down
view, the resulting visualisation that would be projected onto
the sand surface.

H. Calibration

Calibration is an important piece of the Sandbox system.
The first reason for this is that the Kinect captures an area
that is inherently larger than the Sandbox that it is positioned
above. Any depth information that lies outside of the bed
of sand will provide no useful information to the internal
calculations and should therefore not be considered at all.

The second reason for calibration is the boundries of the
near and far planes of the sand heights. These planes repre-
senting the lowest possible point of the sand i.e. the floor of
the physical box the sand sits within, and the highest possible
point that the sand realistically will be stacked up to. Any
depth information that is outside of these ranges should not
be considered in the depth information, this allows for the
depth information to be effectively spread out to represent the
full range of layers within the visualisation.

The previous Sandbox system utilised an automatic calibra-
tion to determine the values for these near and far planes, but
it was clear that implementation of this into my Sandbox pro-
totype was beyond the scope of the project. Instead, designing
a simple but effective manual calibration system was going to
be the best solution.

In order to represent the area of the depth frame that
is capturing only the sand area, The decision was made to
construct a rectangle variable that can be moved in a particular
direction by a small number of pixels at a time. Once this has
been calibrated it will be able to saved as theoretically this
area should not change unless the Kinect camera is physically
moved.

The easiest solution for finding the optimal near and far
plane values was just going to be adding a range slider that
can be changed in the HUD manually until the visualisation
appears to be visually correct.

IV. IMPLEMENTATION

A. Creating Height Maps During Runtime

The first stage of implementation was converting the 2D
Render Target depth frames into 2D textures that would act as
height maps.

An issue was encountered when implementing the reading
of the depth data from the 2D Render Target. I managed to
get this feature working with the pre-normalised depth data
from the Kinect. However, ideally this would also be working
for the raw depth data so there was no risk of the loss of any
depth information due to the pre-normalisation.

As it turns out, the ’PF G16’ pixel format used by the raw
depth Render Target is not supported by the functions used
by ’ReadSurfaceData’ [20]. This meant whenever pixels were
read from this frame, Unreal Engine would crash.

Ultimately, the choice was made to continue development
with the pre-normalised depth input. Only if it became appar-
ent that this depth data lacked the required accuracy would
I revisit the issue. In the end, as the entire system became
functional, it became clear that the normalised depth was
adequately accuracte for the project’s purpose. Consequently,
the concern was resolved, and the solution was generating
height maps from Kinect data for each runtime tick.

B. Height Map Carving Into Volume Textures

I utilised ImageMagick [21] to combine each layer of the
visualisations into a single image file. This allowed me to
create volume textures for each visualisation.

Fig. 6. The Volume Texture of the historical Europe Visualisation created
from the combined image file.

Fig. 7. The Volume Texture of the brain CT scan visualisation created from
the combined image file.



ENGR 489 (ENGINEERING PROJECT) 2023 6

Fig. 8. The Volume Texture of the colour visualisation created from the
combined image file.

Next I needed to figure out how to carve the height
map depth data into these textures. I attempted this through
experimenting with material assets. Inside my material asset
I passed the height map as a texture parameter then applied
mathematical logic to each pixel. First, I calculated the layer
index then found the V offset by using the following equation.

Voffset = LayerIndex ×
(

LayerHeight
AtlasHeight

)
Next, I passed in the texture that was used to create my

volume textures as a texture parameter in order to act as a
texture atlas. I then applied UV sampling to the texture atlas
with the calculated V offset in an attempt to sample the rbg
colour from the correct layer. Unfortunately, this texture atlas
sampling was not working and the result material being created
was a duplicate of the texture atlas.

C. Texture Atlas Sampling Approach

It seemed the project had reached a point where it was going
to make everything easier to just implement the majority of the
texture processing and visualisation logic in C++. This meant
moving away from the volume texture approach entirely.

I decided use the texture atlas for this approach and thus
I read the pixels inside the texture and stored them inside an
array, then once I had calculated the layer index for each pixel
I could apply them to the stored texture atlas’ by multiplying
the layer index by the height and width of the calibration
rectangle. This would give me the correct rgb information for
the layer and I could use this to construct a new 2D texture
to output as the visualisation texture.

After implementation of these calculations I was able to
utilise the functions within my blueprint code on every event
tick. This created a loop that would pass the height map in
and output a visualisation texture which would then update
the viewport.

D. Second Viewport

In order for the solution to work seamlessly with the
physical Sandbox I had to create a second viewport that
would open on the connected second display, in this case a
projector. I utilised Slate, Unreal Engine’s GUI framework
[22] to create the second viewport and update it with my
visualisation textures. However, I ran into some issues making
this viewport automatically open inside the connected display
instead of the main display. I was trying to make this work
using Unreal Engine’s built in methods in order to not code

with any OS specific functions but this approach was resulting
in a lot of unspecific error messages.

As a result I decided to utilise the Windows API [23] as
it was the only method that was working. Unfortunately this
means that this solution will only work on Windows machines.

Implementing this feature resulted in the prototype finally
working to a point where I could tape the new Kinect to
the Sandbox and begin proper testing with the sand and the
projector.

E. Noise

Once I had integrated the new Kinect onto the Sandbox
and had gotten this working with my Unreal Engine solution,
I discovered that the noise in the visualisation images was
a big issue. Notice the difference in the two frames shown
in figure 9 and figure 10 where no sand has been moved.
When the system is running this was quite jarring considering
the amount of textures generated and projected every second
and it was taking away from the immersion of the augmented
reality aspect. In order to reduce this noise I experimented
with a number of different techniques.

Fig. 9. A section of a visualisation frame before noise reduction techniques
were applied

Fig. 10. A section of a different visualisation frame before noise reduction
techniques were applied where the sand has not been moved



ENGR 489 (ENGINEERING PROJECT) 2023 7

1) Average Depth Between Two Frames: The first technique
I decided to explore was taking the average depth between two
frames. In order to actually have two frames to work with I
had to slightly adjust the design of the system. I introduced a
delay that meant the texture being displayed on the sand was
actually calculated from the previous depth frame. This meant
I had access to the previous depth frame and the current depth
frame of every event tick. After implementing a function that
calculated the average depth between the two frames for every
pixel and used this information to generate the visualisation
texture, I found that the noise had barely been reduced at all.

2) Average Depth Between Five Frames: After the sub-
par results from the previous technique I decided to extend
the delay and capture five frames on every event tick. This
level of delay was great enough that there was a visual delay
in the movement of sand and the updating of the projected
visualisation but it was was still at a palatable level. Also, the
previous Sandbox technology also had a slight delay due to
similar noise reduction techniques so this was not an issue
to worry about. The resulting noise reduction was definitely
noticeable but not to a degree that would stop me from
experimenting with other techniques.

3) Median Depth Between Five Frames: Sticking with the
current five frame delay I decided to replace the averaging
algorithm with one that instead takes the median of the depth
for each pixel between the 5 frames. This resulted in a much
more noticeable noise reduction.

4) Median Depth Between Ten Frames: I also briefly ex-
perimented with extending the delay to 10 frames. The level
of this delay was definitely bordering on the edge of being
too much but I wanted to see if the noise reduction was
worth the trade off. Unfortunately, the difference between the
5 frame and 10 frame noise reduction was not noticeable for
the median algorithm.

5) Average Depth Between Ten Frames: I noticed similar
results with the ten frame averaging to that of the ten frame
median.

6) Median Depth Between Five Frames + Gaussian Blur:
As the five frame median algorithm produced the best levels
of noise reduction I decided to combine this with the Gaussian
blur technique. The Gaussian blur noise reduction technique
involves applying a mathematical filter that smoothes and blurs
an image, reducing noise and enhancing the overall image
quality by averaging pixel values within a specified radius
using a Gaussian function. This combination resulted in the
most noticeable noise reduction amongst all the techniques
experimented with thus far.

Fig. 11. A section of a visualisation frame after 5 frame median & Gaussian
blur noise reduction techniques have been applied

Fig. 12. A section of a different visualisation frame after the 5 frame median
& Gaussian blur noise reduction techniques have been applied where the sand
has not been moved

7) Depth Spike Detection: The last technique I imple-
mented was a basic algorithm that detected whether there was
any abnormal spikes in the depth between frames. If such
a spike was detected this would be replaced with an average
value of the five depth frames. This technique did not result in
any noticeable noise reduction and the resulting visualisation
textures appeared similar to those in which no noise reduction
was applied.

8) Depth Reduction Choice: As a result of this experimen-
tation I decided to stick with the five frame median combined
with Gaussian blur as it resulted in the most noticeable noise
reduction.

F. Manual Calibration

As discussed in the design section, I decided to implement
the first part of manual calibration through a moveable rect-
angle. Using Unreal Engine’s widget HUD designer I added a
button that, when clicked, toggles the view of this calibration.
Once toggled, instead of the visualisation image being shown
in the viewport, the depth map within the rectangle area is
shown. There are four buttons located at the top, bottom, left,



ENGR 489 (ENGINEERING PROJECT) 2023 8

and right side of the image. Once pressed the rectangle will
be moved in that direction by 10 pixels. This allows for fine
adjustment to capture only the sand area of the depth frame.
There is also a save calibration button that creates a save game
state which Unreal Engine has native functionality for. This
means once calibrated and saved, the rectangle will remain
unchanged.

Fig. 13. A screenshot of the toggled manual calibration without moving the
frame.

Fig. 14. A screenshot of the toggled manual calibration after the frame has
been adjusted to fit within the rectangle

Similarly, to implement the second part of my manual
calibration, I found Unreal Engine had widgets available for
use that were ideal for my use case. I utilised two range sliders,
one for each plane. These can be fine tuned to adjust the near
and far plane values that are passed to my underlying depth
calculations meaning that when adjusted, the visualisation
texture gets updated in real time. In figure 15 these are located
on the bottom of the HUD.

V. EVALUATION

The output of this project is the successful migration of
the existing Sandbox technology into Unreal Engine 5. The
achieved solution can be described as a functional prototype
of the original software, marking a significant milestone in the
development process.

While the project represents a considerable success, it’s
important to acknowledge that there were certain features and

enhancements that couldn’t be fully integrated within the given
timeframe.

Therefore, this categorisation as a ”working prototype” is
not a limitation but a proof to the potential for further improve-
ments and refinements in the future. Despite some unimple-
mented features, the project demonstrates the feasibility and
adaptability of Unreal Engine 5 for this purpose, and serves as
a solid foundation upon which additional enhancements and
feature expansions can be built.

The working prototype consists of three visualisations
ported from the existing Sandbox:

Colour Visualisation

Fig. 16. A screen shot of the viewport containing a texture for the Colour
Visualisation

Brain Visualisation

Fig. 17. A screen shot of the viewport containing a texture for the Brain CT
Scan Visualisation



ENGR 489 (ENGINEERING PROJECT) 2023 9

Fig. 15. A screenshot of the HUD built into the solution.

Europe Visualisation

Fig. 18. A screen shot of the viewport containing a texture for the Historical
Europe Visualisation

VI. CONCLUSIONS AND FUTURE WORK

The future work for this project has a wide range of
possibilities as the Sandbox is now working within Unreal
Engine 5. There are also a number of features that I did not
manage to port over from the old Sandbox software that the
new solution would benefit from.

A. Old Sandbox Features

1) Automatic Calibration: Incorporating the automatic cal-
ibration system that is used in the previous Sandbox soft-
ware, would not only elevate this solution from a functional
prototype to a fully operational piece of software but also

significantly enhance its usability and precision. This feature
would streamline the setup process and make it much more
user-friendly and accessible.

2) Custom Visualisations: The previous Sandbox software
had a feature where you could upload a powerpoint presenta-
tion and each slide would be converted into a seperate layer.
This was a simple approach that allowed for anyone to create
their own visuaisations. Currently, my software does have an
option in the dropdown selection for a custom visualisation
it just was not implemented. This feature would be simple to
add and would extend the softwares capabilities greatly.

3) Linux Adaptability: As the current solution utilises the
Windows API to manipulate the second viewport, in order for
the project to work on linux machines some work would need
to be done. Unreal Engine 5 does support developing for Linux
so this should not be too complex of a task and would align
the project with the intended audience that the Magic Sand
software caters to.

B. New Features

1) Gameified Visualisations: Visualisations could be cre-
ated that make use of the Unreal Engine UI to combine
into a game of sorts. For example, a treasure hunting game
where the users dig through the sand to find a hidden treasure
and the UI could help guide them and provide information
about what they are digging up. This format could also be
adapted to provide historical information for example if the
user is digging for fossils then in-depth information about the
fossil could be provided as they are digging. Gameifying the



ENGR 489 (ENGINEERING PROJECT) 2023 10

visualisations in this way would greatly increase the appeal
and engagement of the software.

2) Educational Modules: Educational Modules could be
created within Unreal Engine that are specifically tailored to
utilise the Sandbox to educate an audience about a certain
topic. These modules could even be combined with AI intera-
tion in the form of a virtual tour guide that instructs the users
to move sand into a particular area and then informs on what
changes were made e.t.c.

3) Enhanced Physics Simulation: As Unreal Engine is
renowned for its advanced capabilities in the realm of physics
simulations, this could be utilised to create visualisations
that make use of high-fidelity physics simulations to model
the behavior of objects and materials in a realistic manner.
The only thing to note with this is that the more advanced
the simulations, the more likely the computer running the
Sandbox would need better specifications which could reduce
the usefulness of the software in future if there is widespread
public use.

ACKNOWLEDGMENTS

I would first like to express my gratitude to Dr. Simon Mc-
Callum for his supervision and invaluable guidance throughout
the year. Additionally, I extend my thanks to Dr. Craig Anslow,
Benjamin Powley, Ben Sanson, and the fellow members of the
Human-Computer Interaction (HCI) Research Group for the
support and assistance they have generously offered.

REFERENCES

[1] P. Milgram and F. Kishino, “A taxonomy of mixed reality visual
displays,” IEICE Transactions on Information and Systems, vol. E77-
D, no. 12, pp. 1321–1329, 1994.

[2] T. Wolf, “Magic-sand,” 2017, gitHub repository. [Online]. Available:
https://github.com/thomwolf/Magic-Sand

[3] “openframeworks,” 2023, website. [Online]. Available: https:
//openframeworks.cc/

[4] N. Snellgrove, “Augmented reality sandbox final report,”
Victoria University of Wellington, Tech. Rep., 2020. [Online].
Available: https://gitlab.ecs.vuw.ac.nz/hci/xr/ar-sandbox/-/blob/master/
Reports/Final%20Report/NicholasSnellgrove FinalReport.pdf

[5] “Unreal engine,” 2023, website. [Online]. Available: https://www.
unrealengine.com/

[6] M. Lourakis, “Levmar: Levenberg-marquardt nonlinear least squares
algorithms in c/c++,” Accessed on October 9, 2023, 2009, website.
[Online]. Available: http://users.ics.forth.gr/∼lourakis/levmar/

[7] “Dlib c++ library,” 2023, website. [Online]. Available: http://dlib.net/
[8] D. Taing, “Ar sandbox,” Victoria University of Wellington, Tech. Rep.,

2021. [Online]. Available: https://gitlab.ecs.vuw.ac.nz/hci/xr/ar-sandbox/
-/blob/master/Reports/Final%20Report/Final Report.pdf

[9] “Unity,” 2023, website. [Online]. Available: https://unity.com/
[10] M. Jay, “Engr489 final report,” Victoria University of Wellington,

Tech. Rep., 2022. [Online]. Available: https://gitlab.ecs.vuw.ac.nz/
hci/health/engr489-arsandbox/-/blob/main/Documentation/FinalReport/
FinalReportLatex/ENGR489-FinalReport jaymatt.pdf

[11] Connect microsoft kinect to ubuntu. Accessed on October
10, 2023 - Used graphic from this source in the
report. [Online]. Available: https://sharpeespace.blogspot.com/2011/
03/connect-microsoft-kinect-to-ubuntu.html

[12] H. Sarbolandi, D. Lefloch, and A. Kolb, “Kinect range sensing:
Structured-light versus time-of-flight kinect,” arXiv preprint, 2015.

[13] Workplace posture assessment and biofeedback with kinect project.
Accessed on October 10, 2023 - Used graphic from this source
in the report. [Online]. Available: https://projectabstracts.com/21631/
workplace-posture-assessment-and-biofeedback-with-kinect-project.
html

[14] M. Tölgyessy, “Schematic of the azure kinect,” https:
//www.researchgate.net/figure/Schematic-of-the-Azure-Kinect fig2
348384835, Accessed: October 19, 2023.

[15] Microsoft. (Accessed: October 19, 2023) Microsoft azure kinect
developer kit (dk) documentation. Microsoft Corporation. [Online].
Available: https://learn.microsoft.com/en-us/azure/kinect-dk/

[16] R. Villani, “Neo kinect plugin for unreal engine 5,” Accessed
on October 9, 2023, 2018, website. [Online]. Available: https:
//www.unrealengine.com/marketplace/en-US/product/neo-kinect

[17] ——, “Neo kinect plugin for unreal engine 5 - questions,” Accessed
on October 9, 2023, 2022, website. [Online]. Available: https://www.
unrealengine.com/marketplace/en-US/product/neo-kinect/questions

[18] C. Madden, “Kinect body tracking unreal engine plugin,” https://github.
com/cormacmadden/Kinect-Body-Tracking-Unreal-Engine-Plugin, Ac-
cessed: October 19, 2023.

[19] G. Kurillo, E. Hemingway, M. L. Cheng, and L. Cheng, “Evaluating the
accuracy of the azure kinect and kinect v2,” Sensors (Basel), vol. 22, p.
2469, 2022.

[20] R. Villani, “Neo kinect plugin for unreal engine 5 - questions,”
https://www.unrealengine.com/marketplace/en-US/product/neo-kinect/
questions, 2023, accessed on October 9, 2023.

[21] ImageMagick. (2023) Imagemagick. Accessed on October 10, 2023.
[Online]. Available: https://imagemagick.org/

[22] Slate - unreal engine ui framework. Epic Games, Inc. Accessed on Oc-
tober 12, 2023. [Online]. Available: https://docs.unrealengine.com/5.1/
en-US/slate-user-interface-programming-framework-for-unreal-engine/

[23] Windows API for Opening Second Viewport in Projector, https://docs.
microsoft.com/en-us/windows/win32/api/index, Microsoft Corporation,
accessed on October 12, 2023.


