
1

ENGR 489 (ENGINEERING PROJECT) 2023

Designing a Computer Game to Teach Computer

Science Concepts (2023)

Aidan Chuang-Yu Lim

Abstract— .

This capstone project report focuses on the development of a

computer game designed to cultivate the inquisitive mindset of a

software tester. The project narrows its scope to emphasize not

only testing the expected "happy paths" of software logic but also

exploring the "unhappy paths," such as interactions like a player

navigating through obstacles in a game environment.

Our quantifiable goals center around providing users with a

progressive learning experience. This experience starts with

coding logic for a simple game - the classic Snake. We structured

the learning journey across four levels. Level 0 begins with the

basic task of moving a single box, gradually progressing to Level

4, where users can enjoy a fully functional Snake game.

The motivation behind this project stems from the author's

experience as a working Software Test Engineer. As an

undergraduate, the author recognized a niche in software testing

education that extended beyond the typical coursework. The

project draws inspiration from various university courses,

showcasing the relevance of testing within the broader context of

software engineering and computer science.

The report delves into the challenge of guiding users towards

answers without directly revealing them while mitigating issues

stemming from syntax unfamiliarity. It explores the efficacy of

using games as a pedagogical tool, a method well-documented for

its effectiveness in facilitating learning.

The intended audience for this project is first-year students

pursuing degrees in software engineering and computer science,

possessing a fundamental understanding of coding. This game

serves as a gateway for them to explore the multifaceted world of

software testing.

I. INTRODUCTION

N a world increasingly shaped by digital innovation, the

value of computer science education has transcended the

confines of academia. It is now a fundamental life skill,

indispensable for navigating the complexities of the modern age

[1]. Despite this growing importance, the traditional approaches

to teaching computer science often fall short in engaging

students [2] and fostering a profound understanding of these

essential skills.

This capstone project embarks on a distinctive and innovative

path, bridging the gap between the demands of computer

science education and the necessity for captivating, practical,

and effective teaching methods. Rather than adhering to

conventional pedagogy, our project seeks to immerse students

in a puzzle-based learning experience through the creation of a

computer game. The core objective is to impart fundamental

This project was supervised by Supervisor Name 1 (primary), Supervisor

Name 2, and Supervisor Name 3 (add/remove as necessary). Please indicate

affiliation of any external (non-ECS) supervisors.

computer science concepts, with a specific emphasis on

nurturing an inquisitive mindset, particularly within the context

of software testing.

In the realm of software testing, it can be easy for learners to

predominantly focus on evaluating the "happy paths" within

software logic [3] – the well-trodden routes that lead to

expected outcomes. However, this project boldly ventures into

the less explored and potentially treacherous terrain of

"unhappy paths." Here, we confront the unexpected

interactions, edge cases, and glitches that mirror real-world

software challenges. By diving into these challenging waters, it

is hoped that students gain not only a deeper understanding of

testing but also a resilience to tackle complex software issues.

The primary aim of this project is to guide students through a

structured journey that commences modestly and gradually

expands, mirroring the evolution of a software tester. Users

begin with simple coding logic, akin to moving a single box,

and progress through multiple levels, culminating in the

creation of a fully playable Snake game. This journey provides

a starting point for learners with no knowledge of testing to get

a glimpse into a potential mindset approach.

The motivation behind this endeavor springs from the unique

position of the author, who not only pursues this capstone

project but has also gathered valuable experience as a working

Software Test Engineer at TechTime Initiative Group Limited

(4 months) and ACC New Zealand (12 months). With two

distinct positions in both the private and public sectors, the

author has learned from the best practices and challenges of two

different testing environments. These experiences have

illuminated a critical niche within the domain of computer

science education, one that extends beyond traditional

coursework. This is shown in the Victoria University of

Wellington’s Engineering and Computer Science Departments

not offering testing courses, which is only taught sporadically

in various courses. A quote by a first year teacher in this

department goes as follows, “COMP102/103 only provides a

few examples of how to perform testing well, and it could be

exemplified better” – Karsten Lundqvist.

The craft of teaching testing should be more than just offering

answers; it should involve guiding learners without explicitly

revealing solutions. If this is to be believed, games emerge as a

powerful tool for effective learning. Games have long been

recognized for their capacity to captivate and educate learners

through the amalgamation of challenge, interactivity, and

I

2

ENGR 489 (ENGINEERING PROJECT) 2023

rewards.

This project is aimed squarely at first-year students pursuing

degrees in software engineering and computer science, students

who are already equipped with basic coding knowledge and

who are now poised to explore the intricate world of testing. As

this report progresses, it will provide a detailed exploration of

the project's design, development, and evaluation, offering

insight into the potential of a game-based approach to computer

science education, especially in the field of software testing.

Subsequent sections will delve into the conceptual framework,

implementation, and findings, providing a comprehensive

understanding of the problem addressed and the innovative

solution developed.

II. RELATED WORK

This section delves into the existing body of research and

literature that informs the context of our capstone project. To

provide an overview, we will critically analyze and compare

previous approaches, highlighting their strengths, weaknesses,

and areas where knowledge gaps exist. Additionally, we aim to

establish the novelty and significance of our work by

elucidating how it extends or addresses the limitations of prior

studies.

A. Game-Based Learning in Computer Science Education

Game-based learning has gained considerable recognition in

recent years as an effective pedagogical approach. [3] [4] [5]

Prior studies have explored the integration of games into

various educational contexts, including computer science.

Notable works such as Gee's concept of "good learning

principles" in games and Shaffer's research on game-based

problem-solving have demonstrated the potential of games as

educational tools. [4]

While these studies have made substantial progress in

emphasizing the value of games for learning, they often lack a

specific focus on software testing and the development of an

inquisitive mindset among learners. This is where our project

distinguishes itself by centering on these specific aspects and

aiming to bridge this educational gap.

B. Challenges in Software Testing Education

The realm of software testing carries its own set of unique

challenges and intricacies. Numerous studies have addressed

the educational needs in software testing [3] [4] [5],

acknowledging the gap between academic coursework and the

real-world practices of software testing. These works

underscore the importance of practical experience and hands-

on learning.

However, they frequently fall short in proposing innovative

pedagogical approaches. The conventional methods of teaching

software testing, centered on theoretical lectures and

assignments [6], often struggle to instill the mindset needed to

explore "unhappy paths." Our project seeks to go beyond these

conventional approaches by introducing a game-based learning

platform, which offers hands-on, practical experience to foster

the skills and mindset essential for software testing.

C. Existing Game-Based Learning Solutions

Several existing game-based learning solutions in the field of

computer science education offer insight into the potential of

this approach. Notable examples include "Scratch," a visual

programming language that introduces coding concepts through

interactive and creative game development, and

"CodeCombat," a platform that gamifies coding challenges.

However, while trying to find games with software testing

online, the results found by google scholar lacked relevancy,

and none were found with even the basic concept of testing,

being that of edge-case testing.

While these solutions are commendable in their approach,

they often lack the specific focus on software testing and

exploring the nuances of "unhappy paths." Our project's novelty

lies in its dedication to addressing these areas, catering to

students with an interest in software testing and introducing

them to a practical, interactive, and engaging learning

environment.

III. DESIGN

In this section, we delve into the intricate design aspects of

the game, exploring the thought processes and considerations

that shaped its development.

A. Initial Approach and Challenges

At the project's inception, the aim was to create a game that

provided users with a visual representation of a while loop and

required them to exit the loop, primarily by falsifying the loop's

condition. This approach, while conceptually sound, presented

several challenges, primarily stemming from potentially

ambiguous rules governing user actions within the game. For

example, restrictions on using the "return" keyword introduced

uncertainty, making it difficult to clearly define what actions

were permitted. This ambiguity was deemed counterproductive

to the goal of fostering a sense of exploration and creative

problem-solving, fundamental to effective learning.

B. The Shift Towards Software Testing

The pivotal shift in the game's design philosophy marks a

significant turning point in the project's evolution. It embodies

a departure from the initial concept of teaching computer

science concepts through while loop manipulation, pivoting

towards a more holistic approach that integrates software

testing principles. This transformation was motivated by

several key considerations:

 1. Real-World Relevance

Drawing from the real-world practices of the software

industry, it became apparent that software testing is not solely

about identifying and fixing defects in code. Instead, it

encapsulates a broader scope, emphasizing a deep

understanding of code functionality and the assurance that it

3

ENGR 489 (ENGINEERING PROJECT) 2023

operates as intended. The author’s realization prompted the

incorporation of testing as a fundamental element in the game's

design.

 2. Code Quality Assurance

The new approach places a heightened emphasis on code

quality and correctness. It challenges players not only to write

functional code but to prove its effectiveness through manual

testing. By actively involving users in the testing process, the

project aims to instill a sense of responsibility for code quality,

a crucial aspect of professional software development.

 3. Fostering Critical Thinking

The integration of software testing introduces a higher level

of critical thinking [5]. Players are no longer limited to code

composition but are encouraged to think analytically and

strategically, considering the various scenarios that may impact

their code's behavior.

 4. Learning by Doing

The new approach aligns with the philosophy of "learning by

doing." While the initial concept relied on users manipulating

while loops to achieve a specific outcome, the software testing

approach empowers users to not only comprehend code but also

to validate its functionality. This hands-on experience is

instrumental in reinforcing comprehension and retention of

concepts.

 5. Comprehensive Skill Development

The integration of software testing concepts broadens the

educational scope. It equips learners with skills that extend

beyond coding, encompassing problem-solving, quality

assurance, and debugging, which are integral to successful

software development.

 6. Alignment with Industry Practices

This educational shift mirrors contemporary industry

practices. In the professional software development landscape,

testing is a fundamental component of the software

development lifecycle. Thus, equipping learners with testing

skills from the outset fosters a seamless transition from the

educational setting to professional software development

environments.

 7. Practical Experience

By making software testing a central element of the game,

users not only grasp theoretical knowledge but also gain

practical experience. They learn to design test cases, execute

them, and assess code behavior. These are skills that are highly

transferable to real-world software testing roles.

C. Game Design

 1. Game Concept and Objectives

This project’s game is a game for software testing. User’s

starting a level are met with four different game panels on the

screen. There is an input text panel which acts as a Java IDE

that allows the user to enter textual code logic, of which the user

can then dynamically compile written code with an executable

button in a second panel, to then see in action through reflection

in the third panel being that of a board panel. The user can then

use keyboard inputs to test the written logic of the game and

receive console output of what manual tests have passed, and

error messages for incorrect behaviour.

 2. Players testing experience

Players experience testing by being required to not only

correctly implement code logic for the current level, but to show

they have done so. An example of this is one of the first puzzles

I had designed, a simple player in a one-dimensional array,

shown to the user in the game panel. The user was then tasked

to implement up movement logic with the keyboard arrow key,

where the down arrow key logic was shown. However, while

the instructions may have emphasized that a necessary

requirement to pass the level was to correctly move up in the

array off an up arrow key press, the player would also need to

implement logic to check if they player is in the top most section

of the array, and not move upwards as it would be out of

bounds. With this game emphasizing the necessity to pass the

level being that both the happy path scenario (not being at the

top of the array on up arrow key press moves the player up) as

well as the unhappy path (being at the top of the array on up

arrow key press does not move the player up), it is hoped that

the user that does not correctly implement the unhappy path

logic, would while attempting to pass the level, press the up

arrow key while on the top most section of the array, witness

the player leave the game array area, and be able to make the

self-realization why their current logic does not meet the

specifications, and can therefore fix their code and try again.

This cycle can help learners understand that while testing may

not seem important, it can be integral to correct software

development outcomes.

 3. Narrative

The levels of this project’s game work towards creating a well

known classic game, Snake. While the first levels may touch on

basic movement handling, the later levels show an apple-eating

snake that grows as it eats. This helps create a sense of

achievement to the players, as they start out with smaller

concepts in the earlier levels, the code that they have created is

maintained through out the later levels, where the more difficult

concepts of snake can then be added on to what was already

done.

D. System Architecture

The system architecture for the game was conceived to

accommodate various interactive elements essential to the

learning process. These elements are meticulously designed to

enhance usability, user engagement, and educational

effectiveness:

• Code Editor: At the heart of the system architecture

lies the code editor. This is the dynamic environment

where players write, modify, and interact with Java

4

ENGR 489 (ENGINEERING PROJECT) 2023

code. The code editor is more than just a text box; it's

an essential platform where users experiment, make

mistakes, and learn from them.

• Real-Time Visualization Game Board: A core

component of the system architecture, the real-time

visualization game board, provides players with a

visual representation of their code execution. This

visualization makes the program's behavior explicit

and comprehensible. It enables learners to observe

the consequences of their coding decisions in real-

time, enhancing their understanding of code

execution flow.

• Compile Button and Hint Instructions: To support the

learning process, the system incorporates a compile

button. This button facilitates the execution of the

user-written code, providing feedback on its

functionality. Additionally, hint instructions are

integrated into this component, offering guidance and

suggestions to assist learners in solving challenges

effectively. This proactive approach to user support

aligns with educational principles and reinforces the

learning experience.

The strategic placement of these components within the

architecture is intended to ensure that each element is readily

accessible to the user. The design choice to quarter these

components into each of the four corners of the game window

panel offers several advantages:

• Visibility: The layout enables users to have a

comprehensive view of all elements simultaneously.

This visibility is essential for users to seamlessly

refer between different frames during gameplay.

• Ease of Reference: The game window panel layout

makes it convenient for users to reference the code

they've written, the real-time code execution

visualization, and any available hints or guidance,

enhancing the user's problem-solving experience.

The architectural design concept was meticulously planned

and validated through the use of paper prototypes. These

prototypes were presented to fourth-year students, providing

invaluable insights into usability, intuitiveness, and the overall

effectiveness of the system's layout.

E. User Interface

The user interface design is an integral aspect of the project.

It focuses on ensuring that users can interact with the game with

ease and clarity. Key features of the user interface design

include:

• Intuitive Navigation: The user interface is designed

with a clean and intuitive layout that allows users to

easily navigate between different game components.

• Visual Clarity: The user interface leverages visual

elements to ensure that users can readily understand

the feedback, hints, and visualizations provided

during gameplay.

• Support for Learning: The user interface includes

elements that guide and assist users in their learning

journey, such as hint instructions and visual feedback

mechanisms.

• Scalability: The design is crafted to support potential

scalability, enabling the addition of new features and

levels as the game evolves.

• The user interface is a critical aspect of the game's

success. Its design promotes an immersive and user-

friendly experience, ensuring that players can focus

on learning and problem-solving rather than

struggling with the game's interface.

The user interface is a critical aspect of the game's success. Its

design promotes an immersive and user-friendly experience,

ensuring that players can focus on learning and problem-

solving rather than struggling with the game's interface.

 1. Encouraging Exploration and Problem Solving

The game design motivates learners to explore various coding

solutions to complex challenges. It promotes the kind of

thinking required to solve practical, real-world problems. By

engaging with the code, observing its behavior, and making

adjustments based on practical results, users gain a deeper

appreciation for the iterative and problem-solving nature of

software development.

 2. Emphasis on Edge Cases

One of the most critical aspects of practical software

development is addressing edge cases – situations that lie

outside the norm but can have a significant impact on program

behavior. The project actively challenges users to consider and

test edge cases. By confronting these situations within the

game, learners develop the skills to handle real-world scenarios

more effectively.

 3. Learning by Doing

The fundamental philosophy of this project is "learning by

doing." Instead of passively receiving information, learners

actively engage with the material. They write code, test it,

debug it, and see the consequences of their actions in real-time.

This practical, hands-on experience is invaluable in reinforcing

their understanding and retention of programming concepts.

 4. Bridging the Transition to Real-World Software

Development

The ultimate goal of this project is to facilitate a seamless

transition from the educational setting to professional software

development environments. By immersing learners in practical

problem-solving, it equips them with skills that align with

industry expectations. It cultivates the critical thinking,

problem-solving, and practical coding skills required to excel

in real-world software development scenarios.

In summary, the project's approach to bridging the gap

between theory and practice is a transformative educational

strategy. It empowers learners to think practically, encourages

exploration, emphasizes the importance of edge cases, and

fosters an environment of "learning by doing." By providing an

interactive and practical learning experience, this project equips

learners with the skills they need to excel in real-world software

5

ENGR 489 (ENGINEERING PROJECT) 2023

development scenarios, effectively addressing one of the most

significant challenges in computer science education.

F. Key Design Principles

The success and effectiveness of the educational game are

underpinned by a set of key design principles that shape its

structure and mechanics. These principles guide the

development of the game, ensuring that it delivers a meaningful

and impactful learning experience.

 1. Modular Programming:

The game embraces the principle of modular programming,

which involves breaking down code into small, self-contained

functions. This modular approach enhances code

maintainability and scalability, a practice that mirrors real-

world software development. It encourages users to structure

their code in a way that makes it easy to understand, test, and

extend. This is shown in my game by the break down of

classes into different areas of the game, with set level classes

interacting with the same level helper classes, but with level

specific information kept in solidarity to keep the different

levels logic separated.

 2. Simulate Real-World Testing Scenarios:

One of the core principles of the game design is to simulate

real-world software testing scenarios. Users are not merely

asked to write code; they are also required to verify its

functionality through testing. This hands-on experience mirrors

the responsibilities of professional testers and underscores the

importance of thorough testing in software development. Users

playing my game will have visual feedback of failure to stop a

player incorrectly moving through player blocking walls, and

would be able to understand what is necessary changes to the

logic need to be implemented to complete the level.

 3. Error Detection:

Users are challenged to identify and resolve code issues

themselves. The game encourages an active and problem-

solving mindset. By requiring users to locate and rectify

problems in their code, the design promotes a deeper

understanding of how code functions and where potential errors

might occur.

 4. Incremental Agile-Based Levels:

The game's progression is structured according to the

principles of incremental development, following an agile

methodology. Each level builds upon the concepts and code

introduced in the previous one. This iterative approach mirrors

real-world software development, where features are developed

incrementally, tested, and refined. It reinforces the idea that

software development is an ongoing, iterative process.

 5. Reward-Based Motivation:

In contrast to traditional educational methods that may

involve long stretches of reading and theory, the game design

introduces a reward-based motivation system. Users are

motivated and incentivized through the completion of game

levels. This gamified approach provides immediate feedback

and gratification, enhancing engagement and retention. It stands

in contrast to traditional, text-heavy educational courses that

can be less engaging.

These key design principles work in tandem to create a

dynamic and effective educational tool. They encourage best

practices in coding, highlight the importance of software

testing, foster problem-solving skills, mirror real-world

development, and provide motivation for users to advance

through the learning process.

In summary, the game's design principles not only teach

computer science and software testing concepts but also prepare

learners for the challenges and expectations of professional

software development. These principles form the foundation of

an engaging and enlightening learning experience that equips

users with both theoretical knowledge and practical problem-

solving skills.

G. Promoting Software Testing Awareness

The game design project extends beyond its role as an

educational tool; it carries the crucial objective of raising

awareness about software testing and promoting better software

engineering practices within the industry. This section

elaborates on how the project serves as a catalyst for these

broader goals.

 1. Spreading Awareness:

The project acts as a medium for introducing individuals,

especially those with an interest in understanding software

testing, to the world of software testing. It serves as an entry

point that demystifies the domain, making it accessible to those

who may not have prior experience. By providing an engaging

and interactive learning experience, the project raises

awareness of the importance of software testing within the

software development process.

 2. Educational Outreach:

The game design is particularly well-suited for educational

institutions and training programs. Its engaging and interactive

nature makes it an appealing alternative to traditional teaching

methods. It can be used in academic settings to introduce

students to the concepts of software testing, thereby nurturing

the next generation of software engineers and testers.

 3. Practical Application of Knowledge:

Beyond theoretical knowledge, the project emphasizes the

practical application of software testing concepts. By

challenging users to apply testing methodologies and strategies

in the game, it underscores that software testing is not merely

theoretical but an active, integral practice in software

development. This is very much shown in the game with users

needing to realize that in game with a movable player on a game

grid, a player should maintain with in the game grounds and

comply with this boundary edge-case.

6

ENGR 489 (ENGINEERING PROJECT) 2023

 4. Fostering Industry Best Practices:

The project's emphasis on software testing principles and

practices aligns with industry best practices. By familiarizing

learners with testing methodologies, error identification, and

quality assurance, it contributes to the development of skills

that are directly applicable in professional software

development and testing roles.

 5. Understanding the Importance of Testing:

The project goes beyond the mechanics of coding to instill in

learners a deep appreciation for the role of software testing in

ensuring the reliability and quality of software products. It

communicates the idea that testing is not an afterthought but an

essential and continuous aspect of the software development

process.

 6. Real-World Relevance:

By introducing learners to the practical aspects of software

testing and quality assurance, the project ensures that education

aligns with the skills demanded by the software industry. This

practical relevance is vital for learners seeking to enter the

workforce with a deep understanding of the industry's

expectations.

 7. Spreading Industry-Accepted Practices:

As the project reinforces industry-standard practices related

to coding, testing, and problem-solving, it serves as a means of

spreading and normalizing these practices among learners.

This, in turn, contributes to the development of better software

engineering practices within the industry.

 8. Enhancing Software Quality:

By educating learners about the importance of software

testing and quality assurance, the project indirectly contributes

to the enhancement of software quality. Learners who

understand the significance of testing are more likely to

incorporate testing practices into their development work,

which ultimately leads to better software products.

In summary, the project's contribution to raising awareness

about software testing and promoting better software

engineering practices within the industry is a testament to its

broader impact. By providing an interactive and practical

learning experience that emphasizes the significance of

software testing, it cultivates a new generation of software

professionals who are well-equipped to meet industry

expectations, contribute to software quality, and advocate for

the importance of testing in software development.

IV. IMPLEMENTATION

The "Implementation" section takes a closer look at how the

technical solution outlined in the "Design" section was

transformed into a tangible artifact. It provides a detailed

account of the components used, technical drawings or

diagrams, and the rationale behind implementation choices.

A. Components Used

In this section, we delve into the specific components that

were integral to the realization of the educational game project.

These components form the technical foundation of the game,

each playing a unique role in delivering the intended learning

experience. Here, we explore these components in greater

detail:

 1. Programming Language: Java

Choice Rationale: The project's core functionality is powered

by the Java programming language. Java was selected for

several compelling reasons. Its platform independence ensures

that the game can be accessed on various operating systems,

making it highly accessible to a broad audience. Additionally,

Java is renowned for its extensive libraries and robust support

for graphical user interfaces (GUIs), aligning perfectly with the

project's requirements for interactive and visually engaging

learning.

 2. User Interface (UI) Framework: Java Swing

Choice Rationale: The graphical user interface of the

educational game is built using Java's Swing framework. Swing

provides a rich set of tools and components for designing GUIs,

making it a natural choice for creating an interactive and

intuitive user experience. Its extensive features facilitate the

development of user-friendly interfaces, ensuring that learners

can easily navigate and interact with the game.

 3. Code Compilation and Execution: Java Reflection

Choice Rationale: To dynamically compile and execute user-

written Java code within the game, Java's reflection capabilities

were harnessed. This feature allows users to observe the

immediate results of their code, providing invaluable feedback

and enhancing their comprehension of programming concepts.

By incorporating reflection, the project supports a "learn by

doing" philosophy, which is essential for effective education.

 4. Real-Time Visualization

Choice Rationale: Real-time visualization of code execution

is a critical component of the game's educational strategy. This

visualization is achieved by leveraging Java's graphical

capabilities, complemented by custom graphical rendering.

Through real-time visualization, learners can witness the

practical outcomes of their code, gaining a deeper

understanding of code execution flow and behavior.

 5. Code Editor: Java Swing Text Components

Choice Rationale: The code editor is the central element of

the educational game, and it is implemented using Java Swing

text components. These components provide a platform for

users to write, edit, and interact with Java code directly within

the game environment. This choice ensures that learners have a

familiar and convenient interface for coding and

experimentation.

 6. Hint and Guidance System

Choice Rationale: A custom hint and guidance system was

7

ENGR 489 (ENGINEERING PROJECT) 2023

developed within the Java application to provide users with

helpful instructions during gameplay. This system enhances the

learning experience by offering context-specific support when

users encounter challenges. The custom hint system was

designed to align with the project's educational objectives,

ensuring that users receive timely and relevant guidance.

Each of these components plays a distinct role in the project's

realization. They are carefully chosen to ensure that the game is

not only educational but also interactive, accessible, and

responsive to user needs.

In summary, the components used in the project's

implementation are the building blocks that transform the

theoretical design into a functional and engaging educational

tool. They are selected with a focus on accessibility,

interactivity, and alignment with the project's educational

objectives.

B. Rationale for Implementation Choices

The choices made in implementing the educational game

project were not arbitrary but carefully considered to align with

key project objectives. Below, we explore the rationale behind

these implementation choices in greater detail:

 1. Programming Language: Java

Choice Rationale: Java was selected as the primary

programming language for the project due to its platform

independence. Java applications can run on various operating

systems without modification, making the game accessible to a

broad audience. This aligns with the project's goal of reaching

students and learners from diverse backgrounds and technical

environments. Additionally, Java's extensive libraries, strong

community support, and robust graphical capabilities made it a

suitable choice for developing the game's interactive and

visually engaging elements.

 2. User Interface (UI) Framework: Java Swing

Choice Rationale: Java Swing was chosen for designing the

graphical user interface (UI) of the game. Swing is known for

its comprehensive set of GUI components and tools, making it

an ideal choice for creating an interactive and user-friendly

interface. Its ability to handle complex layouts and its support

for custom components, along with its compatibility with Java,

ensured that the UI design aligned with the project's vision of

an engaging and intuitive learning experience.

 3. Code Compilation and Execution: Java Reflection

Choice Rationale: Java's reflection capabilities were

harnessed to dynamically compile and execute user-written

Java code within the game. This choice was driven by the

project's commitment to providing immediate feedback to

users. Reflection enables learners to observe the real-time

consequences of their code, enhancing their understanding of

programming concepts. It aligns with the project's educational

approach of "learning by doing," a methodology proven to be

effective for knowledge retention.

 4. Real-Time Visualization

Choice Rationale: Real-time visualization of code execution

was deemed essential for the project's educational strategy.

Java's graphical capabilities, complemented by custom

graphical rendering, provided a means to create this visual

representation. By allowing users to witness the practical

outcomes of their code in real-time, the project reinforces the

learning experience by providing a tangible connection between

code and execution behavior.

 5. Code Editor: Java Swing Text Components

Choice Rationale: Java Swing text components were utilized

to implement the code editor, enabling users to write and

interact with Java code within the game environment. This

choice ensures that learners have a familiar and user-friendly

interface for coding and experimentation. By using Swing, the

project enhances usability and accessibility, allowing learners

of varying technical backgrounds to engage with the code

effectively.

 6. Hint and Guidance System

Choice Rationale: A custom hint and guidance system was

developed within the Java application to provide users with

relevant instructions during gameplay. This choice was guided

by the project's educational objectives, which seek to offer

support and assistance to users when needed. The custom hint

system ensures that learners receive timely and context-specific

guidance, helping more effective learning experience.

In summary, each implementation choice in the project was

driven by considerations of usability, accessibility, and

alignment with educational goals. Java was selected for its

platform independence and extensive libraries, Swing for its

rich GUI capabilities, reflection for immediate feedback, and

custom graphics for real-time visualization. The code editor

choice ensures user-friendliness, and the hint system supports

learning objectives. These choices collectively form the

technical foundation of the project, ensuring that the

educational game is not only educational but also interactive,

user-friendly, and responsive to learners' needs.

V. EVALUATION

The "Evaluation" section aims to demonstrate the project's

performance in alignment with established goals and

specifications, with a specific focus on the user testing and its

findings, along with the manual and automated testing.

A. User Testing

 1. User Testing Participants

User testing played a vital role in validating the project's

functionality, educational content, and overall user experience.

The testing phase involved three students who willingly

participated in the evaluation process. These students were

carefully selected to represent the target audience, primarily

those with very little experience regarding automated testing.

Their diverse levels of familiarity with programming made

them ideal candidates for comprehensive feedback.

8

ENGR 489 (ENGINEERING PROJECT) 2023

 2. Feedback and Iterations

All three students who participated in the user testing

displayed a positive inclination toward the project's core idea of

using gamification for computer science education. They

resonated with the concept of actively engaging with code to

understand programming concepts, especially the integration of

real-time code visualization.

However, the user testing process revealed some consistent

issues that warranted immediate attention. Students expressed

concerns regarding the visual elements of the game, specifically

related to clarity and aesthetics. Additionally, they pointed out

that certain instructions required further refinement to enhance

the learning experience.

Notably, the project's iterative approach allowed for swift and

responsive adjustments based on the feedback received during

user testing. The feedback served as valuable guidance for

enhancing the game's visuals and refining instructions. These

iterative improvements were essential in ensuring a more user-

friendly and informative experience.

 3. Ethical Approval

It's worth highlighting that the process of conducting user

testing with the involved students was carried out under the

umbrella of ethical considerations. The user testing procedure

was approved and covered under the ENGR489 Human Ethics

Application, ensuring that all participants' rights and interests

were protected throughout the evaluation process. Ethical

considerations included obtaining informed consent from

participants, maintaining the confidentiality of user data, and

adhering to all ethical guidelines.

The combination of user testing insights and ethical practices

not only shaped the project's refinement but also underscored

our commitment to conducting research with a strong sense of

responsibility and integrity. The valuable input received from

the user testing phase, along with the subsequent iterative

improvements, contributed significantly to the project's overall

quality and alignment with the needs and expectations of its

target audience.

B. Manual Testing

Thorough manual testing, conducted diligently by the

project's creator, was integral to evaluating the functionality,

usability, and educational content of the game-based learning

platform. This hands-on approach encompassed various

aspects, each contributing to a detailed assessment of the

project's performance.

 1. Functional Testing:

Objective: The primary goal of functional testing was to

ensure that all aspects of the game, including the code editor,

real-time visualization, and user interface elements, worked

seamlessly and as intended.

Scope: Functional testing covered the entire user journey

within the game. Test scenarios were thoughtfully designed to

evaluate core functionality, such as code input, execution, and

visualization of code behavior. Specific emphasis was placed

on the accurate representation of coding concepts, including

loops, conditions, and software testing practices.

Results: Thorough functional testing affirmed that the project

delivered a robust and reliable user experience. It was carefully

ensured that users could interact with the code editor, execute

code, and observe the expected behavior. The game effectively

conveyed computer science and software testing concepts

through its interactive elements.

2. Usability Assessment:

Objective: Usability testing aimed to evaluate the

intuitiveness, user-friendliness, and overall user experience

provided by the project.

Scope: Rigorous usability assessments involved traversing

the game as a user with varying levels of familiarity with

computer science concepts. This meticulous exploration of the

user experience involved attempting coding challenges,

interacting with the user interface, and scrutinizing the

educational content.

Results: Usability testing, conducted with meticulous

attention, highlighted the project's strengths in providing an

intuitive and user-friendly experience. It was thoughtfully

ensured that users found it easy to navigate the game, access

educational content, and perform tasks. This careful exploration

also identified valuable insights for refining the user interface

and further enhancing usability.

 3. Content Quality:

Objective: Thorough manual testing also extended to an

evaluation of the quality and effectiveness of the educational

content within the game. This detailed evaluation focused on

the relevance and accuracy of the content in conveying

computer science and software testing concepts.

Scope: Through meticulous review and testing, the content

within each level was thoroughly examined. This scrutiny

involved assessing the content's alignment with the intended

learning objectives, accuracy of code explanations, relevance to

real-world software testing practices, and the educational value

of the content.

Results: Content quality testing, conducted with thorough

consideration, confirmed that the project diligently aimed to

deliver on its educational promises. The content was carefully

reviewed to ensure it effectively conveyed computer science

and software testing concepts. Thorough testing of the content

reinforced its educational value and accuracy.

The results of this thorough manual testing, conducted by the

project's creator, provided a detailed assessment of the project's

functionality, user experience, and educational content. It

affirmed that the project engaged users effectively, provided a

seamless learning experience, and accurately conveyed

complex coding and testing concepts. This meticulous

evaluation served as a solid foundation for the project's

development and refinement.

C. Automated Testing

Automated testing played a pivotal role in ensuring the

project's functionality and the quality of user manual testing,

9

ENGR 489 (ENGINEERING PROJECT) 2023

with the goal of hopefully validating manual testing efforts and

performance checks.

 1. User Manual Testing Validation:

Objective: The central objective of automated testing was to

potentially validate that users had rigorously conducted manual

testing on their code logic, adhering to the project's educational

objectives.

Implementation: Automated tests were strategically

integrated into the game's levels, aiming to evaluate users'

manual testing efforts. These tests were designed with the hope

of assessing whether users had thoroughly tested their code to

meet specific criteria defined for each level.

Results: Automated tests aimed to potentially provide

immediate feedback to users, with the hope of affirming that

they had conducted sufficient manual testing on their code

logic. Successful completion of these tests was expected to

demonstrate the user's commitment to exploring and testing

their code comprehensively, reinforcing the educational value

of the project.

 2. Performance and Reliability Checks:

Objective: Automated testing was also employed with the aim

of ensuring the performance and reliability of the game's core

functionalities. This aimed to potentially identify potential

issues, regressions, and performance bottlenecks.

Implementation: A suite of automated tests was implemented

to potentially assess the performance of the game, including

response times, resource utilization, and scalability. These tests

aimed to confirm that the game performed reliably and met its

intended performance benchmarks.

Results: Automated performance testing was intended to

potentially validate that the game operated within the specified

performance parameters. It was hoped that users would

experience a smooth and responsive learning environment,

potentially enhancing their overall experience.

 3. Educational Feedback:

Objective: Automated testing was not limited to technical

assessments. It was also designed with the hope of providing

educational feedback to users based on their code's behavior.

Implementation: Automated tests aimed to assess whether the

user's code accurately implemented the targeted educational

concepts, such as loops, conditions, and software testing

practices. Feedback was provided with the hope of guiding

users in their learning journey.

Results: The integration of educational feedback through

automated tests was intended to empower users to not only pass

technical assessments but also reinforce their understanding of

coding and software testing principles.

The results of automated testing, including the validation of

user manual testing efforts and performance checks,

collectively aimed to contribute to the project's ability to

provide users with a robust, educational, and engaging learning

experience. It was hoped that users would recognize their

efforts in conducting manual testing on their code and reinforce

their commitment to exploring and understanding coding and

software testing concepts.

D. Future Enhancements and Recommendations

While the project has achieved its primary goals and garnered

positive feedback from users, there is always room for further

improvement and expansion. Here, we outline potential areas

for future enhancements and provide recommendations to

elevate the project's educational impact.

 1. Expanding Content:

One avenue for future enhancement is the expansion of

educational content within the project. This could involve the

creation of additional levels that delve into more advanced

computer science and software testing concepts. As learners

progress through the game, they may benefit from encountering

challenges that address more complex scenarios and scenarios.

Recommendation: Collaborating with educators and domain

experts to identify advanced topics and challenges that align

with curricular requirements. This expansion would enable the

project to cater to a broader range of learners, from beginners

to those seeking more advanced challenges.

 2. Enhancing Interactivity:

To further engage users and foster collaboration among

learners, enhancing the project's interactivity is a promising

direction for development [7]. Introducing more interactive

elements, such as collaborative challenges or multiplayer

capabilities, could provide users with the opportunity to work

together on coding challenges or problem-solving tasks.

Recommendation: Exploring the integration of real-time

collaborative features, enabling users to collaborate on coding

tasks, test solutions together, or engage in competitive

challenges. This social aspect could enhance the project's

educational impact by promoting teamwork and peer learning.

 3. Advanced Analytics and Reporting:

Implementing advanced analytics and reporting features

could provide educators and administrators with valuable

insights into users' progress and performance. This data-driven

approach could help tailor educational content to individual

needs and measure the project's impact more effectively.

Recommendation: Incorporating features that track and

analyze user performance, identifying areas where users may be

struggling or excelling. Customized reports and analytics could

guide educators in tailoring their teaching strategies and

content.

 4. Integration with Learning Management Systems

(LMS):

To seamlessly fit into educational institutions and facilitate

the integration of the project into formal curricula, considering

compatibility with popular Learning Management Systems

(LMS) is crucial. LMS integration could streamline the

adoption of the project in educational settings.

Recommendation: Exploring partnerships or development

efforts to ensure compatibility with widely used LMS

platforms. This integration could simplify user management,

10

ENGR 489 (ENGINEERING PROJECT) 2023

content distribution, and assessment.

 5. Accessibility Features:

Ensuring accessibility for all users is paramount. To reach a

wider audience, the inclusion of accessibility features, such as

support for screen readers and adherence to accessibility

standards, can make the project more inclusive and user-

friendly.

Recommendation: Collaborating with accessibility experts to

conduct audits and incorporate enhancements that ensure the

project is usable by individuals with diverse needs, including

those with disabilities.

These recommendations for future enhancements are

intended to advance the project's educational impact, making it

an even more valuable tool for learners, educators, and

institutions. By expanding content, enhancing interactivity,

utilizing advanced analytics, integrating with LMS, and

prioritizing accessibility, the project can continue to evolve and

serve as a dynamic and effective learning resource.

To wrap up this entire evaluation section, the incorporation of

these performance metrics provided a well-rounded evaluation

of the project's functionality and its alignment with its

educational goals. This comprehensive assessment ensured that

the project met its objectives while considering scalability and

the delivery of educational content effectively.

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

As we draw the curtains on this capstone project, it's fitting to

reflect on the journey we undertook to create a game-based

learning platform focused on teaching computer science and

software testing concepts. The project has not only met key

goals and specifications but has also laid the foundation for

envisioning future work and opportunities that extend beyond

its current scope.

 1. Engagement and Practical Learning:

The project's central accomplishment lies in its ability to

actively engage learners and provide a hands-on experience in

software testing. The progressive learning approach guides

users from fundamental coding concepts to the intricacies of

testing, fostering an inquisitive mindset.

 2. Effective Pedagogy:

The project seamlessly aligns with principles of educational

psychology and game design, establishing itself as an effective

pedagogical tool for teaching computer science concepts,

particularly software testing. Its success in conveying complex

concepts in an engaging manner is noteworthy.

 3. User-Centered Design:

A key driving force behind the project's success has been

feedback from fourth-year engineering students. Their input has

been instrumental in shaping the game's difficulty progression,

concept understandability, and overall intuitiveness.

B. Future Work

As we gaze into the future, the completion of this capstone

project unveils a realm of opportunities for further innovation

and growth in the field of educational technology and computer

science instruction. The groundwork laid by this project offers

a strong foundation upon which future work can flourish.

Consider the following potential avenues for future projects and

initiatives, each contributing to the enrichment of the

educational landscape:

 1. Expansion of Game Modules:

The project's success in imparting fundamental software

testing concepts sets the stage for a compelling prospect –

expanding the game's content with additional modules. Future

projects could introduce modules that delve into a broader

spectrum of software testing scenarios. This expansion might

encompass specialized areas such as performance testing,

security testing, and more. By broadening the scope of topics,

the project can cater to a diverse audience with varying interests

and career aspirations.

 2. Integration with Real-World Tools:

To bridge the divide between theory and practice, future work

could focus on the integration of the game with real-world

software testing tools and platforms. This strategic integration

would empower users to interact with industry-standard

software testing frameworks and tools, offering a practical and

authentic learning experience. It's an endeavor that aligns the

project with the demands of the software testing industry and

equips learners with relevant skills.

 3. Adaptation for Diverse Audiences:

Ensuring inclusivity in education is paramount, and the

project can further this goal by adapting the game to suit diverse

audiences. This adaptation could involve tailoring the game to

the needs of learners from different age groups and educational

backgrounds. The objective is to make the game a versatile

educational tool that serves a broad demographic. This

versatility could lead to its adoption in a wide range of

educational settings.

 4. Research on Learning Outcomes:

Beyond the immediate success of the game, future work

should include in-depth research on the learning outcomes of

users. This research goes beyond assessing the game's

effectiveness; it delves into how learners assimilate and apply

the knowledge acquired through the game. The data derived

from this research would be invaluable for educators and

developers, providing insights to refine and optimize the game

continually.

 5. Assessment of Long-Term Impact:

Understanding the long-term impact of the game on learners'

ability to apply software testing concepts in professional

settings is a significant endeavor. This longitudinal assessment

involves tracking how learners apply their knowledge in real-

11

ENGR 489 (ENGINEERING PROJECT) 2023

world scenarios. It provides insights into the sustained impact

of the educational experience, enabling developers to fine-tune

the game to better align with the practical demands of the

software testing industry.

 6. Collaborative Projects:

Collaboration is the cornerstone of innovation. Future work

may involve collaborative projects with other capstone

initiatives or educational courses. Such collaborations can

result in the development of complementary tools and resources

that enhance the broader educational ecosystem. The project,

when part of a larger network of educational resources,

strengthens the collective impact on computer science

education.

In summary, the culmination of this capstone project marks

not an end but a new beginning. It invites exploration into a

realm of exciting opportunities for future work, each with the

potential to advance the field of educational technology and

computer science instruction. By pursuing these avenues, a '489

student can embark on projects that expand horizons, drive

innovation, and contribute to the ever-evolving world of

computer science education.

REFERENCES

[1] Rasulov Inom Muyidinovich, . (2020). Advantage And

Methodological Problems Of Teaching Computer Science In

Modern Schools. The American Journal of Interdisciplinary

Innovations and Research, 2(10), 13–16.

https://doi.org/10.37547/tajiir/Volume02Issue10-03

[2] McInerney, C. (2010). Having Fun with Computer

Programming and Games: Teacher and Student Experiences.

In: Hromkovič, J., Královič, R., Vahrenhold, J. (eds) Teaching

Fundamentals Concepts of Informatics. ISSEP 2010. Lecture

Notes in Computer Science, vol 5941. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-642-11376-5_13

[3] S. Tobias, J. D. Fletcher, and A. P. Wind, “Game-Based

Learning,” Handbook of Research on Educational

Communications and Technology, pp. 485–503, May 2013,

doi: https://doi.org/10.1007/978-1-4614-3185-5_38.

[4] M. E. Auer and Thrasyvoulos Tsiatsos, The Challenges of

the Digital Transformation in Education : Proceedings of the

21st International Conference on Interactive Collaborative

Learning (ICL2018) - Volume 1. Cham: Springer International

Publishing, 2020. https://peer.asee.org/23791

[5] R. D. Craig and S. P. Jaskiel, Systematic Software Testing.

Artech House, 2002. Accessed: Oct. 20, 2023. [Online].

Available:

https://books.google.co.nz/books?hl=en&lr=&id=2_gbZYZcZ

XgC&oi=fnd&pg=PR19&dq=software+%22testing%22+criti

cal+thinking&ots=sW7sIOaIH2&sig=aNy7zJg_l28euwgqRaV

75nd4nfo&redir_esc=y#v=onepage&q&f=false

[6] D. Carrington, “Teaching software testing,” Jan. 1996, doi:

https://doi.org/10.1145/299359.299369.

[7] Mäntylä, M.V., Smolander, K. (2016). Gamification of

Software Testing - An MLR. In: Abrahamsson, P., Jedlitschka,

A., Nguyen Duc, A., Felderer, M., Amasaki, S., Mikkonen, T.

(eds) Product-Focused Software Process Improvement.

PROFES 2016. Lecture Notes in Computer Science(), vol

10027. Springer, Cham. https://doi.org/10.1007/978-3-319-

49094-6_46

https://doi.org/10.37547/tajiir/Volume02Issue10-03
https://doi.org/10.1007/978-3-642-11376-5_13
https://peer.asee.org/23791
https://books.google.co.nz/books?hl=en&lr=&id=2_gbZYZcZXgC&oi=fnd&pg=PR19&dq=software+%22testing%22+critical+thinking&ots=sW7sIOaIH2&sig=aNy7zJg_l28euwgqRaV75nd4nfo&redir_esc=y#v=onepage&q&f=false
https://books.google.co.nz/books?hl=en&lr=&id=2_gbZYZcZXgC&oi=fnd&pg=PR19&dq=software+%22testing%22+critical+thinking&ots=sW7sIOaIH2&sig=aNy7zJg_l28euwgqRaV75nd4nfo&redir_esc=y#v=onepage&q&f=false
https://books.google.co.nz/books?hl=en&lr=&id=2_gbZYZcZXgC&oi=fnd&pg=PR19&dq=software+%22testing%22+critical+thinking&ots=sW7sIOaIH2&sig=aNy7zJg_l28euwgqRaV75nd4nfo&redir_esc=y#v=onepage&q&f=false
https://books.google.co.nz/books?hl=en&lr=&id=2_gbZYZcZXgC&oi=fnd&pg=PR19&dq=software+%22testing%22+critical+thinking&ots=sW7sIOaIH2&sig=aNy7zJg_l28euwgqRaV75nd4nfo&redir_esc=y#v=onepage&q&f=false
https://doi.org/10.1007/978-3-319-49094-6_46
https://doi.org/10.1007/978-3-319-49094-6_46

