ENGR 489 (ENGINEERING PROJECT) 2023

Discovery of Neural Network Weight Update
Equations Through Genetic Programming

Tarik Hasan Kurnaz

Abstract—This project explores the utilisation of Genetic
Programming (GP) to evolve weight change equations for neural
network (NN) architectures. The aim is to develop more efficient
and effective weight change functions that can yield advanced
and precise models across various domains. GP is a machine
learning technique that can automatically generate functions by
simulating the process of natural evolution. This enables the
discovery of innovative algorithms that can outperform existing
methods. Different NN architectures were developed such as
a single-layered perceptron, a multi-layered perceptron with
only one hidden layer and a full NN architecture capable of
handling various numbers of hidden layers and nodes. The NN
architectures were designed for a regression task, and therefore,
the sigmoid activation function was utilised, enabling the usage
of the back-propagation function to be used as a basis for com-
parison in evaluation. By exploring different GP configurations,
including those initialised with back-propagation and entirely
random equations, our study sheds light on their adaptability and
potential. The equations discovered through GP were tested on
various datasets. The findings emphasise GP’s capacity to excel
in diverse scenarios, especially when opportunities for dataset
generalisation arise.

Index Terms—Genetic Programming, Optimisation, Neural
Network, Back-Propagation

I. INTRODUCTION

In recent years, the field of machine learning (ML) has
experienced remarkable advancements due to powerful com-
puting systems and sophisticated algorithms [1]. However,
there is still room for growth in some areas of ML where
the current state-of-the-art algorithms predominantly rely on
manually crafted designs rooted in human expertise, often
having their foundations in mathematical principles. While this
conventional approach has undoubtedly delivered substantial
progress in the field, it may not always yield the optimal
algorithm to address the specific demands of a given task [2],
[3]. As tasks become increasingly complex and datasets more
diverse, it is not always feasible for human experts to hand-
craft algorithms. Furthermore, mathematical principles, while
powerful, can be inherently constrained by the assumptions
made during their creation. This can result in algorithms that
are sub-optimal for certain tasks and may not fully adapt to
real-world data with its inherent variability and complexity.

Genetic programming is a method that utilises evolutionary
principles to automatically generate code and improve solu-
tions to complex problems [4]. In GP, computer programs are
represented as trees. These trees consist of function sets, which
contain mathematical and logical operations, and terminal sets,
which include inputs and constant values. GP trees undergo
modification via genetic operators: mutation and crossover [5].

This project was supervised by Andrew Lensen and Marcus Frean.

Crossover involves two parents swapping sections of the GP
tree, while mutation replaces a part of the tree with a randomly
generated sub-tree. These actions diversify the search, prevent-
ing early convergence to local minima. Individual fitness is
assessed through a fitness function, gauging their effectiveness
in addressing the problem. Over time, the fittest programs
survive and reproduce, passing on their genetic material to fu-
ture generations. By leveraging GP, tailored algorithms can be
created for specific problem domains and datasets, potentially
surpassing the performance of handcrafted designs. GP offers
the potential to automatically discover and optimise functions
for specific cases, removing the need for manual creation.

Although previous work on evolving functions using GP
has already been done [6]—[8], this proposal aims to explore
the use of genetic programming (GP) as a means to discover
functions to represent the weight changes of neural network
(NN) architectures [9]. By doing so, this research may simply
rediscover the commonly used weight change equation for
these architectures. In effect, we can create more advanced
and accurate weight change equations, thereby contributing
to the advancement of the field. Overall, this project aims to
tackle the challenge of manually designing machine learning
algorithms by leveraging GP to automatically generate optimal
solutions.

The incorporation of artificial intelligence (Al) into various
applications has the potential to yield significant environmental
benefits [10]. Specifically, the design of ML algorithms using
GP offers a range of advantages that align with the principles
of environmental sustainability. One primary advantage is
the potential for designing more efficient algorithms. These
algorithms promote energy efficiency and optimised resource
utilisation by reducing computational demands. Furthermore,
they reduce the time invested in the algorithm design process,
enabling resource-efficient practices. Overall, these factors
collectively support the development of machine learning
algorithms that align with the principles of sustainable de-
velopment, making environmentally conscious progress within
the field of AL

This project discovered several GP-generated functions that
an NN can utilise the change its hidden layer weights.
We examined three distinct configurations. The All Back-
Propagation configuration, which initialises the GP with back-
propagation equations for all initial individuals, consistently
outperforms other GP-generated equations and, in some cases,
even traditional back-propagation. The One Back-Propagation
configuration, which initialises just one individual with a back-
propagation, mirrors this performance and allows for a broader
exploration of solution space. The Random Initialisation con-
figuration, which begins with entirely randomly generated

ENGR 489 (ENGINEERING PROJECT) 2023

equations, initially outperforms back-propagation but struggles
to maintain performance. By disabling output layer weight
changes, GP equations achieve rapid error reduction but lack
long-term consistency. The GP’s ability to rapidly evolve
equations that match dataset characteristics is notable, indicat-
ing that it can outperform traditional back-propagation when
dataset generalisability is high. In summary, GP, especially
with a back-propagation baseline, demonstrates adaptability
and potential in various scenarios.

II. LITERATURE REVIEW

a) Evolutionary Optimization of Deep Learning Activa-
tion Functions [6]: This paper is a study describing a method
for employing GP to develop specialised activation functions
for deep neural networks. The authors demonstrate that by
exploring a wide range of tree-based candidate functions using
techniques like crossover, mutation, and exhaustive search,
they were able to discover new activation functions that
perform better than traditional ones such as ReLU. Each
candidate function is tested for fitness by training a neural
network using it as its activation function and seeing how
well it performs on the CIFAR-10 and CIFAR-100 image
categorisation tasks. The research results demonstrate how
the evolved activation functions fully use the potential of
meta-learning by performing particularly well for particular
datasets and neural network designs. This research sheds light
on how deep learning activation functions may be optimised
using evolutionary algorithms and creates fresh possibilities
for enhancing the functionality of neural networks.

b) Searching For Activation Functions [3]: Introducing
a new activation function called Swish, defined as
f(x) = x * sigmoid(x), this paper uses automatic search
methods instead of evolutionary algorithms. The authors
combine exhaustive and reinforcement learning-based search
techniques. The goal of reinforcement learning-based search
is to maximise the performance of a target neural network
on a given task by training a controller neural network
to produce new activation functions. The authors use these
techniques to find a number of novel activation functions that
show promising performance, including the function named
Swish [3]. Swish is a good activation function, in the opinion
of the authors, because it generates improved outcomes and
has traits like smoothness and non-monotonicity. Smoothness
is important as it allows the function to have a continuous
derivative. Non-monotonicity means that the Swish function
is not strictly increasing or decreasing over its entire domain,
enabling neural networks to model complex relationships
and capture intricate patterns in data such as oscillations,
peaks, and valleys, that are not suited to monotonic activation
functions. The paper compares Swish to ReLU because ReLU
is one of the most widely used activation functions in deep
neural networks, and it is a simple and computationally
efficient activation function that can help address some prob-
lems (vanishing gradient problem) that occur in deep neural
networks [3]. The findings of this paper indicate that there is
still room for improvement in even the most commonly used
machine learning algorithms, and different search techniques
might give us better algorithms than those we already possess.

¢) Mechanism Discovery and Model Identification Using
Genetic Feature Extraction and Statistical Testing [8]: Instead
of attempting to find better equations like the previous papers,
this paper uses GP as a key component to automatically
identify functional forms that approximate the input-output
relationship of the system being modelled. The paper proposes
a Genetic Feature Extraction and Statistical Testing (GFEST)
framework that makes use of GP to automatically recognise
models that reflect the fundamental physical, chemical, and/or
biological systems generating data. The authors incorporated
a library of elementary functions guided by first-principles-
based insights and an understanding of the application do-
main to improve model identification. This approach leads to
simpler and easier-to-interpret models that also fit the data
satisfactorily. With the aid of GP, this research enables the
identification of functional forms that closely resemble the
known input-output relationship of the system being modelled.

d) Evolution of Activation Functions for Deep Learning-
Based Image Classification [7]: The activation functions
(AFs) in neural networks are evolved using a co-evolutionary
algorithm in this paper. Co-evolutionary algorithms are a
type of evolutionary algorithm that involves evolving multiple
populations simultaneously, where each population represents
a different aspect of the problem being solved. The authors use
Cartesian Genetic Programming, which represents an evolving
individual as a two-dimensional grid of computational nodes.
The co-evolutionary algorithm used in this study involves
evolving AFs from three different layers: input-layer, hidden-
layer, and output-layer AFs. Combining three individuals,
one from each population, results in an AF architecture that
can be evaluated. The authors propose a novel method for
co-evolving AFs that outperforms other methods in finding
good AFs and architectures. In conclusion, this paper offers
insightful information about the significance of AFs in deep
learning and presents a promising strategy for enhancing
model performance through automated AF searches.

e) Optimizing Deep Neural Network Architecture with
Enhanced Genetic Algorithm [11]: This paper introduces an
innovative method that employs an enhanced genetic algorithm
to optimize the architecture of deep neural networks, encom-
passing both hyperparameters and architecture optimization.
Similarly, in another paper titled Automating Configuration
of Convolutional Neural Network Hyperparameters Using
Genetic Algorithm [12], genetic algorithms are utilised to
optimize the architectures of convolutional neural networks.
These studies demonstrate the efficacy of genetic algorithms
in addressing the challenge of hyperparameter optimization
and architectural design in neural networks. By leveraging the
principles of GP, which extends upon genetic algorithms [13],
we can further extend the applications to optimize hyperpa-
rameters and the components of machine learning algorithms.

A. Summary of Related Work

The analysis of the aforementioned papers offers convincing
proof that improving machine learning tasks is still possible
due to the superior performance of evolutionary algorithms.
Motivated by these findings, our approach involves employing

ENGR 489 (ENGINEERING PROJECT) 2023

the power of GP to discover and understand different solutions
to change weights in Neural Networks. The research serves as
a foundation for further exploration of GP as a valuable tool
in creating advanced algorithms for ML tasks.

B. Tools and Methodology

Python is one of the most widely used programming
languages for artificial intelligence and machine learning
languages [14], providing all the libraries and frameworks
necessary for GP. The DEAP Python package [15] serves
as a foundation for the GP implementation in this project.
The main Python libraries utilised are NumPy [16] and
Pandas [17] to handle tables, load files, and create data
frames easily. SymPy [18] was utilised to simplify our GP-
generated equations. Matplotlib [19] aids in visualising GP
runs and investigating equations generated. Given that the
development process is linear and follows a step-by-step
approach, the methodology being employed is the Waterfall
methodology [20].

III. DESIGN AND IMPLEMENTATION
A. Overall Process of Our GP

This section aims to simplify the GP process that is vital
to our project for individuals who may not have an extensive
background in machine learning. To facilitate this, we devel-
oped a fundamental perceptron program, enabling the genera-
tion and categorization of datasets suitable for prediction using
the same classifier. Our primary focus in this GP-driven project
centres on the gradual improvement of weight adjustments
within the perceptron and other network architectures.

A general flowchart of how GP or other evolutionary
algorithms work is shown as Figure 1. We begin by forming
an initial population, where each individual is distinct and
assigned a fitness value. Afterwards, we select a handful of
parents from the previous population and introduce crossover
and mutation operations to create a fresh generation. This
iterative cycle continues until the specified termination criteria
are satisfied.

OCEED

l @ Initial population ‘

l<
&

@ Calculate the fitness value

v
@ Selection
¥

I @ Crossover I
v
| @ Mutation |

s termination criteria
satisfied?

Fig. 1. Flowchart of the Standard Evolutionary Algorithm, adapted from [21]

Following the general evolutionary approach, our GP pro-
gram to evolve a weight change equation of a perceptron
architecture works as follows:

o Step 0: Define the parameters required for initialisation
and set them up.

— Mathematical operations are added to the function
set as possible operations that could be performed to
grow the tree from the inputs to the output. These
operations are addition, subtraction, multiplication,
division, and negation, collectively enabling the ex-
ploration of a wide array of mathematical functions.
This limited set of operations aids GP in narrowing
its search to commonly used equations within our
network architectures.

— The terminals, which are the tree’s possible inputs,
are added. The inputs, the actual outputs, and the
desired outputs have all been used as terminals. GP
can also utilise random integers selected from the
range of -1 to 1 inclusive. By limiting the integers
to the range of -1 to 1, we facilitate GP’s utilization
of numeric values in equations without the need
for complex transformations, such as input/input
to obtain 1,” thereby simplifying the search for
effective equations.

— We create a tree using the previously defined opera-
tions and terminals, employing the half-half method
for tree generation. In this approach, half of the tree’s
nodes are exclusively drawn from the set of functions
until a specified depth is attained, while the other
half incorporates nodes from both the function and
terminal sets. This utilization of the half-half method
effectively combines the strengths of each approach,
achieving a well-balanced result.

e Step 1: Create the initial population.

— The genetic programming procedure commences
with the creation of a substantial initial popula-
tion. Individuals are represented as randomly con-
structed trees, which serve as the foundational en-
tities for subsequent evolutionary optimization of
weight change equations. Although it can be altered
as needed, 300 was selected as it was a large enough
number. Every member of this population is a unique
tree that will be assigned a fitness score.

o Step 2: Calculate the fitness of each individual.

— The GP-generated function is used to modify the
weights of the network. Achieving a noticeable
impact from this equation typically necessitates a
substantial number of iterations, often referred to as
epochs. Specifically, in our implementation, we use
100 epochs. Since our algorithm uses online learning,
the function will be applied to each data point in the
dataset individually, for 100 epochs.

— The actual result for each person is computed using
a forward pass method after applying the equation
epoch-number of times.

— The fitness level of each individual is assessed by
calculating the root mean squared of errors between

ENGR 489 (ENGINEERING PROJECT) 2023

the achieved final result and the target output values.
The reason why this performance metric is chosen
will be explained in the Evaluation section of the
report.

o Steps 3, 4 and 5: Selection, crossover and mutation.

— To form the next generation of individuals, a tour-
nament selection method is employed. This process
entails randomly selecting k number of individuals
from the initial population, identifying the best-
performing individual, and repeating this procedure
until the next generation is formed. Within our
program, this k number is 5 to allow GP to select
well-fitted individuals.

— Following the selection phase, individuals undergo
crossover and mutation. A crossover probability of
0.6, encourages the creation of diverse offspring,
facilitating the exploration of the solution space.
A mutation probability of 0.3 serves to maintain
a stable population established through crossover,
minimizing excessive disruption, while enabling the
discovery of potentially advantageous traits. These
parameter choices strike a balance between explo-
ration and preservation of effective genetic material.
Elitism is also used, preserving the best-performing
individual across populations and consistently en-
hancing overall results [22].

o Step 6: Check whether the termination criterion is satis-
fied.

— Upon reaching the predefined number of generations,
the evolutionary process halts returning the best
individual. If the set number of generations has not
been reached, the procedure iterates through steps
2-5 until the predefined limit.

B. Single Layer Perceptron Architecture

As a proof of concept, we started off with a simple per-
ceptron architecture to see if GP could discover the weight
changes required in such an architecture. A perceptron is a
neural network with just one layer, making it an ideal choice
for an initial demonstration that helps conceptualize our future
ambitions. The perceptron utilises its inputs to estimate an
output without any hidden layers. These inputs are called
features and the feature inputs are simply multiplied by the
corresponding weights, and the bias is added. Following this,
the activation function is applied, and the resulting value is
scaled by the learning rate, controlling how fast the algorithm
learns. This whole process is called feed-forward and the
equation is shown below in Equation 1:

n
output = activationfunction((z Wi xx;) +b) (1)

i=1
We wanted to evolve the weight change equation used in
the perceptron to update the weights of the network. This
equation is shown in Equation 2 and fundamental to the
training of perceptrons. We aim to modify and identify the
optimal weights to achieve accurate outputs based on input

data. The equation is rather straightforward to evolve from
scratch as it does not have many parameters. To maintain
consistency and avoid introducing arbitrary constants in each
run, we chose to set the learning rate to a fixed value of
n=0.1

Aw = n(targetY — actualY)x; (2)

A perceptron can only predict data that is linearly separable.
Therefore, we utilised a perceptron program to create the
dataset, which involves generating many inputs with a certain
number of features each, then initialising the weights and
the bias randomly. The next step involves applying the feed-
forward calculation to each input, resulting in the actual
outputs of the set. These pairs of input and output values
are then forwarded to the GP section of our code for further
analysis. GP component undertakes the task of determining
the optimal equation for weight updates. The objective is
to minimise the error between the actual outputs and the
adjusted outputs, achieved by applying the equation generated
to change the weights.

Additional enhancements were introduced to include the
bias update within the GP process, as the initial setup did
not account for bias changes. This was achieved by assigning
a fixed input feature set to one for representing the bias.
This allowed us to simplify the equation as > (W, * x;),
with ¢ starting from zero, and x(being set to one. Another
improvement was ensuring that each individual within the GP
process utilises the same set of weights. This change was
motivated by the desire for consistency and the realization that
random initialisation of weights might inadvertently result in
weights that were already close to the correct values needed
to map the input-output relationship. Such a scenario would
compromise the accuracy of the weight change equation.

We also used the library SymPy [18] to simplify the equa-
tion derived from the top-performing individual at the end of
each GP run. Additionally, we developed a supplementary pro-
gram named Histogram to execute the GP program iteratively
and visualize the most frequently occurring equation forms on
a histogram graph. The simplification step became essential as
GP would often discover identical equation representations.
The histogram graph of the GP for perceptron weight change
can be viewed in Figure 1 in the appendix [23].

In summary, we determined that GP was suited for the task
of discovering effective equations from the ground up to use
as weight change equations of a perceptron, as it discovered
the weight change equation that is most commonly used as
shown in the preliminary report [24].

C. Multi-layer Perceptron Architecture

Following the preliminary report, our aim was to explore the
applicability of GP to larger network architectures and assess
its ability to discover appropriate weight change equations.
However, we encountered a performance bottleneck with GP
due to its relatively slow execution. To address this issue, we
attempted to parallelise the code. We first enhanced program
performance by introducing parallelisation measures. Initially,
we allowed the Histogram program to independently generate
GP runs. Subsequently, we extended this parallelisation to

ENGR 489 (ENGINEERING PROJECT) 2023

the GP level, where we aimed to accelerate the execution of
each GP instance by enabling the creation and evaluation of
individuals within a generation to occur concurrently, as op-
posed to the previous sequential approach. To further expedite
the process, we leveraged the Rapoi Cluster [25], enabling
the simultaneous execution of multiple program instances to
generate equations. These equations were then aggregated to
construct a histogram graph for analysis.

Upon resolving the performance challenges, our aim was
to extend the original code, initially designed for discovering
weight change equations in a perceptron, to encompass a more
complex multi-layer perceptron architecture. This expansion
necessitated significant alterations in how input and output
pairs were generated, as it now entailed the creation of data
utilizing a multi-layer perceptron. The reason for this shift
was that a single-layer perceptron can only generate linearly
separable data, whereas we needed non-linearity to address
scenarios where a multi-layered perceptron architecture was
required to adjust its weights. In light of this, we introduced
a new version of the code capable of generating input-output
pairs using a multi-layer perceptron. Additionally, we made
corresponding adjustments to the GP to accommodate a multi-
layered architecture effectively.

To enable the multi-layer perceptron to learn and adapt,
we also incorporated an activation function. In this context,
the sigmoid function was chosen as the activation function
for its suitability in introducing non-linearity to the network’s
transformations [26]. While there are other common activation
functions available, the choice of the sigmoid function was
driven by its prevalence in neural network literature and its
ease of implementation [27]. The sigmoid function offers
smooth, non-linear behaviour, making it capable of capturing
complex relationships in the data and enhancing the capacity
of the multi-layer perceptron to handle intricate tasks.

The equation provided, shown in Equation 3 represents the
calculation for the weight update for a network using a back-
propagation algorithm for networks with sigmoid activation
functions. Table I shows the breakdown of the variables
involved.

€ =Yy —aq ifl=1L
N1
= Z wik e af) otherwise
m=1
a; = a;(1 —ap) 3)

w} — wli + nelaf
ny
b bj+n >
m=1

This equation is the back-propagation process in neural
networks, used to adjust the weights between each layer.
Adapting this equation to our GP implementation posed a
challenge due to its varying components based on whether
the weights to be adjusted are related to the output layer or
the hidden layers. Calculating the output layer’s error was
straightforward, as there were no layers above it. However,
handling the hidden layers proved to be complex to implement,

TABLE I
BACK-PROPAGATION NOTATION
" error signal at neuron m in layer 1
y target output
a; output of neuron i in layer |
n; number of neurons in layer 1
Z:fli sum of neurons in layer 1 + 1
w™ weight connecting neuron m to k in layer 1
ag derivate of the sigmoid function at layer |
b bias of neuron i in layer 1
n learning rate

as it required the exchange of information with subsequent
layers.

In an effort to address this challenge, we implemented
a temporary solution by providing the GP with the weight
change equation specifically designed for output layer weights.
This enabled the GP to focus exclusively on deducing the ap-
propriate weight changes for the hidden layer. Additionally, we
supplied the GP with a single parameter containing the output
layer error, output layer weights, and output layer outputs,
which we computed in advance. This approach eliminated
the need for the GP to gather information from upper layers,
streamlining its task considerably. Due to the inherent simplic-
ity of the simplified task, our GP implementation consistently
identified the simplified back-propagation equation. However,
our objective was to enable the GP to discover the complete
equation.

Fig. 2. Diagram Showing Which Information is Available to the Weight
Change

Figure 2 illustrates how our GP currently implements the
back-propagation equation. Instead of doing a sum of the
information from the subsequent layer’s nodes, it uses an
implicit sum by iterating over the elements of each vector
and doing an element-wise summation. Thus, the information
available to Aw involves a single output in the subsequent
layer, allowing a straightforward multiplication of scalar values
of each vector. The blue-coloured variables represent scalar
values that serve as terminal nodes to construct the red-
coloured weight change. This process continues iteratively,
with the weight being adjusted by the information from each
subsequent output node until all output nodes are processed.

This approach enabled the GP to determine how to effec-
tively utilise these components. Following the implementation
of these code modifications, we observed that the GP was
able to find equations where some segments aligned with the
back-propagation equation. However, a complete match was
not achieved.

ENGR 489 (ENGINEERING PROJECT) 2023

D. Problems with Data Creation

To assess the effectiveness of the GP-generated equations,
I developed an additional program to simulate the behaviour
of the most frequently generated equations. This allowed us
to observe how these equations impacted the weights of the
multi-layer perceptron and their ability to minimise output
errors. The results of these evaluations will be presented and
analyzed in the subsequent evaluation section.

We questioned why GP struggled to discover the back-
propagation equation or a closely related alternative. To in-
vestigate, we developed a program to explore how the outputs
of a randomly initialised multi-layer perceptron evolved when
a specific input feature was incrementally altered, while other
features remained constant. The examination of this alternating
feature revealed a relatively linear change in the output. This
observation suggested that the hidden layer might not be
necessary for mapping input-output pairs, indicating a need for
improved data generation that would necessitate the function-
ality of the hidden layer. To address this, we explored alterna-
tive approaches to weight initialisation to induce a non-linear
relationship between inputs and outputs in our generated pairs.
We experimented with both He weight initialisation [28], typ-
ically used for RELU activation functions, and Xavier weight
initialisation [29], suited for sigmoid functions. However,
even with these weight initialisation methods, the relationship
between inputs and outputs largely remained linear. During
our exploration, we conducted further experimentation with
the Xavier method, adjusting specific parameters. It became
evident that increasing a constant within the formula employed
for weight creation increased the likelihood of generating non-
linear relationships between inputs and outputs.

In conjunction with the modified Xavier initialisation
method, we considered increasing the number of input-output
sets. Each set represented a distinct configuration of weights,
and by employing various sets, we aimed to increase the
likelihood of encountering input-output pairs with non-linear
relationships. The expectation was that this would influence
GP to make use of certain aspects of the back-propagation
function. Despite this adjustment, the functions generated
for weight updates remained sub-optimal. These functions
frequently appeared overly simplistic or, at times, effectively
amounted to a ’do-nothing’ operation. Consequently, when
these functions were implemented within the code to simulate
their performance, they consistently failed to yield satisfactory
results.

One of the reasons for the sub-optimal equations generated
by the GP might be its practice of forming new weights for
each individual evaluated by the fitness function. If a randomly
generated individual received a set of weights that closely
approximated the correct weights required for mapping the
input-to-output relationship, it would have no “incentive” to
modify its weights. Such occurrences might have been a sig-
nificant contributor to the GP’s difficulty in producing effective
functions. To address this concern, we first implemented a
measure to ensure that a consistent set of weights serves as
the initial configuration for all individuals in each generation.
This did not yield significant improvements.

Following the extensive efforts outlined above, we came to
the realization that our time and resources might have been
better spent by using an appropriate dataset readily available
online, rather than investing significant effort into generating
our own data. This decision to utilise an online dataset for
GP training introduces a set of advantages and disadvantages.
Online datasets cover a wide range of real-world scenarios,
providing diverse data for training. However, drawbacks in-
clude potential misalignment with our experiment’s require-
ments and varying dataset quality, posing challenges in finding
an appropriate dataset for our experiment.

E. Neural Network Architecture

Several datasets suitable for our project were identified
through research. To assess their linear separability, a small
program was developed with the ability to load datasets and
subsequently train both single-layer perceptrons and multi-
layer perceptrons. This allowed for a direct comparison of
their respective accuracies.

While developing this program and seeking suitable
datasets, a multi-layered Neural Network (NN) architecture
was introduced. This addition was prompted by the consider-
ation that a larger network might yield improved performance
on some datasets, especially since the existing architecture
supported only a single hidden layer. The newly devised
architecture was designed for code conciseness and flexibil-
ity, capable of accommodating multiple hidden layers, each
with varying numbers of nodes. Following this, the new NN
architecture was integrated into the program used to evaluate
datasets with different network architectures, aiding in the
assessment of their complexity. After evaluation of some
datasets, the 2016 Miami Housing dataset [30] was selected
as the primary dataset for training. This decision was based
on its notable performance improvements when trained on
architectures with hidden layers, making it a suitable choice
for the project’s objectives.

To align with the newly introduced NN architecture, the GP
code was modified to effectively accommodate this framework.
The adaptation process proved relatively straightforward due
to the uniform applicability of the back-propagation rule to all
hidden layer weights, irrespective of the specific hidden layer.
Consequently, the same formula from the multi-layered per-
ceptron architecture could be applied. However, despite having
a dataset well-suited for a neural network, the results were
disappointing. These outcomes resembled those observed in
the previous multi-layered perceptron architecture, where we
had been generating our own data. Frequently, the equations
generated by the GP amounted to ’do-nothing’ operations or
overly simplistic functions.

To address this problem, the weight creation process was
expanded to generate multiple sets of weights, rather than
a single set. This approach was adopted because utilising
multiple sets of weights reduces the likelihood of the initial
weights being closely aligned with those required to map the
inputs to the outputs of the dataset. While this approach did
result in higher computational costs, we deemed it a necessary
adjustment to improve our GP’s performance.

ENGR 489 (ENGINEERING PROJECT) 2023

An alternative approach was investigated by integrating a
mechanism within the GP framework to allow it to modify
output weights. The hypothesis around this was that given the
current correct adjustment of output layer weights, as detailed
in Equation 3, the hidden layer weights might not require
substantial alterations. This was particularly evident when the
number of epochs was set to a high value, as output weights
underwent frequent modifications. Consequently, even if sub-
optimal functions failed to adapt the hidden layer weights
adequately, they could still yield good fitness values because
the output weights consistently met expectations and played a
significant role in the output result’s value change. To address
this, we extended the GP’s capacity to modify the output layer
weights dynamically using its generated equations rather than
relying on a fixed solution. However, this adjustment proved to
have its own challenges. The GP now exhibited a strong bias
toward accurately changing the output layer weights, as this
had a more direct impact on the output. As a result, it often
neglected the equation required for the proper adaptation of
hidden layer weights, leading to sub-optimal results.

Another idea considered was to refrain from making any
changes to the output layer weights and instead allow the GP
to focus only on modifying the hidden layer weights. This
approach aimed to prevent the GP from relying on the correct
adjustment of output layer weights or overly prioritizing
changes to the output layer. Upon implementing the necessary
modifications to the code and conducting subsequent runs, it
became evident that this approach yielded the most promising
results.

F. Details of the Final Architecture

The final version of the code represents a GP model
designed to discover weight update functions of a feed-forward
neural network architecture, capable of handling multiple
hidden layers, each with varying numbers of nodes. Although
it accommodates any number of input nodes, it is designed
primarily for regression tasks with only one output node. The
project’s core goal is to evolve and optimize weight update
functions for neural network architectures. In a regression
task, the neural network’s objective is to predict a continuous
numerical output, which mirrors the project’s aim of finding
functions that optimise and fine-tune the weights to produce
accurate predictions. This focus on regression enables the
project to provide practical solutions for various applications
requiring continuous data predictions, like finance and weather
forecasting.

The activation function employed at each hidden and output
node is a sigmoid function, although it can be easily modified
within the code. To utilise this GP model, one can invoke
its main method by providing the data inputs, data outputs,
desired hidden nodes, the number of epochs for function
application, and the learning rate as input parameters.

The GP will then generate several sets of random weights
to serve as initial values, which will subsequently be modified.
It is important to note that an individual equation developed
by the GP applies to all of these weight sets, not just a single
set. This requirement encourages the GP to devise an equation

that performs well across multiple sets of weights, enhancing
its consistency. The generated equation is exclusively applied
to all hidden layers, and the weights of the output layer remain
unaltered throughout the process. Moreover, the algorithm
offers the flexibility to incorporate specific individuals into
its initial population, such as the back-propagation equation,
to further aid in the learning process. Upon completing the
generational loop, the algorithm simplifies the best equation
found and returns it along with its fitness value. Additionally,
it provides an estimate of the error that would result if the
back-propagation equation were used to rapidly evaluate the
performance of the developed function.

IV. EVALUATION

In this section, we assess how well our GP has worked
in evolving weight change equations for neural networks. To
achieve this, we rely on a set of performance metrics designed
to offer a quantifiable and objective evaluation of our solution.
These metrics not only serve as indicators of success but
also serve as benchmarks for comparison against predefined
criteria.

A. Performance Metric

To conduct an evaluation of our solution, we utilise root
mean squared error (RMSE) as a metric. RMSE serves
as a crucial metric to gauge the accuracy of our evolved
weight change equations. It quantifies the discrepancy be-
tween predicted values and actual values. It is calculated by

\/% i1 (yi — 9:)%, where n is the number of data points,
y; is the actual output and g; is the predicted output. A lower
RMSE value indicates superior predictive performance. We
selected this metric for several reasons: it provides results in
the same units as the target variable, offers mathematical con-
veniences for optimization, aligns with industry standards [31],
places emphasis on outliers and our back-propagation equation
is the gradient of this error [32]. The choice of RMSE was
driven by our desire to gain a clear understanding of the dis-
parities between actual and NN outputs, with a particular focus
on penalising outliers by incorporating squared differences. By
adopting this methodology, we achieve a precise evaluation of
our project’s objectives.

Moreover, it is important to highlight that in all the perfor-
mance evaluations carried out, we have standardised both the
input features and the output values in the dataset, ensuring
that comparisons between different datasets and experiments
are fair, consistent, and easily interpretable.

B. Scatter Plots of Errors over Generations with Different
Configurations

In this section, we conduct a comparative analysis of GP
runs under various configurations. All of the graphs in this
section belong to the run that has generated the equation with
the lowest error value across six runs, for each configuration.
Each configuration has 100 individuals at each generation
and differs based on the number of individuals randomly
generated within the initial population of GP. We explore three

ENGR 489 (ENGINEERING PROJECT) 2023

distinct configurations, where the number of individuals of
each generation is 100,

« Random Initialisation: In this configuration, all individ-
uals are initialised randomly.

o One Back-Propagation: Here, one of the individuals
starts with the back-propagation equation as a foundation.

« All Back-Propagation: In this configuration, all individ-
uals are initialised as back-propagations.

The combination of these three configurations covers a
range of possibilities, from a strong back-propagation baseline
to more diverse and random starting points. This compre-
hensive approach allows for a deeper understanding of how
GP-generated equations perform and adapt under different
conditions. In the scatter plots presented below, each blue dot
represents an individual within the population. The green line
is for the error value associated with the back-propagation
equation, while the red line signifies the baseline scenario
where the neural network’s weights remain unchanged. For
each equation, we utilise five sets of randomly initialised
weights. The dataset employed for this evaluation is the 2016
Miami Housing dataset [30], as discussed earlier. Notably, we
limit the dataset to 100 random instances due to computa-
tional constraints, as the full dataset comprises over 10,000
instances, which exceeds the available computational resources
within the project’s time constraints. The NN architecture was
configured to have 13 input nodes, corresponding to the 13
numerical features in the dataset, as it automatically sets its
number of input nodes to match the dataset. The network was
designed with two hidden layers, each comprising six nodes,
as the code automatically selects half the number of hidden
nodes for each layer, for two layers.

a) All Back-Propagation Configuration : Figure 3 de-
picts the configuration in which all individuals within the GP
are initialised as back-propagations. This is evident from the
fact that all individuals in Generation O exhibit the same low
error values on the corresponding green line. Figure 2 in the
appendix [23], shows the same data in a box-plot format. GP
applies mutation and crossover operations in each subsequent
generation to introduce diversity. These operations lead to the
discovery of functions that, at least for this dataset and sets
of initial weights, appear better suited than the initial back-
propagation. While there is some variation in error values from
one generation to the next, the overarching trend is a steady
decrease. In each new generation, the number of functions
with fitness values superior to that of the back-propagation
increases. Additionally, due to the incorporation of elitism, the
best function generated in each generation consistently attains
a fitness level equal to or greater than that of the previous
generation.

We can see that there is some banding on the error values
across generations. This stems from the fact that the GP tends
to discover equations that, when simplified, represent the same
mathematical expression. This redundancy within the GP-run
equations, called intron [5], has no effect on the fitness of the
individual. An example of this can be seen in Figure 3 of the
appendix [23].

0.5

> ®ww g oo w Wy ® e

0.4

Error

0.3

0.2

YERY & A e swwbfiasy cd pr g3

1

L
.
=
-

-

0.1 cdeoprrrar el d a2 pd
el rvsbmecsirade s

0 5 10 15 20 25
Generation

Fig. 3. Scatter Plot of Functions Generated by GP over 30 Generations with
their Fitness Values for the All Back-Propagation Configuration

Figure 4 illustrates the run where the GP program starts
with the same function, hence having the same depth at
generation zero. The trend that the functions discovered are
getting simpler initially as the initial function was relatively
deep. However, as it progresses, it tends to find more complex
functions. This shift is due to the GP’s tendency to generate
deeper trees, which can represent intricate functions. However,
it’s crucial to consider the risks of over-fitting and the com-
plexities associated with training and interpreting these deeper
trees.

14

12 - o ® -

10 v ® - -

Depth

Generation

Fig. 4. Scatter Plot of Functions Generated by GP over 30 Generations with
their Depths for the All Back-Propagation Configuration

b) One Back-Propagation Configuration: In this GP con-
figuration, only one of the individuals in the initial population
is the back-propagation equation, the rest are equations that
are generated by the GP. Figure 5 illustrates each individual’s
error values in conjunction with their respective generations.
Notably, Generation 0 exhibits a distinct outlier with a con-
siderably superior fitness value compared to the others. This
outlier represents the individual that is the back-propagation
equation. This particular individual contributes to our run
by providing influential segments that the GP can utilise to
construct a new function, given its relatively low fitness, where
fitness is inversely related to the error value. The inclusion of
the back-propagation baseline provides valuable insight into

30

Error

0.40

0.35

0.30

0.25

0.20

0.15

0.10

ENGR 489 (ENGINEERING PROJECT) 2023

the GP’s ability to evolve functions that refine the initial
reference.

For this GP configuration, similar to the one where all
individuals were initialised as back-propagation equations,
the first generation has already generated several functions
with fitness values outperforming that of the back-propagation
equation. This observation holds true for the specific dataset
and initial weight sets considered in this context. The com-
parison between evolved functions and the back-propagation
as well as the baseline equation enables an assessment of
the GP’s capacity to produce weight update equations of
higher quality or refinement. Over the course of generations,
there has been a consistent decline in error values, indicating
an improvement in the evolved functions. Each subsequent
generation exhibits an increasing number of functions with
fitness values surpassing that of the initial back-propagation
reference. This trend underscores the GP’s adaptability and
effectiveness in generating superior weight update equations
for the specific problem as it evolves. The graph depicting
the depths of the functions generated in this configuration is
provided in Figure 5 of the appendix [23] as the overall trend is
similar to the in Figure 4, as the generation number increases,
so does the complexity of the equations generated.

o"i“..bi..&..b&

0 5 10 15 20 25 30
Generation

Fig. 5. Scatter Plot of Functions Generated by GP over 30 Generations with
their Fitness Values for the One Back-Propagation Configuration

¢) Random Initialisation Configuration: In this config-
uration, all individuals within the GP’s initial population
are randomly initialised, devoid of any prior knowledge or
reference equations. This setting reflects a scenario where
the GP starts with no predefined starting point. Through
successive generations, mutation and crossover operations
introduce diversity and enable the GP to explore an extensive
solution space. The absence of constraints from a reference
equation grants the GP the freedom to evolve weight update
functions entirely from scratch. This configuration serves as a
valuable benchmark for assessing the GP’s capacity to adapt
and generate weight change equations independently. It gauges
the algorithm’s ability to evolve functions that can outperform
back-propagation function and establish an effective neural
network training process.
Figure 6 depicts individual error values over time within
this random initialisation configuration. Notably, none of

the individuals within the initial population align with the
back-propagation line. As our GP evolves through succes-
sive generations, a noteworthy trend emerges. It becomes
evident that the GP is capable of generating equations that
exhibit superior performance when compared to the back-
propagation equation. In this specific run, the GP successfully
identifies an equation that surpasses the performance of the
back-propagation algorithm within just four generations. This
outcome demonstrates the GP’s ability to determine intricate
relationships within the dataset and construct functions that
perform better in comparison to the back-propagation algo-
rithm. It provides a demonstration of the algorithm’s ability to
explore solution spaces and evolving functions that enhance
NN training processes, all achieved without the reliance on
prior guidance or reference equations.

0.40

0.35

0.304

Error

0.25]

0.20

0.15

"
coll
XY}

Generation

Fig. 6. Scatter Plot of Functions Generated by GP over 30 Generations with
their Fitness Values for the Random Initialisation Configuration

It is important to acknowledge that the GP algorithm’s per-
formance can exhibit variability across different runs, largely
influenced by the inherent randomness in the process. As
depicted in Figure 8 in the appendix [23], there are instances
where the GP algorithm failed to discover a superior equation
to the back-propagation method within the initial 30 gener-
ations. This disparity in outcomes can be attributed to the
stochastic nature of the GP’s operations, including the random
selection of dataset instances and the initial random generation
of weight sets used for each run.

The observed run-to-run variability highlights a limitation
of the GP algorithm: its sensitivity to the specific dataset
instances and initial conditions. Unfortunately, mitigating this
issue is complex since it’s rooted in practical limitations. These
limitations are tied to the finite nature of available computa-
tional resources, even when employing techniques like multi-
processing and the Rapoi Cluster [25]. As a result, some level
of variability remains unavoidable since running the GP across
multiple datasets, data instances, and initial weight sets is not
currently feasible. Nevertheless, it is essential to emphasize
that, despite the variance in performance outcomes, the overall
trend remains consistent. The error values of individuals tend
to decrease steadily as the number of generations increases,
reflecting the GP’s continual refinement and optimization
process.

ENGR 489 (ENGINEERING PROJECT) 2023

TABLE II
BEST EQUATION OF EACH CONFIGURATION ALONGSIDE BACK-PROPAGATION AND BASELINE FOR COMPARISON

Equation Name

Mathematical Notation, following Figure 2

Back-Propagation
(Equation 0)

217*h*<17h)*y*(1*y)*5*wuut

Best Equation of All Back-Propagation
(Equation 1)

xxhox (1 —h)*exwour* 14

Best Equation of One Back-Propagation
(Equation 2)

xxhx (L —h)*exwourk (h+1)* (y+1)* (y+2) % [—h*€xwout %2> % (e + 1) + h + 2]

Best Equation of Random Initialisation
(Equation 3)

ex (Y — Wout) * (y —)

Baseline, No-Change Equation
(Equation 4)

0

In cases where the GP algorithm does not immediately out-
perform the back-propagation method, extending the number
of GP generations could yield more favourable results. This
aligns with previous observations that suggest the GP, given
sufficient time, can discover equations that optimise weight
updates, enhancing performance on the dataset and initial
weight sets.

C. Investigating the Best Equations
This section evaluates the top-performing GP-generated

systems, providing comprehensive information on travel pat-
terns, weather conditions, and other factors relevant to the total
rental bike count.

a) Longer Runs on Miami Housing 2016: An evaluation
was conducted that involved extending the number of training
epochs to 1000 for the neural network using the training
dataset, Miami Housing 2016, where GP-generated equations
were employed as weight update mechanisms.

0.30

Equation 0
Equation 1
Equation 2
Equation 3
Equation 4

weight change equations derived from the runs associated
with the previously discussed scatter plots. Table II shows
the best equations in Figure 2 notation. The red segments

0.25

within the equations correspond to the parts where the equation
matches parts of the back-propagation, whereas the blue parts
correspond to non-matching sections. The performance of
the GP-generated weight change equations will be measured
against the conventional back-propagation for each dataset. We
will utilise RMSE as a metric to assess the accuracy of these
equations.

In order to thoroughly assess the adaptability and effective-
ness of these equations, we applied them to different datasets.
Dataset selection plays an important role in evaluating the
equations. Therefore, we chose datasets from different fields of
real-world context, including housing prices, aircraft control,
and bike-sharing systems. The multi-dataset evaluation seeks
to demonstrate the practical applicability of the GP-generated
weight change equations in diverse real-world scenarios. It
investigates whether these equations can effectively contribute
to the training of NN for a range of tasks, extending their
utility beyond their initial dataset-specific design. Three dis-
tinct datasets that have no missing values were selected from
various real-world scenarios for this analysis:

— Miami Housing 2016 [30]: This dataset served as the
foundation for training the GP and evolving the weight change
equations. The price of a house in this dataset can be deter-
mined using information such as the land area, distance to
various parts of the city, age of the structure and other factors.
— F16 Aircraft Elevator Control Actions [33]: This is a test
dataset concerning actions taken on the elevator component
of an F16 aircraft. Employing the GP-evolved equations on
a separate dataset serves as a test of their adaptability and
capacity for generalisation.

— Capital Bikeshare System, Washington D.C., USA, 2011-
2012 [34]: Another test dataset, centring around bike-sharing

Error
o
N
o

0.15

0.10

0.05

400 600 800

Epoch Number

Fig. 7. Equations, as shown in Table II, ran on Miami Housing 2016
dataset [30]

The plots in Figure 7 provide a visual representation of the
performance of these equations. The absence of error reduction
in Equation 4, despite its exclusive application to hidden layer
weights, stems from our choice of keeping the output weights
unchanged. This measure is taken to isolate the impact of the
equations, specifically designed for the hidden layers, allowing
us to assess their performance independently. Equation 0, the
back-propagation equation, is used as a reference point to
assess how well the GP-generated equations perform. The
back-propagation equation shows a high level of consistency
when compared to the GP-evolved equations, which often
show more variability and unpredictable behaviour.

For the GP-generated equations initialised with back-
propagation as a reference in the initial generation, we ob-
serve significantly lower error values compared to pure back-
propagation. Notably, the All Back-Propagation configured
equation outperforms the other slightly in terms of lower error
values. This indicates that the GP-generated equations that are
trained on this dataset, often perform in ways that generalise

Error

0.25

0.20

0.15

0.10

0.05

ENGR 489 (ENGINEERING PROJECT) 2023

for the dataset. However, further evaluation of additional
datasets will provide a more comprehensive understanding of
their adaptability and real-world applicability.

In contrast, the equation generated under the Random Ini-
tialisation configuration, exhibits a strong initial performance,
surpassing the back-propagation function. However, as the
number of training epochs progresses, these equations reach a
plateau, and their performance levels off. This behaviour can
be attributed to the GP’s limited evaluation period, where each
individual equation is assessed for only 100 epochs within
the GP. While Equation 3 may exhibit superior performance
during this limited time frame, back-propagation eventually
surpasses it in the long term. This dynamic underscores the
importance of continuous assessment and refinement to ensure
that GP-generated equations remain effective across various
scenarios.

b) F16 Aircraft Elevator Control Actions: To evaluate
how these equations perform on a different dataset, we con-
ducted a similar analysis to the one above using the F16
Aircraft Elevator Control Actions [33] as a test dataset.

Equation 0
Equation 1
Equation 2
Equation 3
Equation 4

400 600 1000

Epoch Number

Fig. 8. Equations, as shown in Table II, ran on F16 Aircraft Elevator Control
Actions dataset [33]

Figure 8 provides a visual representation of the performance
of the GP-generated equations. We have maintained the same
colour coding as in the previous section for consistency.

Similar to the Miami Housing 2016 dataset, the back-
propagation equation follows a more consistent downward
trend without significant fluctuations. In contrast, the GP-
generated equations exhibit lower error rates, yet they dis-
play somewhat unstable behaviour, occasionally experienc-
ing jumps. As observed in the previous dataset, the All
Back-Propagation configuration demonstrates slightly superior
performance, reinforcing its position as a robust reference.
Notably, for the previous dataset, the equation from the Ran-
dom Initialisation configuration was surpassed by the back-
propagation equation after approximately 180 epochs. How-
ever, for this dataset, back-propagation struggled to surpass
this configuration, except for a random error spike of the
Random Initialisation equation.

These observations suggest that while these equations were
not specifically evolved using this dataset, they can still yield
improved results, hinting at their potential for generalisation.

This implies that GP-generated equations hold promise for
optimising the weight updates of various neural networks, ex-
tending beyond network designs tailored for specific datasets.

c) Capital Bikeshare System, Washington D.C. 2011-
2012: Capital Bikeshare System [34] was used as the other
test dataset to execute a comparable analysis following the
same methodology.

0.450

0.425

0.400

0.3754

Error

0.350
0.325
0.300
0.275

L

0.250 E—

Equation 0
Equation 1
Equation 2
Equation 3
Equation 4

—

0 200 400 600 800

Epoch Number

Fig. 9. Equations, as shown in Table II, ran on Capital Bikeshare System,
Washington D.C. 2011-2012 dataset [34]

Figure 9 shows the performance of the GP-generated equa-
tions. Similar to the other two datasets, the back-propagation
equation exhibits a relatively steady decrease in error, main-
taining a more consistent trend. Contrarily, the GP-generated
equations show less fluctuation this time and appear to produce
error values quite close to each other. The back-propagation
equation starts to outperform them around epoch number 100
and fully overtakes them around the 220th epoch.

The error values depicted on the y-axis emphasize the
challenging nature of this dataset, as the RMSE error values
exhibit a limited reduction, struggling to attain values signifi-
cantly below 0.250 for any of the equations. This indicates the
complex nature of the relationship between input and output in
our neural network, reflecting the limitations imposed by our
fixed neural network architecture. Specifically, the predeter-
mined number of hidden layers and nodes within our algorithm
remains unchanged. Modifying this architecture by varying the
number of hidden nodes would introduce additional complex-
ity, necessitating extensive testing to determine the optimal
configuration for each dataset. However, such an undertaking
exceeds the scope of our current project. Moreover, modifying
the input-to-hidden node ratio for each dataset would render
the error values incomparable across datasets, as the network
structures would differ significantly.

The back-propagation equation, being part of a more tra-
ditional and straightforward training approach that is mathe-
matically derived, is better suited to tackle complex datasets
like this one. Back-propagation, as it is the gradient of the
error function [32], can gradually refine the neural network’s
internal parameters to align with the dataset’s complexi-
ties. This adaptability, especially in the presence of intricate
and challenging data, contributes to the superiority of back-
propagation over the GP-generated equations in this specific

1000

ENGR 489 (ENGINEERING PROJECT) 2023

scenario. The lack of fine-tuned adjustments could lead to
the GP-generated equations falling short of achieving the
same level of performance as back-propagation in challenging
datasets, especially when the equations are not generated for
that particular dataset.

D. Overall Evaluation

The evaluation of GP-generated weight change equations
reveals the potential for them to excel on specific datasets.
However, their performance exhibits variations between dif-
ferent datasets, which highlights the need for a more in-depth
analysis of their adaptability and consistency.

Among the evaluated equations, the All Back-Propagation
configuration’s equation stands out as a notable performer.
It consistently achieves lower error rates compared to other
GP-generated equations. It is noteworthy that in two out of
three datasets, including both a test and a training dataset,
this configuration outperforms the back-propagation method.
This performance underlines the potential of leveraging back-
propagation as a foundation for GP-generated equations in
certain scenarios, where it can outperform the traditional back-
propagation method.

The performance of the One Back-Propagation config-
uration equation closely mirrored that of the All Back-
Propagation configuration, with their error values consistently
remaining within close range of one another. This observation
suggests that the practice of initialising all individuals in the
initial generation with back-propagation equations may not
be necessary. In fact, it raises the possibility that allowing
randomly generated initial individuals could contribute to a
broader exploration of the solution space during the earlier
generations. This, in turn, may lead to more diverse solutions
in the later stages of the evolutionary process, further supple-
menting the search for optimal equations.

The Random Initialisation configuration equation displayed
a distinct pattern in its performance. In the initial stages of the
run, it frequently outperformed the back-propagation method,
achieving lower error values within the first 100 to 200 epochs.
However, as training of the network progressed with each
epoch, the back-propagation equation’s error values began
to drop more consistently with its smoother convergence, a
trend observed in the training dataset and one of the test
datasets. Interestingly, in the second test dataset, the equation
generated by the Random Initialisation configuration main-
tained its superior performance even after 1000 epochs, which
was the maximum duration of our testing. The favourable
aspect of the Random Initialisation configuration producing
equations that align well with certain datasets underlines the
adaptability of the GP algorithm in diverse scenarios. It is
worth noting, though, that while the Random Initialisation
configuration displayed strong potential for certain datasets,
the other two configurations that relied on back-propagation
as a foundation consistently generated equations that better
suited all three datasets. This outcome suggests that while
the Random Initialisation configuration can deliver competitive
results, the GP may benefit from the foundational support pro-
vided by back-propagation, especially in ensuring consistent
performance across different datasets.

One plausible explanation for why GP-generated equations
seem to be better performing is because of our intentional
prevention of changes in the output layer weights. This con-
straint forces the GP to provide equations that lead to a faster
error reduction, showing that there is a trade-off between rapid
error reduction and long-term consistency. This suggests there
is more work that needs to be done to understand the types of
datasets these GP-generated functions are better suited for. A
possible setting of an NN can be to utilise our GP-generated
equations for the first few 100 epochs and then swap to use the
back-propagation equation. This should result in rapid error
reduction in earlier epochs and then a steady convergence
to achieve better results without the fluctuations of the GP-
generated equations.

A notable observation in this context is that within the
configurations initialised with back-propagation, the first gen-
eration already includes individuals with superior fitness com-
pared to back-propagation. This observation underscores the
GP’s ability to rapidly evolve equations that closely match the
dataset’s unique characteristics. By using back-propagation as
a starting point, the GP can craft equations that are well-suited
to the dataset, outperforming the back-propagation method
which uses the gradient of the loss function [32], which is our
fitness value. In scenarios where the dataset exhibits general-
isability, the GP has the potential to discover highly effective
equations or independently rediscover the principles of back-
propagation from the Random Initialisation configuration.

V. CONCLUSION

The primary objective of this project was to explore the
potential of GP to evolve efficient weight change equations
for NN architectures. By doing so, it seeks to potentially
rediscover and enhance commonly used weight change equa-
tions, automating their design process. The NN architecture
implemented is a feed-forward network architecture capable
of handling multiple hidden layers, each with varying numbers
of nodes, a sigmoid activation function is employed at each
hidden and output node. This architecture is designed for
regression tasks. Three different configurations were used to
generate functions: the All Back-Propagation configuration,
which initialises the GP with back-propagation equations for
all initial individuals; the One Back-Propagation configuration,
which initialises just one individual with a back-propagation;
and the Random Initialisation configuration, which begins with
entirely randomly generated equations. In the evaluation phase,
six runs were executed for each configuration, where each
individual was used to update the weights of the network for
100 epochs. Subsequently, the runs that generated the best
equations from each configuration were compared using scat-
ter plots depicting each individual’s errors across generations.
These best equations were later run on distinct datasets to
visualise their performance over 1000 epochs where we utilise
RMSE as the performance metric. One of the three datasets
was utilised to train our GP.

Utilising at least one back-propagation in the initial gen-
eration of the GP resulted in discovering equations that are
better suited for two out of three datasets when compared

ENGR 489 (ENGINEERING PROJECT) 2023

to back-propagation. The equation generated by the Random
Initialisation configuration was found to initially outperform
back-propagation but struggled to maintain performance. This
occurrence can be attributed to our intentional limitation on
altering output layer weights within GP-generated equations,
driving the GP to prioritise rapid error reduction, and reveal-
ing a trade-off between rapid error reduction and long-term
consistency, posing a challenge for GP-based weight update
equation optimisation.

Our findings indicate that the GP algorithm, especially
when supported by a strong baseline like back-propagation,
can quickly adjust and generate equations that closely fit the
dataset’s needs. This adaptability highlights the GP’s potential
to perform well in different situations, especially with datasets
that offer greater potential for generalisation, emphasizing the
requirement for additional exploration and experimentation to
unlock the complete capabilities of this algorithm in diverse
scenarios. While the GP exhibits promise in terms of adapt-
ability, ensuring its stability and consistency represents crucial
areas for improvement and future investigation.

Building on the results from this evaluation, there are
several avenues for future work that could be investigated. One
promising direction involves enhancing the generalisability of
the GP-generated equations. This could be achieved by iden-
tifying additional datasets from various real-world domains
or by utilising multiple datasets simultaneously, helping to
mitigate the risk of over-fitting to one dataset. The current
code structure allows for the utilisation of multiple datasets.

Another future direction is also exploring the impact of
modifying the predetermined number of hidden layers and
nodes as the current runs only covered two layers with each
having half the input nodes, resulting in a relatively small
network. This exploration can facilitate the GP in discovering
more relevant weight update equations suitable for specific
datasets.

Other future directions include expanding the function set
used in GP to include more mathematical functions such as
logarithm, sine, square root, etc., allowing for a wider search
area. This bigger search area requires increasing the population
size or the number of generations within GP. However, this
increase means that GP will take a longer time to explore
the possibilities, resulting in a computational cost increase.
Another direction is investigating the usage of classification
tasks within the NN architecture with appropriate datasets.

As we have already tried integrating the output layer weight
changes within GP or hard-coding them to be correct, and it
did not yield satisfactory results, we propose the usage of co-
evolutionary techniques [35] to simultaneously evolve weight
change equations for both hidden layers and the output layer.
This approach can help create equations that work together in
unison across the entire network.

An additional potential direction is investigating the feasi-
bility and effectiveness of a hybrid approach that combines
GP-generated equations for the initial training 100 epochs
with subsequent epochs utilising back-propagation, which can
potentially improve convergence and performance.

This project delved into GP’s ability to evolve functions
with a primary focus on discovering effective weight change

equations for NN architectures. This research aimed to stream-
line the process of equation design, focusing on a feed-forward
network architecture’s weight changes, suited for regression
tasks. Our GP was able to generate effective weight change
equations that have yielded better results than the reference
point, back-propagation, within our experiments. These find-
ings show promise as this project can be used to tackle the
challenge of manually designing machine learning algorithms
by utilising GP to automatically generate optimal solutions.
Several future directions have also been proposed to further
increase the effectiveness of this methodology for the task of
evolving weight change equations.

REFERENCES

[11 K. Sharifani and M. Amini, “Machine learning and deep learning: A
review of methods and applications,” World Information Technology
and Engineering Journal, vol. 10, no. 07, pp. 3897-3904, 2023.

[2] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” CoRR, vol. abs/1611.01578, 2016.

[3] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” arXiv preprint arXiv:1710.05941, 2017.

[4] R. Poli and J. Koza, Genetic Programming, pp. 143—-185. Boston, MA:
Springer US, 2014.

[5] L. Vanneschi and R. Poli, Genetic Programming — Introduction,
Applications, Theory and Open Issues, pp. 709-739. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012.

[6] G. Bingham, W. Macke, and R. Miikkulainen, “Evolutionary
optimization of deep learning activation functions,” in Proceedings of
the 2020 Genetic and Evolutionary Computation Conference,
pp- 289-296, 2020.

[71 R. Lapid and M. Sipper, “Evolution of activation functions for deep
learning-based image classification,” in Proceedings of the Genetic and
Evolutionary Computation Conference Companion, pp. 2113-2121,
2022.

[8] A. Chakraborty, A. Sivaram, L. Samavedham, and
V. Venkatasubramanian, “Mechanism discovery and model
identification using genetic feature extraction and statistical testing,”
Computers & Chemical Engineering, vol. 140, p. 106900, 2020.

[9] K. S. Ganesh, “What’s the role of weights and bias in a neural

network?.” https://towardsdatascience.com/

whats-the-role- of- weights-and-bias- in-a-neural-network-4cf7¢9888a0f,

Sep 2022. [Online; accessed 25-May-2023].

A. sbai, “Ai and environmental sustainability.”

https://infomineo.com/ai-and-environmental-sustainability/, Jan 2023.

[Online; accessed 22-May-2023].

A. Shrestha and A. Mahmood, “Optimizing deep neural network

architecture with enhanced genetic algorithm,” in 20719 18th IEEE

International Conference On Machine Learning And Applications

(ICMLA), pp. 1365-1370, 2019.

F. Johnson, A. Valderrama, C. Valle, B. Crawford, R. Soto, and

R. Nanculef, “Automating configuration of convolutional neural

network hyperparameters using genetic algorithm,” IEEE Access,

vol. 8, pp. 156139-156152, 2020.

M. Fatehnia and G. Amirinia, “A review of genetic programming and

artificial neural network applications in pile foundations,” International

Journal of Geo-Engineering, vol. 9, no. 1, 2018.

A. Ryabtsev, “8 reasons why python is good for artificial intelligence

and machine learning.” https://djangostars.com/blog/

why-python-is- good-for-artificial-intelligence- and- machine-learning/,

Dec 2022. [Online; accessed 22-May-2023].

DEAP, “Deap documentation - deap 1.3.3 documentation 2023.”

https://deap.readthedocs.io/en/master/index.html. [Online; accessed

23-May-2023].

“Numpy.” https://numpy.org/, 2023. [Online; accessed 01-Oct-2023].

“pandas.” https://pandas.pydata.org/, 2023. [Online; accessed

01-Oct-2023].

“Sympy.” https://docs.sympy.org/latest/index.html, May 2023. [Online;

accessed 31-May-2023].

“Matplotlib: Visualization with python.” https://matplotlib.org/,

journal=Matplotlib, 2012. [Online; accessed 30-May-2023].

[10]

[11]

[12]

[13]

[14]

[15]
[16]
(17]
(18]

[19

ENGR 489 (ENGINEERING PROJECT) 2023

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

A. C. Team, “Waterfall methodology: Project management.”
https://business.adobe.com/blog/basics/waterfall, 2022. [Online;
accessed 26-May-2023].

M. A. Albadr, S. Tiun, M. Ayob, and F. AL-Dhief, “Genetic algorithm
based on natural selection theory for optimization problems,”
Symmetry, vol. 12, no. 11, p. 1758, 2020.

R. Poli, N. F. McPhee, and L. Vanneschi, “Elitism reduces bloat in
genetic programming,” in Proceedings of the 10th Annual Conference
on Genetic and Evolutionary Computation, GECCO 08, (New York,
NY, USA), p. 1343-1344, Association for Computing Machinery,
2008.

T. H. Kurnaz, “Final report appendix.” Appendix for Discovery of
Neural Network Weight Update Equations Through Genetic
Programming.

T. H. Kurnaz, “Discovery of neural network weight update equations
through genetic programming preliminary report.” Preliminary Report
of this project.

“Rapoi cluster documentation.”
https://vuw-research-computing.github.io/raapoi-docs/. [Online;
accessed 02-Oct-2023].

H. Pratiwi, A. P. Windarto, S. Susliansyah, R. R. Aria, S. Susilowati,
L. K. Rahayu, Y. Fitriani, A. Merdekawati, and I. R. Rahadjeng,
“Sigmoid activation function in selecting the best model of artificial
neural networks,” Journal of Physics: Conference Series, vol. 1471,
no. 1, p. 012010, 2020.

A. Apicella, F. Donnarumma, F. Isgro, and R. Prevete, “A survey on
modern trainable activation functions,” Neural Networks, vol. 138,

pp. 14-32, 2021.

J. Brownlee, “Weight initialization for deep learning neural networks.”
https://machinelearningmastery.com/

weight-initialization- for-deep-learning-neural-networks/, Feb 2021.
[Online; accessed 07-October-2023].

“What is xavier initialization?.”
https://365datascience.com/tutorials/machine-learning-tutorials/
what-is-xavier-initialization/#h_24242636975541686829817569, Jun
2023. [Online; accessed 07-October-2023].

L. Grin, “Miamihousing2016.”
https://www.openml.org/search?type=data&sort=runs&id=44147, 2022.
[Online; accessed 11-October-2023].

T. O. Hodson, “Root-mean-square error (rmse) or mean absolute error
(mae): when to use them or not,” Geoscientific Model Development,
vol. 15, no. 14, pp. 5481-5487, 2022.

J. Brownlee, “Difference between backpropagation and stochastic
gradient descent.” https://machinelearningmastery.com/
difference-between-backpropagation-and-stochastic-gradient-descent/,
Jan 2021. [Online; accessed 11-October-2023].

L. Grin, “elevators.”
https://www.openml.org/search?type=data&sort=runs&id=44134, 2022.
[Online; accessed 11-October-2023].

L. Grin, “Bike sharing demand.”
https://www.openml.org/search?type=data&sort=runs&id=44142, 2022.
[Online; accessed 11-October-2023].

M. Aichour and E. Lutton, Cooperative Co-evolution Inspired
Operators for Classical GP Schemes, pp. 169-178. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008.

