
1

ENGR 489 (ENGINEERING PROJECT) 2023

Improving TCP CUBIC Congestion Control with

Machine Learning (2023)

James Knott

Abstract— Transmission Control Protocol (TCP) is commonly

used for reliable internet data transfers. However, TCP can

experience packet loss due to network congestion. Packet loss

happens when data doesn't reach its destination for various

reasons. In recent years, there has been a growing inclination

towards adopting novel, clean-slate learning-based designs as

alternatives to traditional congestion control mechanisms for the

Internet. However, we posit that integrating machine learning

techniques with the current congestion control schemes can

achieve comparable, if not superior outcomes. This project

endeavoured to address this gap and implement a system that can

utilised with TCP CUBIC. Our method looked to enhance the

efficiency of the TCP CUBIC congestion control by incorporating

machine learning techniques. TCP CUBIC, the default congestion

control variant in the current Linux Kernel, modifies the

congestion window size based on a loss-based algorithm, thereby

influencing the rate of data transmission. TCP CUBIC uses a

parameter, beta, to modify the rate at which the congestion

window grows. Our approach involves employing a model-free

reinforcement learning algorithm, specifically a Q-learning

algorithm to optimize the TCP CUBIC beta parameter, targeting

an increase in throughput for TCP CUBIC connections. Through

extensive testing performed in various simulated network

conditions we demonstrate the performance and adaptability of

the Q-Learning algorithm. Furthermore, this report details the

various development decisions undertaken and their driving

influences. It also provides an insight into the project's results,

expanding on the existing system design, and elaborates on the

potential for future work in this area.

Index Terms—TCP, CUBIC, Q-Learning, Reinforcement

Learning, Machine Learning

I. INTRODUCTION

ransmission Control Protocol (TCP) is a protocol that is

frequently used by internet users for reliable data

transfers. However, TCP can suffer from packet loss

through network congestion. Packet loss is the loss of

data during network transmission. It occurs when one or more

packets fail to reach their destination, which can happen due to

a variety of reasons. When packets are lost the receiving node

may not receive all the data it requires to properly reconstruct

the data. The implications of packet loss are considerable,

leading to network performance degradation in terms of packet

delays, a decrease in throughput, and reduced application

performance. As a response to these challenges, various TCP

alternatives equipped with congestion control algorithms have

been developed to curb such adverse effects. TCP CUBIC

(CUBIC) is a notable example of these alternatives and has been

This project was supervised by Winston Seah (primary), Alvin Valera.

universally adopted across standard operating systems,

including Windows, Linux, and Mac [1]. CUBIC controls

congestion window growth using a cubic function [1].

This project looked to reduce packet loss and increase

throughput of TCP connections using machine learning. The

proposed solution looked to develop a machine learning

algorithm that modifies CUBIC parameters to improve

throughput and packet loss by 15%. We did not look to redesign

CUBIC but to create an algorithm that can work alongside its

current implementation. Furthermore, in the current literature,

there is a noticeable gap in machine learning algorithms used

with the already existing CUBIC. Most studies look to create

their own protocol that works in conjunction with machine

learning [3][4][5][6][7][8].

This project looked to address this gap and implement a system

that can utilised with CUBIC. Using a Q-learning algorithm to

optimise CUBIC’s congestion control parameters. Specifically,

CUBIC’s β (beta) parameter. CUBIC follows a cubic algorithm

and has parameters that affect the growth of the congestion

window. After every loss event, the new max congestion

window is calculated by performing a multiplicative decrease

of the congestion window by a factor of beta where beta is a

window decrease constant (beta) [1]. During evaluation, results

show that during transmissions experiencing packet loss our Q-

learning algorithm can increase throughput by up to 13% and

reduce packet loss by up to 8%. This signifies not only the

efficacy of our approach but also its potential to enhance the

overall performance of TCP connections, especially where

packet loss is prevalent.

II. RELATED WORK

Machine learning in conjunction with congestion control is

currently a topic being researched however, it has not been

implemented in current systems where TCP CUBIC is the

favoured variant of TCP. There are three main classes of

learning algorithms supervised learning, unsupervised learning,

and reinforcement learning (RL). In the current literature,

reinforcement learning, and the deep variant of reinforcement

learning (DRL) are the favoured choices [2][3][4][5].

Abbasloo et al, Jay et al and Xu et al all opt for Deep

reinforcement learning [2][3][4]. Orca uses the underlying TCP

to handle the connections [3]. They tested Orca over varying

connections within USA and intercontinental connections.

Outperforming Aurora within the USA and Aurora providing

better throughput intercontinental experiments [2][3].

T

2

ENGR 489 (ENGINEERING PROJECT) 2023

Aurora and Xu et al used purely machine learning based

protocols opting to design their own [3][4]. While Kong et al

used basic Reinforcement learning [5]. Dong et al use what

they call Performance-oriented Congestion Control (PCC) [6].

While these papers are all successful at reinventing

congestion control and in all cases outperform standard

implementations of TCP such as CUBIC and NewReno.

Afonin et al describe a Q-Learning solution in conjunction

with TCP [7] and is the most alike to this project. The study

provides a rather surface-level exploration and does not delve

deep into the intricacies of how their Q-Learning algorithm

interacts with the congestion window. While it offers an

overview, it lacks a detailed examination of the specific

mechanisms and dynamics at play between the Q-Learning

process and the congestion window adjustments. They note a

reduction in packet delay of 15%.

There is a clear theme, among the current literature as each

study looks to either rewrite existing or write their own

congestion control protocol. even if an algorithm is technically

sound, getting it adopted widely in the industry is a significant

hurdle. Established protocols have the advantage of being tried

and tested over time, and convincing network operators, device

manufacturers, and software developers to switch to a new

algorithm can be a daunting task. This project looks to address

that gap and demonstrate a Q-Learning algorithm that works in

conjunction with TCP CUBIC in the state it is currently.

III. DESIGN

In this project, we are not embarking on a full-scale redesign

of TCP CUBIC. Instead, we are focused on exploring the

potential enhancements that can be applied to the existing TCP

CUBIC framework. Our objective is to fine-tune TCP CUBIC's

congestion control parameters without necessitating a complete

rewrite of the protocol or its congestion control algorithm. The

primary aim of this model is to optimize TCP CUBIC's

performance by improving latency and reducing packet loss.

A. Network Topology

In evaluating the impact of tuning TCP CUBIC's beta

parameter, it is essential to isolate as many external variables as

possible to get clear, unequivocal results. Utilising a simplified

network topology comprising solely of a sending node and a

receiver node offers an optimal setup for this kind of

experimentation. This simple model ensures that external

factors, often introduced with the inclusion of multiple nodes,

don't skew or muddy the results. When dealing with more

complex multi-node environments, the network inherently

becomes susceptible to a myriad of additional variables, such

as node-to-node interference, varying path delays, and potential

bottlenecks in intermediate nodes. In contrast, a direct sender-

receiver topology facilitates a controlled environment, allowing

for precise evaluation and tuning of the beta parameter without

extraneous influences. This approach guarantees that any

observed effects or changes in performance are almost

exclusively attributable to modifications made to the TCP

CUBIC's beta parameter.

In current implementations of TCP CUBIC in Linux,

Windows or Mac, these parameters are unable to be modified.

Direct manipulation of TCP CUBIC's beta parameter is

inherently constrained due to the hard-coded nature of certain

kernel parameters. The kernel's implementations have been

optimised for general use-cases, and allowing users to easily

modify such parameters could inadvertently compromise the

stability and predictability of network performance, as well as

introduce potential security vulnerabilities. Thus, ensuring the

robustness and security of the system often takes precedence

over providing granular customization options for users.

Furthermore, once the transmission is underway, these

parameters are locked in, ensuring consistency in the

transmission behaviour and avoiding the complexities that

could arise from altering parameters during an active session.

This means CUBIC’s parameters will need to be modified prior

to every transmission and will stay consistent throughout the

transmission. After each transmission is complete the effects of

the parameter modifications can be observed.

Given the constraints in directly tweaking the TCP CUBIC's

beta parameter within the operating systems, an alternative

approach is to employ network simulation. Utilising a network

simulator allows for the creation of a controlled virtual

environment where parameters, like the beta value, can be

modified freely without the risk of destabilising an actual

network. This not only ensures a safe playground to test and

observe the effects of such modifications, but it also provides

the flexibility to replicate a variety of network conditions and

scenarios, thereby offering comprehensive insights into the

potential real-world implications of tuning the parameter.

B. TCP CUBIC

TCP CUBIC employs a unique congestion control strategy.

After experiencing a loss event, which is an unacknowledged

packet, it marks the window size at which the loss occurred as

𝑊𝑚𝑎𝑥 [1]. It then decreases the congestion window by a

constant factor β (beta), which is the window decrease constant,

while continuing with the regular fast recovery and

retransmission mechanisms of TCP.

As CUBIC transitions from fast recovery to congestion

avoidance, it initiates an increase in the window size using a

concave profile of the cubic function. This function is designed

to have a plateau at 𝑊𝑚𝑎𝑥, which means that the concave

growth persists until the window size matches 𝑊𝑚𝑎𝑥. In a

graphical representation, a concave function appears as a curve

where any line segment drawn between two points on the

function lies below or on the function itself. This type of growth

is often seen in scenarios where initial gains are substantial, but

as time or the quantity of the variable increases, the rate of

growth starts to slow down, leading to smaller incremental

gains. Beyond that point, the cubic function shifts into a convex

profile, initiating convex window growth. This growth pattern

3

ENGR 489 (ENGINEERING PROJECT) 2023

is observed in situations where initial advancements might be

modest or gradual, but as time progresses or the quantity of the

variable increases, the growth rate escalates, resulting in larger

incremental gains.

This approach to window adjustment, moving from concave

to convex growth, is intended to enhance protocol and network

stability while maintaining high network utilization. The

plateau around 𝑊𝑚𝑎𝑥 is where network utilization is considered

to be at its peak as this is where the last loss occurred. Under

steady-state conditions, most window size samples in CUBIC

are close to 𝑊𝑚𝑎𝑥, promoting both high network utilization and

protocol stability.

It's worth noting that protocols with convex growth functions

tend to have their most significant window increment around

the saturation point, which can introduce a substantial burst of

packet losses.

The window growth function of CUBIC follows this

formula:

𝑊(𝑡) = 𝐶(𝑡 − 𝐾)3 + 𝑊𝑚𝑎𝑥

Where C is a CUBIC parameter, t is the time elapsed since

the last window reduction, and K is the time it takes for the

function to increase W to 𝑊𝑚𝑎𝑥 in the absence of further loss

events.

𝐾 = √
𝑊𝑚𝑎𝑥𝛽

𝐶

3

The parameter β (beta) within the TCP CUBIC algorithm

plays a pivotal role in influencing the protocol's reaction to

network congestion. It serves as a crucial factor in determining

the rate at which the congestion window is adjusted following

congestion events, such as packet loss. Specifically, β serves as

the constant that controls the multiplicative decrease in the

congestion window, effecting a reduction in its size. The choice

of β is central to the algorithm's responsiveness, influencing its

behaviour during congestion episodes. Smaller values of β

result in more aggressive window reductions, facilitating a swift

response to network congestion. Conversely, larger β values

lead to more gradual reductions, allowing for a smoother and

less abrupt response to network congestion.

Due to β's significant influence on TCP CUBIC's behaviour

during loss events, it emerges as a pivotal parameter to fine-

tune with the purpose of mitigating packet loss. The β parameter

directly dictates the rate at which the congestion window

decreases when congestion is detected, such as during packet

loss scenarios. By modifying β, it becomes possible to strike a

balance between a more aggressive or more gradual reaction to

congestion, thus optimizing the protocol's response. A well-

tuned β value can facilitate a more measured, controlled

reduction of the congestion window during congestion events,

consequently reducing the likelihood of packet loss. In this

context, the fine-tuning of β represents a targeted and effective

strategy to enhance network performance and bolster the

reliability of data transmission in TCP CUBIC.

C. Reinforcement Learning

Sutton et al state, “Reinforcement learning problems involve

learning what to do—how to map situations to actions—so as

to maximize a numerical reward signal” unlike many forms of

machine learning where the learner is instructed on which

actions to take, here the learner must determine the most

rewarding actions through experimentation and discovery [8].

Reinforcement learning entails a reciprocal process between an

agent actively making decisions and its environment, where the

agent is striving to reach a target despite the uncertainty of its

environment. Abbasloo et al motivations for choosing

reinforcement learning were based on its sequential and far-

sighted nature which they believe complements the sequential

decision-making process of congestion control [3].

Thus, reinforcement learning is a great fit for the project.

Reinforcement learning looks to maximise the reward signal, in

this project, the reward should be a function of the change in

throughput and packet loss. Actions can be performed on the

CUBIC parameter beta to affect the congestion window. These

actions would be to increase, decrease or keep the same beta.

The situations that Sutton refers to are also characterized as

states of the environment that can be mapped to the current

value of beta, the packet loss and the throughput of each

transmission. Where the agent is the sending node which takes

actions by modifying the beta value.

D. Q-Learning

One of the major downsides of using a model-based

approach is training the model. Training requires a large set of

quality data as it looks to learn a model of the environment.

Training a model to accurately represent the environment can

be a challenging task, especially when the environment is

complex and dynamic. It can require a large amount of high-

quality data, which may be difficult or time-consuming to

collect. On the other hand, with a model-free approach, this

takes this out of the equation. Instead, Q-learning and Deep-Q

Networks do not require a model as such and do not attempt to

learn or use a model of the environment. Instead, they learn a

value function directly from interaction with the environment.

The benefit of model-free methods is that they can be simpler

to implement and may require less data, as they do not need to

learn a model of the environment. However, they may be less

sample-efficient than model-based methods, which can use a

learned model to simulate many different scenarios without

requiring real interactions. This can simplify the learning

process and potentially reduce the amount of data required.

Model-free approaches may require more interactions with the

environment to learn an optimal policy, as they cannot use a

model to simulate future states. Q-learning and DQN utilise

Bellman’s equation to maximise future rewards [4][5]. For a

given state s and action a, the Q function Q(s,a) can be defined

in terms of the expected reward for taking action a in state s,

4

ENGR 489 (ENGINEERING PROJECT) 2023

plus the expected value of the subsequent state s.

Mathematically, Bellman's equation for the value function is

given by:

𝑄(𝑠, 𝑎) ← (1 − 𝑎)𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾 𝑚𝑎𝑥𝑎′ 𝑄(𝑠′, 𝑎′)

𝑄(𝑠, 𝑎) is the current estimated value of taking action a in

state s.

𝑟 is the immediate reward received after taking action a in

state s and transitioning to state 𝑠′.

𝛾 is the discount factor, which models the agent's

consideration for future rewards. A value of 0 makes the agent

myopic (only caring about immediate rewards), while a value

of 1 makes it fully consider all future rewards.

𝑚𝑎𝑥𝑎′ 𝑄(𝑠′, 𝑎′ is the maximum estimated future reward

when starting from state 𝑠′ and considering all possible actions

𝑎′.

𝛼 is the learning rate. This parameter dictates how much of

the new Q-value estimate we adopt to update our current Q-

value.

A Q-table is a fundamental component in Q-Learning which

stores these calculated Q values. It's a lookup table where we

store the information about what action the agent should take

under different circumstances. In other words, it guides the

decision-making process of an agent. Specifically, the Q-table

stores Q-values for every possible combination of states and

actions in the environment. Each Q-value represents the

expected future reward that an agent expects to receive if it

takes a certain action in a certain state, considering both the

immediate reward and the possible future rewards. The cell at

the intersection of a specific state row and action column

contains the Q-value associated with taking that action in that

state.

Fig. 1. Q-Learning System Architecture.

E. System Architecture

Tying all these components together provides a system

architecture described in Fig. 1 Where the Q-Learning

algorithm triggers a network simulation transmission for each

step of the algorithm. The beta value, packet loss and

throughput are observed after the simulation and become the

new state. A new reward is calculated as a function of the packet

loss and throughput. The reward is then updated in the Q-table.

Then a new action is chosen based on the policy which modifies

beta.

F. Sustainability

In an exploration of the societal benefits that may arise from

the proposed improvements in latency and packet loss, several

key sectors stand out. User Experience: Enhancements in these

areas can fundamentally transform the end-user experience.

Specifically, the acceleration in webpage loading times, the

fluidity of video streams, and a comprehensive enhancement

in internet service quality can be achieved. Remote Work and

Distance Learning: With the rise of remote work and virtual

education, these technical improvements could greatly

enhance these areas, leading to increased remote work

efficiency and smoother online interactions between educators

and students.

This improved efficiency not only aligns with several

United Nations Sustainable Development Goals (SDGs) but

also aids in their achievement [9]. Firstly, it can contribute to

SDG 7, as more efficient data transmission can lead to energy

savings in data centres and promote wider access to digital

energy services. Secondly, it supports SDG 8 by enhancing the

productivity of businesses relying on digital services and

fostering economic growth. Lastly, in line with SDG 9, the use

of machine learning to enhance internet infrastructure

exemplifies technological innovation, which is key in building

resilient infrastructure and promoting sustainable

industrialization. However, the actual impacts will depend on

factors such as the extent of these improvements'

implementation and the specific context of network

infrastructure across regions.

IV. IMPLEMENTATION

A. Network Simulation

In this project, we utilised the ns-3 simulation framework to

examine the performance dynamics of the TCP Cubic

congestion control algorithm under varying network

conditions. The code for our ns-3 script is located in the file

tcp_cubic.cc.

Two nodes were established in a point-to-point setup with

configurable parameters. The receiver operates with a

PacketSinkHelper which simply receives packets and sends

back acknowledgements. While the sender uses a custom

application, designed to offer flexibility in data transmission

settings. In particular, the sending rate of packets (Mbps) and

the CUBIC beta parameter.

In our network simulation, we configured the environment to

send a total of 1000 packets, each with a size of 1,500 bytes.

This size was deliberately chosen as it corresponds to the

Maximum Transmission Unit (MTU) typically observed in

many Ethernet-based networks. Such a choice ensures that the

packets aren't fragmented during transmission, offering a more

streamlined and consistent evaluation. By focusing on this

standardized packet size, our simulation endeavours to replicate

https://gitlab.ecs.vuw.ac.nz/course-work/project489/2023/knottjame/improving_tcpcongestion_control_with_machine_learning/-/blob/main/tcp_cubic.cc?ref_type=heads

5

ENGR 489 (ENGINEERING PROJECT) 2023

real-world scenarios, thereby providing a more accurate

assessment of TCP Cubic's behaviour under common network

conditions.

The focal point of the study is the modulation of TCP

CUBIC's Beta parameter, whose effects on congestion window

adjustments and packet acknowledgements are logged.

Comprehensive statistics, encompassing throughput, packet

loss rate, and overall bytes received, are captured, and archived

for subsequent analysis by the Q-Learning model.

B. Software and Libraries

The implementation of the Q-Learning Model is located in

the Jupyter Notebook model.ipynb is located in our GitLab. A

Jupyter notebook. We opted to implement our Q-learning

algorithm within a Jupyter Notebook rather than a traditional

Python script for several compelling reasons. Firstly, Jupyter

Notebooks excel in their ability to maintain variable states

between runs. This means that if we need to rerun specific

portions of our algorithm, we can do so without having to

execute the entire script from the beginning, leading to quicker

iterations and improved efficiency in our development process.

Furthermore, Jupyter Notebook's rich display system is

unparalleled. It offers us the ability to visualize data, display

tables, and create charts in an interactive environment,

enhancing our understanding of the algorithm's performance

and behaviour. The combination of these features, along with

the seamless interplay between code, outputs, and descriptive

narratives, made Jupyter Notebook an ideal choice for our

project, facilitating both development and subsequent analysis.

Using OpenAI’s Python library, gym, you can create

reinforcement learning environments [10]. This allows you to

establish an environment that provides a standard API for

interacting with the environment. The API has methods for

resetting the environment to its initial state (reset()), taking an

action in the environment (step()), and other helpful utilities. As

such, gym has been utilised to create the environment for this

project defined in the TCPEnv class.

C. Actions

As mentioned in section Section II.A, a Q-table requires

states and actions. As we are looking to find the optimal beta

value to minimise the latency of a TCP CUBIC connection, beta

is the value that actions will be performed on. In this case, beta

may either be increased, decreased, or kept the same. This gives

us three actions that can be performed. Thus,

Fig. 2. Rewards using epsilon decay starting from episode 0.

Fig. 3. Rewards using epsilon decay starting from episode

20.

Fig. 4. Rewards using epsilon decay starting from episode

50.

every time the step function of our environment is called, one

of these three actions will be performed. This will update beta

with a new value or keep it the same.

The action is decided using an epsilon-greedy policy. In our

Q-learning implementation, we employed the epsilon-greedy

https://gitlab.ecs.vuw.ac.nz/course-work/project489/2023/knottjame/improving_tcpcongestion_control_with_machine_learning/-/blob/main/model.ipynb?ref_type=heads

6

ENGR 489 (ENGINEERING PROJECT) 2023

policy to balance exploration and exploitation during the agent's

decision-making process. Initially, the agent is fully in

exploration mode, with a 100% chance of taking a random

action, as epsilon is set to 1. This approach ensures a broad

sampling of the action space early on. However, to gradually

transition the agent towards exploiting its acquired knowledge,

we introduced a decay mechanism for ε. Specifically, the decay

starts after 100 episodes and continues until the 500th episode.

During this period, epsilon diminishes incrementally, which is

calculated by the formula:

𝑒𝑝𝑖𝑠𝑙𝑜𝑛

𝐸𝑁𝐷𝐸𝑃𝑆𝐼𝐿𝑂𝑁𝐷𝐸𝐶𝐴𝑌𝐼𝑁𝐺
− 𝑆𝑇𝐴𝑅𝑇𝐸𝑃𝑆𝐼𝐿𝑂𝑁𝐷𝐸𝐶𝐴𝑌𝐼𝑁𝐺

Consequently, as episodes advance, the likelihood of the

agent relying on its Q-values, rather than random exploration,

increases. By the end of the 500th episode, the agent

predominantly leans on its learned experiences. This epsilon-

greedy strategy ensures that while the agent gains varied

experiences initially, over time, it makes decisions more

aligned with its accumulated knowledge.

 Different epsilon decay policies were tested initially shown

in Fig. 2., Fig. 3. and Fig. 4. The three reward graphs depict

distinct learning trajectories of the agent. Fig. 2., demonstrates

rapid initial gains, characterized by an early spike in rewards

followed by stabilization. In contrast, Fig. 3., starts steadily but

reveals a widening range in outcomes as the episodes progress,

ending on an optimistic note with an upward trend. Fig. 4.,

while consistent in its reward differences, hints at a slight

decline in the latter episodes, indicating potential challenges.

Collectively, the graphs highlight varying rates of learning,

exploration depth, and consistency in the agent's journey.

However, Fig. 3. towards the end, the average reward trend is

upward sloping, hinting at a potential convergence or improved

learning efficiency. Thus, we decided to go with the decay

starting after 20% of total episodes.

D. States

Next, what each state consists of must be considered. In Q-

learning, a type of reinforcement learning algorithm, the term

"state" refers to a representation of the current condition of the

environment that the agent is interacting with. It encapsulates

all the relevant information that the agent needs to make an

informed decision about the next action it should take. The state

of the environment is represented by a 3-dimensional

continuous space consisting of three parameters: the beta value

and the packet loss and throughput. The beta value is a

parameter for the TCP CUBIC congestion control algorithm,

which controls how quickly the TCP protocol responds to

network congestion. Packet loss acts as the percentage of

packets not received by the receiving node. Throughput is the

packets per second reaching the receiving node. This allows the

environment to represent the current beta value and the

subsequent loss and throughput of transmission.

E. Reward Function

We trained the Q-Learning function with a linear reward

function designed to prioritize both the enhancement of

throughput and the minimization of packet loss based on the

reward function used in N. Jay et al [3].

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 − (2 ∗ 𝑝𝑎𝑐𝑘𝑒𝑡𝑙𝑜𝑠𝑠)

Where throughput is measured in packets per second and loss

is the percentage of all packets sent but not acknowledged. This

reward function is constructed to guide the agent towards

actions that both optimise the rate of data transfer (throughput)

and significantly reduce occurrences of data packet loss. The

dual emphasis ensures that the agent doesn't blindly chase high

throughput at the expense of reliability and quality of the

transmission.

F. Step Function

The step function in the TCPEnv class represents an integral

part of the Q-learning process, functioning as the principal

bridge for interactions between the Q-learning agent and the

TCP environment. This function, in each iteration of the Q-

learning procedure, processes an action selected by the agent

based on the existing state-action value estimates (the Q-table).

Upon reception of the selected action, the function subsequently

modulates the environment's state and calculates the reward

derived from the action's outcome.

The first phase of this function involves the application of the

action, which modifies the beta parameter of the TCP CUBIC

congestion control algorithm. An ns-3 network simulation

ensues, with the associated packet loss and throughput being

recorded. These updated parameters, beta, associated packet

loss and throughput, collectively form the new environmental

state.

Following the state transition, the function engages in reward

calculation. These reward values are fundamental to the Q-

learning process, guiding the update of the Q-table.

Concurrently, the function oversees the management of

episodes. An episode concludes when the action count

surpasses a predefined limit, set at 100 steps in the present

context. The episode's termination triggers the activation of the

done flag, marking the episode's conclusion.

The function concludes by returning the new state, the

accrued reward and the episode's termination status. The step

function is pivotal to Q-learning operations, defining the agent-

environment interaction paradigm, determining state transition

based on agent actions, and establishing the reward allocation

scheme. Consequently, the agent exploits this information to

refine its Q-table, thereby optimizing its action-selection policy.

G. Learning Rate

The difference in learning rates can have a profound impact

on the learning dynamics of an algorithm like Q-learning. A

learning rate determines the extent to which newly acquired

information overrides old information. In Fig. 3. The learning

rate is 0.1 and in Fig. 5 is 0.01. Fig. 5. exhibits a steadier.

7

ENGR 489 (ENGINEERING PROJECT) 2023

Fig. 5. Episode rewards learning rate = 0.01.

ascent, suggesting a possibly more consistent learning or

performance improvement. In contrast, Fig. 3. shows more

fluctuation in its average rewards line, which could indicate

less consistent learning or performance. Thus, we opted to use

a learning rate of 0.01 benefiting from a slower adaptation,

allowing the model to better generalise from its experiences.

Fig. 6. Episode rewards discount factor = 0.90.

Fig. 7. Episode rewards discount factor = 0.95.

H. Discount Factor

The discount factor is a parameter used in reinforcement

learning to balance immediate and future rewards. A value

closer to 1 gives more importance to future rewards, promoting

long-term planning, while a value closer to 0 prioritises

immediate rewards, making the agent more short-sighted in its

decisions.

In Fig. 6, with a discount factor of 0.90, we observe a more

consistent upward trajectory in average rewards over the 200

episodes. This behaviour suggests a balanced approach between

exploration and exploitation. Conversely, Fig. 7, which has a

discount factor of 0.95, presents a more fluctuating profile in

average rewards. This indicates that the algorithm, with a higher

emphasis on future rewards, may be undertaking a more

explorative approach in the initial stages but struggles to

maintain a consistent performance in later episodes. Therefore,

for more consistent learning we chose a discount factor of 0.90.

V. EVALUATION

To evaluate the Q-Learning algorithm, we compared the packet

loss and throughput of a transmission with the default beta =

0.7 with our algorithm. The sending node data rate was kept

constant at 8Mbps. However, the receiving node data rate was

tested at 4 different values, 4Mbps, 6Mbps, 8Mbps and

12Mbps. These varying values allow us to test the performance

of the Q-Learning algorithm in varying network conditions with

different levels of packet loss and throughput. The lower

receiving rates experience high packet loss as the receiver is

unable to handle the sender’s higher data rate and the higher

receiver rates experience lower packet loss.

Fig. 8. Packet loss with a receiving data rate of 4Mbps.

8

ENGR 489 (ENGINEERING PROJECT) 2023

Fig. 9. Packet loss with a receiving data rate of 6Mbps.

Fig. 10. Packet loss with a receiving data rate of 8Mbps.

Fig. 11. Packet loss with a receiving data rate of 12Mbps.

A. Packet Loss

In each of the evaluations described in Fig. 8., Fig. 9., Fig.

10. And Fig. 11. the default packet loss from a transmission

using the default beta of 0.7 is shown with the black line. At

each step of each episode, the packet loss was logged. Each

episode represents 100 steps and takes the average packet loss

for each transmission.

The most noticeable improvement in packet loss occurs with

the 4Mbps receiving data rate described in Fig. 8. The average

packet loss is consistently below the default transmission’s

packet loss only going above on 4 occasions. Comparing the

average packet loss to the default packet loss of 63.6% our

algorithm averages a packet loss over the 500 episodes of

58.2% which is an 8.6% improvement. While there is notably a

large variance with the maximum packet loss consistently

above 70% the majority of maximums sit around the default

level. Overall, this shows that under conditions where there is a

high level of loss, the algorithm performs well and reduces

packet loss as intended.

With a receiving rate of 6Mbps described in Fig. 9. Average

packet loss is also consistently below the default packet loss of

32.7%. The average packet loss for the 500 episodes was 31.3%

which is a 4.3% decrease. During the purely exploratory stage,

before epsilon decays at episode 100, the average packet loss

fluctuates around the default value. However, as the algorithm

reduces exploration average packet loss trends downwards. It

appears to find a consistent policy around the 300-episode mark

where the maximum packet loss is significantly reduced, and

the maximum does not break 34%. Packet loss is not reduced

as significantly as with the 4Mbps sender however, the

consistency of the policy is much clearer in later episodes.

Although the reduction in the change of packet loss with a

6Mbps sender the algorithm still manages to find a successful

policy.

With the receiving rates of 8Mbps and 12 Mbps per second,

the algorithm appears to have minimal effect. With the 8Mbps

receiving rate as described in Fig.10. The average packet loss

fluctuates around the average loss of 15.3%. With the 12Mbps

receiving rate as described in Fig.11. The packet loss stays

constant at the 2.7% rate. Although there are no improvements

in packet loss at these rates, it does display the adaptability of

the algorithm to handle lower rates of packet loss and not

degrade performance.

B. Throughput

Throughput tells a similar story to packet loss. With 4Mbps and

6Mbps receiver rates described in Fig. 12. and Fig. 13.,

respectively. The average throughput with a receiver rate of

4Mbps is consistently above the default value of 242.9 packets

per second. With an average of 275.1 packets per second, the

throughput is increased by 13% on average. With the average

only dropping below the default value during 4 episodes. This

shows that in environments with high packet loss, the algorithm

can reduce packet loss while keeping improving throughput.

9

ENGR 489 (ENGINEERING PROJECT) 2023

With the 6Mbps receiver described in Fig. 13. Again, during the

purely exploratory stage, the throughput is more variable than

in later episodes. However, around the 250-episode mark

 Fig. 12. Throughput with a receiving data rate of 4Mbps.

Fig. 13. Throughput with a receiving data rate of 6Mbps.

Fig. 14. Throughput with a receiving data rate of 8Mbps.

Fig. 15. Throughput with a receiving data rate of 12Mbps.

there is a consistent policy found, and the throughput

bounces between 460 – 450 packets per second. Overall, the

average increase is negligible at < 1%. However, with an

improvement in packet loss at this data rate this shows that

throughput is not being sacrificed at the expense of improving

packet loss.

At a receiving data rate of 8Mbps per second described in

Fig. 14. The average throughput is affected negatively with the

default transmission’s throughput of 565.2 packets per second

and the average throughput over all episodes of 553.4 packets

per second. This produces a 2.1% decrease in throughput.

Interestingly, with a receiver data rate of 12 Mbps described

in Fig. 15. there is no change in throughput which is the same

result with packet loss.

Fig. 16. Beta values during episodes with receiver data rate

4Mbps.

C. Beta

When looking at the changes in beta during episodes, the

algorithm chose a policy of lowering beta as described in Fig.

16. Beta functions as the multiplicative decrease constant for

TCP CUBIC. After loss events, the congestion window is

10

ENGR 489 (ENGINEERING PROJECT) 2023

decreased by a factor of beta. Lower values of beta reduce the

congestion window size more aggressively. Thus, when there

are high levels of loss it makes sense that the algorithm would

decrease the beta as this would allow for greater reductions in

the congestion window size after each loss event.

D. Summary

The performance of the Q-learning algorithm developed in

this project performs significantly better during transmissions

of high levels of packet loss. The algorithm decreases beta

which in turn causes a greater reduction in the congestion

window size during loss events. With a packet loss decrease of

8.6% and an increase in throughput of 13%, this is a significant

improvement. However, this does not satisfy the goal of 15%.

Furthermore, at a receiving data rate of 6Mbps, this is further

reduced and at 8Mbps and 12Mbps there was negligible change.

As packet loss grows 15% becomes larger and thus makes it

more difficult to achieve this goal. While at lower rates of

packet loss, there are fewer loss events meaning beta has a

reduced effect on the congestion window size.

Something to note is that as this algorithm can only modify

TCP CUBIC parameters after each transmission this is

something that is not ready to be implemented for general use.

TCP is used for reliable data transfer and therefore consistency

and practicality of a congestion control method is key.

However, in situations where there is a need for repeated

transmissions with similar data, this would simulate a set of

conditions similar to our project. Our Q-Learning proves to be

able to learn a policy which does decrease packet loss and

increase throughput particularly.

VI. CONCLUSION

In this project, we looked to fine-tune TCP CUBIC’s

parameters to improve congestion control. However, the goal

of a 15% improvement in packet loss and throughput was not

achieved. This project has demonstrated that tuning TCP

CUBIC’s parameter beta can improve congestion control

performance.

In future work, the impacts of the scaling constant C on

congestion control could be investigated. As with beta

predominantly affects the reduction congestion window during

loss events. However, C affects the congestion window growth.

Investigating the tuning of both C and beta simultaneously

could find a balance of improving congestion control during

loss events and during normal transmission. In particular, as C

affects window growth this could reduce the loss events in the

first time with a modified congestion window growth.

REFERENCES

[1] S. Ha, I. Rhee, and L. Xu, "CUBIC: A new TCP-friendly high-speed TCP
variant," ACM SIGOPS Operating Systems Review, vol. 42, no. 5, pp. 64-

74, July 20081.
[2] S. Abbasloo, C. -Y. Yen, and H. J. Chao, "Classic Meets Modern: a

Pragmatic Learning-Based Congestion Control for the Internet," in

Proceedings of the Annual Conference of the ACM Special Interest Group
on Data Communication on the Applications, Technologies, Architectures,

and Protocols for Computer Communication (SIGCOMM '20), New York,

NY, USA, 2020, pp. 632-647, doi: 10.1145/3387514.3405892.

[3] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar, "A Deep

Reinforcement Learning Perspective on Internet Congestion Control," in

International Conference on Machine Learning, 2019, pp. 3050-3059.R.

Fardel, M. Nagel, F. Nuesch, T. Lippert, and A. Wokaun, “Fabrication of

organic light emitting diode pixels by laser-assisted forward transfer,”
Appl. Phys. Lett., vol. 91, no. 6, Aug. 2007, Art. no. 061103.

[4] Z. Xu, J. Tang, C. Yin, Y. Wang, and G. Xue, "Experience-Driven

Congestion Control: When Multi-Path TCP Meets Deep Reinforcement
Learning," in IEEE Journal on Selected Areas in Communications, vol. 37,

no. 6, pp. 1325-1336, June 2019. doi: 10.1109/JSAC.2019.2904358.
[5] Y. Kong, H. Zang, and X. Ma, "Improving TCP Congestion Control with

Machine Intelligence," in Proceedings of the 2018 Workshop on Network

Meets AI & ML (NetAI'18), New York, NY, USA, 2018, pp. 60-66.

https://doi.org/10.1145/3229543.3229550.
[6] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira, "PCC: re-

architecting congestion control for consistent high performance," in

Proceedings of the 12th USENIX Conference on Networked Systems
Design and Implementation (NSDI'15), USA, 2015, pp. 395-408.

[7] I. L. Afonin, A. V. Gorelik, S. S. Muratchaev, A. S. Volkov, and E. K.

Morozov, "Development of an adaptive TCP algorithm based on machine

learning in telecommunication networks," in 2019 Systems of Signal

Synchronization, Generating and Processing in Telecommunications

(SYNCHROINFO), Russia, 2019, pp. 1-5. doi:
10.1109/SYNCHROINFO.2019.8814023.

[8] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.

MIT Press, 1998.
[9] “17 Goals for Sustainable Development”, United Nations,

https://sdgs.un.org/goals.

[10] “Gymnasium is a standard API for reinforcement Learning, and a diverse
collection of reference environments” Gynasiuim.farama.org. [Online].

Available: https://gymnasium.farama.org/.

https://doi.org/10.1145/3229543.3229550
https://sdgs.un.org/goals
https://gymnasium.farama.org/

