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Abstract— Transmission Control Protocol (TCP) is commonly 

used for reliable internet data transfers. However, TCP can 

experience packet loss due to network congestion. Packet loss 

happens when data doesn't reach its destination for various 

reasons. In recent years, there has been a growing inclination 

towards adopting novel, clean-slate learning-based designs as 

alternatives to traditional congestion control mechanisms for the 

Internet. However, we posit that integrating machine learning 

techniques with the current congestion control schemes can 

achieve comparable, if not superior outcomes. This project 

endeavoured to address this gap and implement a system that can 

utilised with TCP CUBIC. Our method looked to enhance the 

efficiency of the TCP CUBIC congestion control by incorporating 

machine learning techniques. TCP CUBIC, the default congestion 

control variant in the current Linux Kernel, modifies the 

congestion window size based on a loss-based algorithm, thereby 

influencing the rate of data transmission. TCP CUBIC uses a 

parameter, beta, to modify the rate at which the congestion 

window grows. Our approach involves employing a model-free 

reinforcement learning algorithm, specifically a Q-learning 

algorithm to optimize the TCP CUBIC beta parameter, targeting 

an increase in throughput for TCP CUBIC connections. Through 

extensive testing performed in various simulated network 

conditions we demonstrate the performance and adaptability of 

the Q-Learning algorithm. Furthermore, this report details the 

various development decisions undertaken and their driving 

influences. It also provides an insight into the project's results, 

expanding on the existing system design, and elaborates on the 

potential for future work in this area. 

 
Index Terms—TCP, CUBIC, Q-Learning, Reinforcement 

Learning, Machine Learning 

 

I. INTRODUCTION 

ransmission Control Protocol (TCP) is a protocol that is 

frequently used by internet users for reliable data 

transfers. However, TCP can suffer from packet loss 

through network congestion. Packet loss is the loss of 

data during network transmission. It occurs when one or more 

packets fail to reach their destination, which can happen due to 

a variety of reasons. When packets are lost the receiving node 

may not receive all the data it requires to properly reconstruct 

the data. The implications of packet loss are considerable, 

leading to network performance degradation in terms of packet 

delays, a decrease in throughput, and reduced application 

performance. As a response to these challenges, various TCP 

alternatives equipped with congestion control algorithms have 

been developed to curb such adverse effects. TCP CUBIC 

(CUBIC) is a notable example of these alternatives and has been 
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universally adopted across standard operating systems, 

including Windows, Linux, and Mac [1]. CUBIC controls 

congestion window growth using a cubic function [1]. 

This project looked to reduce packet loss and increase 

throughput of TCP connections using machine learning. The 

proposed solution looked to develop a machine learning 

algorithm that modifies CUBIC parameters to improve 

throughput and packet loss by 15%. We did not look to redesign 

CUBIC but to create an algorithm that can work alongside its 

current implementation. Furthermore, in the current literature, 

there is a noticeable gap in machine learning algorithms used 

with the already existing CUBIC. Most studies look to create 

their own protocol that works in conjunction with machine 

learning [3][4][5][6][7][8].  

This project looked to address this gap and implement a system 

that can utilised with CUBIC.  Using a Q-learning algorithm to 

optimise CUBIC’s congestion control parameters. Specifically, 

CUBIC’s β (beta) parameter. CUBIC follows a cubic algorithm 

and has parameters that affect the growth of the congestion 

window.  After every loss event, the new max congestion 

window is calculated by performing a multiplicative decrease 

of the congestion window by a factor of beta where beta is a 

window decrease constant (beta) [1]. During evaluation, results 

show that during transmissions experiencing packet loss our Q-

learning algorithm can increase throughput by up to 13% and 

reduce packet loss by up to 8%. This signifies not only the 

efficacy of our approach but also its potential to enhance the 

overall performance of TCP connections, especially where 

packet loss is prevalent. 

 

II. RELATED WORK 

Machine learning in conjunction with congestion control is 

currently a topic being researched however, it has not been 

implemented in current systems where TCP CUBIC is the 

favoured variant of TCP. There are three main classes of 

learning algorithms supervised learning, unsupervised learning, 

and reinforcement learning (RL). In the current literature, 

reinforcement learning, and the deep variant of reinforcement 

learning (DRL) are the favoured choices [2][3][4][5].  

 

Abbasloo et al, Jay et al and Xu et al all opt for Deep 

reinforcement learning [2][3][4]. Orca uses the underlying TCP 

to handle the connections [3]. They tested Orca over varying 

connections within USA and intercontinental connections. 

Outperforming Aurora within the USA and Aurora providing 

better throughput intercontinental experiments [2][3].  

T 
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Aurora and Xu et al used purely machine learning based 

protocols opting to design their own [3][4]. While Kong et al 

used basic Reinforcement learning [5].  Dong et al use what 

they call Performance-oriented Congestion Control (PCC) [6].  

While these papers are all successful at reinventing 

congestion control and in all cases outperform standard 

implementations of TCP such as CUBIC and NewReno.  

Afonin et al describe a Q-Learning solution in conjunction 

with TCP [7] and is the most alike to this project. The study 

provides a rather surface-level exploration and does not delve 

deep into the intricacies of how their Q-Learning algorithm 

interacts with the congestion window. While it offers an 

overview, it lacks a detailed examination of the specific 

mechanisms and dynamics at play between the Q-Learning 

process and the congestion window adjustments. They note a 

reduction in packet delay of 15%. 

There is a clear theme, among the current literature as each 

study looks to either rewrite existing or write their own 

congestion control protocol. even if an algorithm is technically 

sound, getting it adopted widely in the industry is a significant 

hurdle. Established protocols have the advantage of being tried 

and tested over time, and convincing network operators, device 

manufacturers, and software developers to switch to a new 

algorithm can be a daunting task. This project looks to address 

that gap and demonstrate a Q-Learning algorithm that works in 

conjunction with TCP CUBIC in the state it is currently. 

III. DESIGN 

In this project, we are not embarking on a full-scale redesign 

of TCP CUBIC. Instead, we are focused on exploring the 

potential enhancements that can be applied to the existing TCP 

CUBIC framework. Our objective is to fine-tune TCP CUBIC's 

congestion control parameters without necessitating a complete 

rewrite of the protocol or its congestion control algorithm. The 

primary aim of this model is to optimize TCP CUBIC's 

performance by improving latency and reducing packet loss. 

 

A. Network Topology 

In evaluating the impact of tuning TCP CUBIC's beta 

parameter, it is essential to isolate as many external variables as 

possible to get clear, unequivocal results. Utilising a simplified 

network topology comprising solely of a sending node and a 

receiver node offers an optimal setup for this kind of 

experimentation. This simple model ensures that external 

factors, often introduced with the inclusion of multiple nodes, 

don't skew or muddy the results. When dealing with more 

complex multi-node environments, the network inherently 

becomes susceptible to a myriad of additional variables, such 

as node-to-node interference, varying path delays, and potential 

bottlenecks in intermediate nodes. In contrast, a direct sender-

receiver topology facilitates a controlled environment, allowing 

for precise evaluation and tuning of the beta parameter without 

extraneous influences. This approach guarantees that any 

observed effects or changes in performance are almost 

exclusively attributable to modifications made to the TCP 

CUBIC's beta parameter.  

In current implementations of TCP CUBIC in Linux, 

Windows or Mac, these parameters are unable to be modified. 

Direct manipulation of TCP CUBIC's beta parameter is 

inherently constrained due to the hard-coded nature of certain 

kernel parameters. The kernel's implementations have been 

optimised for general use-cases, and allowing users to easily 

modify such parameters could inadvertently compromise the 

stability and predictability of network performance, as well as 

introduce potential security vulnerabilities. Thus, ensuring the 

robustness and security of the system often takes precedence 

over providing granular customization options for users.  

 

Furthermore, once the transmission is underway, these 

parameters are locked in, ensuring consistency in the 

transmission behaviour and avoiding the complexities that 

could arise from altering parameters during an active session. 

This means CUBIC’s parameters will need to be modified prior 

to every transmission and will stay consistent throughout the 

transmission. After each transmission is complete the effects of 

the parameter modifications can be observed. 

Given the constraints in directly tweaking the TCP CUBIC's 

beta parameter within the operating systems, an alternative 

approach is to employ network simulation. Utilising a network 

simulator allows for the creation of a controlled virtual 

environment where parameters, like the beta value, can be 

modified freely without the risk of destabilising an actual 

network. This not only ensures a safe playground to test and 

observe the effects of such modifications, but it also provides 

the flexibility to replicate a variety of network conditions and 

scenarios, thereby offering comprehensive insights into the 

potential real-world implications of tuning the parameter. 

 

B. TCP CUBIC 

TCP CUBIC employs a unique congestion control strategy. 

After experiencing a loss event, which is an unacknowledged 

packet, it marks the window size at which the loss occurred as 

𝑊𝑚𝑎𝑥 [1]. It then decreases the congestion window by a 

constant factor β (beta), which is the window decrease constant, 

while continuing with the regular fast recovery and 

retransmission mechanisms of TCP. 

As CUBIC transitions from fast recovery to congestion 

avoidance, it initiates an increase in the window size using a 

concave profile of the cubic function. This function is designed 

to have a plateau at 𝑊𝑚𝑎𝑥, which means that the concave 

growth persists until the window size matches 𝑊𝑚𝑎𝑥. In a 

graphical representation, a concave function appears as a curve 

where any line segment drawn between two points on the 

function lies below or on the function itself. This type of growth 

is often seen in scenarios where initial gains are substantial, but 

as time or the quantity of the variable increases, the rate of 

growth starts to slow down, leading to smaller incremental 

gains. Beyond that point, the cubic function shifts into a convex 

profile, initiating convex window growth. This growth pattern 
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is observed in situations where initial advancements might be 

modest or gradual, but as time progresses or the quantity of the 

variable increases, the growth rate escalates, resulting in larger 

incremental gains. 

This approach to window adjustment, moving from concave 

to convex growth, is intended to enhance protocol and network 

stability while maintaining high network utilization. The 

plateau around 𝑊𝑚𝑎𝑥 is where network utilization is considered 

to be at its peak as this is where the last loss occurred. Under 

steady-state conditions, most window size samples in CUBIC 

are close to 𝑊𝑚𝑎𝑥, promoting both high network utilization and 

protocol stability.  

It's worth noting that protocols with convex growth functions 

tend to have their most significant window increment around 

the saturation point, which can introduce a substantial burst of 

packet losses. 

The window growth function of CUBIC follows this 

formula: 

 

𝑊(𝑡) = 𝐶(𝑡 − 𝐾)3 + 𝑊𝑚𝑎𝑥 
 

Where C is a CUBIC parameter, t is the time elapsed since 

the last window reduction, and K is the time it takes for the 

function to increase W to 𝑊𝑚𝑎𝑥 in the absence of further loss 

events. 

 

𝐾 = √
𝑊𝑚𝑎𝑥𝛽

𝐶

3

 

 

The parameter β (beta) within the TCP CUBIC algorithm 

plays a pivotal role in influencing the protocol's reaction to 

network congestion. It serves as a crucial factor in determining 

the rate at which the congestion window is adjusted following 

congestion events, such as packet loss. Specifically, β serves as 

the constant that controls the multiplicative decrease in the 

congestion window, effecting a reduction in its size. The choice 

of β is central to the algorithm's responsiveness, influencing its 

behaviour during congestion episodes. Smaller values of β 

result in more aggressive window reductions, facilitating a swift 

response to network congestion. Conversely, larger β values 

lead to more gradual reductions, allowing for a smoother and 

less abrupt response to network congestion.  

Due to β's significant influence on TCP CUBIC's behaviour 

during loss events, it emerges as a pivotal parameter to fine-

tune with the purpose of mitigating packet loss. The β parameter 

directly dictates the rate at which the congestion window 

decreases when congestion is detected, such as during packet 

loss scenarios. By modifying β, it becomes possible to strike a 

balance between a more aggressive or more gradual reaction to 

congestion, thus optimizing the protocol's response. A well-

tuned β value can facilitate a more measured, controlled 

reduction of the congestion window during congestion events, 

consequently reducing the likelihood of packet loss. In this 

context, the fine-tuning of β represents a targeted and effective 

strategy to enhance network performance and bolster the 

reliability of data transmission in TCP CUBIC. 

 

C. Reinforcement Learning 

Sutton et al state, “Reinforcement learning problems involve 

learning what to do—how to map situations to actions—so as 

to maximize a numerical reward signal” unlike many forms of 

machine learning where the learner is instructed on which 

actions to take, here the learner must determine the most 

rewarding actions through experimentation and discovery [8]. 

Reinforcement learning entails a reciprocal process between an 

agent actively making decisions and its environment, where the 

agent is striving to reach a target despite the uncertainty of its 

environment. Abbasloo et al motivations for choosing 

reinforcement learning were based on its sequential and far-

sighted nature which they believe complements the sequential 

decision-making process of congestion control [3]. 

Thus, reinforcement learning is a great fit for the project. 

Reinforcement learning looks to maximise the reward signal, in 

this project, the reward should be a function of the change in 

throughput and packet loss. Actions can be performed on the 

CUBIC parameter beta to affect the congestion window. These 

actions would be to increase, decrease or keep the same beta. 

The situations that Sutton refers to are also characterized as 

states of the environment that can be mapped to the current 

value of beta, the packet loss and the throughput of each 

transmission. Where the agent is the sending node which takes 

actions by modifying the beta value. 

 

D. Q-Learning 

One of the major downsides of using a model-based 

approach is training the model. Training requires a large set of 

quality data as it looks to learn a model of the environment. 

Training a model to accurately represent the environment can 

be a challenging task, especially when the environment is 

complex and dynamic. It can require a large amount of high-

quality data, which may be difficult or time-consuming to 

collect.  On the other hand, with a model-free approach, this 

takes this out of the equation. Instead, Q-learning and Deep-Q 

Networks do not require a model as such and do not attempt to 

learn or use a model of the environment. Instead, they learn a 

value function directly from interaction with the environment. 

The benefit of model-free methods is that they can be simpler 

to implement and may require less data, as they do not need to 

learn a model of the environment. However, they may be less 

sample-efficient than model-based methods, which can use a 

learned model to simulate many different scenarios without 

requiring real interactions. This can simplify the learning 

process and potentially reduce the amount of data required. 

Model-free approaches may require more interactions with the 

environment to learn an optimal policy, as they cannot use a 

model to simulate future states. Q-learning and DQN utilise 

Bellman’s equation to maximise future rewards [4][5]. For a 

given state s and action a, the Q function Q(s,a) can be defined 

in terms of the expected reward for taking action a in state s, 
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plus the expected value of the subsequent state s. 

Mathematically, Bellman's equation for the value function is 

given by: 

 

𝑄(𝑠, 𝑎) ← (1 − 𝑎)𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾 𝑚𝑎𝑥𝑎′  𝑄(𝑠′, 𝑎′) 

 

𝑄(𝑠, 𝑎) is the current estimated value of taking action a in 

state s.  

𝑟 is the immediate reward received after taking action a in 

state s and transitioning to state 𝑠′.  

𝛾 is the discount factor, which models the agent's 

consideration for future rewards. A value of 0 makes the agent 

myopic (only caring about immediate rewards), while a value 

of 1 makes it fully consider all future rewards.  

𝑚𝑎𝑥𝑎′  𝑄(𝑠′, 𝑎′ is the maximum estimated future reward 

when starting from state 𝑠′ and considering all possible actions 

𝑎′. 

𝛼 is the learning rate. This parameter dictates how much of 

the new Q-value estimate we adopt to update our current Q-

value. 

A Q-table is a fundamental component in Q-Learning which 

stores these calculated Q values. It's a lookup table where we 

store the information about what action the agent should take 

under different circumstances. In other words, it guides the 

decision-making process of an agent. Specifically, the Q-table 

stores Q-values for every possible combination of states and 

actions in the environment. Each Q-value represents the 

expected future reward that an agent expects to receive if it 

takes a certain action in a certain state, considering both the 

immediate reward and the possible future rewards. The cell at 

the intersection of a specific state row and action column 

contains the Q-value associated with taking that action in that 

state. 

 

 
Fig. 1. Q-Learning System Architecture. 

 

E. System Architecture 

Tying all these components together provides a system 

architecture described in Fig. 1 Where the Q-Learning 

algorithm triggers a network simulation transmission for each 

step of the algorithm. The beta value, packet loss and 

throughput are observed after the simulation and become the 

new state. A new reward is calculated as a function of the packet 

loss and throughput. The reward is then updated in the Q-table. 

Then a new action is chosen based on the policy which modifies 

beta.  

F. Sustainability 

In an exploration of the societal benefits that may arise from 

the proposed improvements in latency and packet loss, several 

key sectors stand out. User Experience: Enhancements in these 

areas can fundamentally transform the end-user experience. 

Specifically, the acceleration in webpage loading times, the 

fluidity of video streams, and a comprehensive enhancement 

in internet service quality can be achieved. Remote Work and 

Distance Learning: With the rise of remote work and virtual 

education, these technical improvements could greatly 

enhance these areas, leading to increased remote work 

efficiency and smoother online interactions between educators 

and students. 

This improved efficiency not only aligns with several 

United Nations Sustainable Development Goals (SDGs) but 

also aids in their achievement [9]. Firstly, it can contribute to 

SDG 7, as more efficient data transmission can lead to energy 

savings in data centres and promote wider access to digital 

energy services. Secondly, it supports SDG 8 by enhancing the 

productivity of businesses relying on digital services and 

fostering economic growth. Lastly, in line with SDG 9, the use 

of machine learning to enhance internet infrastructure 

exemplifies technological innovation, which is key in building 

resilient infrastructure and promoting sustainable 

industrialization. However, the actual impacts will depend on 

factors such as the extent of these improvements' 

implementation and the specific context of network 

infrastructure across regions. 

IV. IMPLEMENTATION 

A. Network Simulation 

In this project, we utilised the ns-3 simulation framework to 

examine the performance dynamics of the TCP Cubic 

congestion control algorithm under varying network 

conditions. The code for our ns-3 script is located in the file 

tcp_cubic.cc. 

Two nodes were established in a point-to-point setup with 

configurable parameters. The receiver operates with a 

PacketSinkHelper which simply receives packets and sends 

back acknowledgements. While the sender uses a custom 

application, designed to offer flexibility in data transmission 

settings. In particular, the sending rate of packets (Mbps) and 

the CUBIC beta parameter. 

In our network simulation, we configured the environment to 

send a total of 1000 packets, each with a size of 1,500 bytes. 

This size was deliberately chosen as it corresponds to the 

Maximum Transmission Unit (MTU) typically observed in 

many Ethernet-based networks. Such a choice ensures that the 

packets aren't fragmented during transmission, offering a more 

streamlined and consistent evaluation. By focusing on this 

standardized packet size, our simulation endeavours to replicate 

https://gitlab.ecs.vuw.ac.nz/course-work/project489/2023/knottjame/improving_tcpcongestion_control_with_machine_learning/-/blob/main/tcp_cubic.cc?ref_type=heads
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real-world scenarios, thereby providing a more accurate 

assessment of TCP Cubic's behaviour under common network 

conditions. 

The focal point of the study is the modulation of TCP 

CUBIC's Beta parameter, whose effects on congestion window 

adjustments and packet acknowledgements are logged. 

Comprehensive statistics, encompassing throughput, packet 

loss rate, and overall bytes received, are captured, and archived 

for subsequent analysis by the Q-Learning model. 

 

B. Software and Libraries 

The implementation of the Q-Learning Model is located in 

the Jupyter Notebook model.ipynb is located in our GitLab. A 

Jupyter notebook. We opted to implement our Q-learning 

algorithm within a Jupyter Notebook rather than a traditional 

Python script for several compelling reasons. Firstly, Jupyter 

Notebooks excel in their ability to maintain variable states 

between runs. This means that if we need to rerun specific 

portions of our algorithm, we can do so without having to 

execute the entire script from the beginning, leading to quicker 

iterations and improved efficiency in our development process. 

Furthermore, Jupyter Notebook's rich display system is 

unparalleled. It offers us the ability to visualize data, display 

tables, and create charts in an interactive environment, 

enhancing our understanding of the algorithm's performance 

and behaviour. The combination of these features, along with 

the seamless interplay between code, outputs, and descriptive 

narratives, made Jupyter Notebook an ideal choice for our 

project, facilitating both development and subsequent analysis. 

Using OpenAI’s Python library, gym, you can create 

reinforcement learning environments [10]. This allows you to 

establish an environment that provides a standard API for 

interacting with the environment. The API has methods for 

resetting the environment to its initial state (reset()), taking an 

action in the environment (step()), and other helpful utilities. As 

such, gym has been utilised to create the environment for this 

project defined in the TCPEnv class. 

 

C. Actions 

As mentioned in section Section II.A,  a Q-table requires 

states and actions. As we are looking to find the optimal beta 

value to minimise the latency of a TCP CUBIC connection, beta 

is the value that actions will be performed on. In this case, beta 

may either be increased, decreased, or kept the same. This gives 

us three actions that can be performed. Thus,  

 
Fig. 2. Rewards using epsilon decay starting from episode 0. 

 

 
 

Fig. 3. Rewards using epsilon decay starting from episode 

20. 

 
Fig. 4. Rewards using epsilon decay starting from episode 

50. 

 

every time the step function of our environment is called, one 

of these three actions will be performed. This will update beta 

with a new value or keep it the same.  

The action is decided using an epsilon-greedy policy. In our 

Q-learning implementation, we employed the epsilon-greedy 

https://gitlab.ecs.vuw.ac.nz/course-work/project489/2023/knottjame/improving_tcpcongestion_control_with_machine_learning/-/blob/main/model.ipynb?ref_type=heads
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policy to balance exploration and exploitation during the agent's 

decision-making process. Initially, the agent is fully in 

exploration mode, with a 100% chance of taking a random 

action, as epsilon is set to 1. This approach ensures a broad 

sampling of the action space early on. However, to gradually 

transition the agent towards exploiting its acquired knowledge, 

we introduced a decay mechanism for ε. Specifically, the decay 

starts after 100 episodes and continues until the 500th episode. 

During this period, epsilon diminishes incrementally, which is 

calculated by the formula: 

 
𝑒𝑝𝑖𝑠𝑙𝑜𝑛

𝐸𝑁𝐷𝐸𝑃𝑆𝐼𝐿𝑂𝑁𝐷𝐸𝐶𝐴𝑌𝐼𝑁𝐺
−  𝑆𝑇𝐴𝑅𝑇𝐸𝑃𝑆𝐼𝐿𝑂𝑁𝐷𝐸𝐶𝐴𝑌𝐼𝑁𝐺

  

 

Consequently, as episodes advance, the likelihood of the 

agent relying on its Q-values, rather than random exploration, 

increases. By the end of the 500th episode, the agent 

predominantly leans on its learned experiences. This epsilon-

greedy strategy ensures that while the agent gains varied 

experiences initially, over time, it makes decisions more 

aligned with its accumulated knowledge. 

 Different epsilon decay policies were tested initially shown 

in Fig. 2., Fig. 3. and Fig. 4. The three reward graphs depict 

distinct learning trajectories of the agent. Fig. 2., demonstrates 

rapid initial gains, characterized by an early spike in rewards 

followed by stabilization. In contrast, Fig. 3., starts steadily but 

reveals a widening range in outcomes as the episodes progress, 

ending on an optimistic note with an upward trend. Fig. 4., 

while consistent in its reward differences, hints at a slight 

decline in the latter episodes, indicating potential challenges. 

Collectively, the graphs highlight varying rates of learning, 

exploration depth, and consistency in the agent's journey. 

However, Fig. 3. towards the end, the average reward trend is 

upward sloping, hinting at a potential convergence or improved 

learning efficiency. Thus, we decided to go with the decay 

starting after 20% of total episodes. 

 

D. States 

Next, what each state consists of must be considered. In Q-

learning, a type of reinforcement learning algorithm, the term 

"state" refers to a representation of the current condition of the 

environment that the agent is interacting with. It encapsulates 

all the relevant information that the agent needs to make an 

informed decision about the next action it should take. The state 

of the environment is represented by a 3-dimensional 

continuous space consisting of three parameters: the beta value 

and the packet loss and throughput. The beta value is a 

parameter for the TCP CUBIC congestion control algorithm, 

which controls how quickly the TCP protocol responds to 

network congestion. Packet loss acts as the percentage of 

packets not received by the receiving node. Throughput is the 

packets per second reaching the receiving node. This allows the 

environment to represent the current beta value and the 

subsequent loss and throughput of transmission. 

 

E. Reward Function 

We trained the Q-Learning function with a linear reward 

function designed to prioritize both the enhancement of 

throughput and the minimization of packet loss based on the 

reward function used in N. Jay et al [3]. 

 

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 − (2 ∗ 𝑝𝑎𝑐𝑘𝑒𝑡𝑙𝑜𝑠𝑠) 

 

Where throughput is measured in packets per second and loss 

is the percentage of all packets sent but not acknowledged. This 

reward function is constructed to guide the agent towards 

actions that both optimise the rate of data transfer (throughput) 

and significantly reduce occurrences of data packet loss. The 

dual emphasis ensures that the agent doesn't blindly chase high 

throughput at the expense of reliability and quality of the 

transmission. 

F. Step Function 

The step function in the TCPEnv class represents an integral 

part of the Q-learning process, functioning as the principal 

bridge for interactions between the Q-learning agent and the 

TCP environment. This function, in each iteration of the Q-

learning procedure, processes an action selected by the agent 

based on the existing state-action value estimates (the Q-table). 

Upon reception of the selected action, the function subsequently 

modulates the environment's state and calculates the reward 

derived from the action's outcome. 

The first phase of this function involves the application of the 

action, which modifies the beta parameter of the TCP CUBIC 

congestion control algorithm. An ns-3 network simulation 

ensues, with the associated packet loss and throughput being 

recorded. These updated parameters, beta, associated packet 

loss and throughput, collectively form the new environmental 

state. 

Following the state transition, the function engages in reward 

calculation. These reward values are fundamental to the Q-

learning process, guiding the update of the Q-table. 

Concurrently, the function oversees the management of 

episodes. An episode concludes when the action count 

surpasses a predefined limit, set at 100 steps in the present 

context. The episode's termination triggers the activation of the 

done flag, marking the episode's conclusion. 

The function concludes by returning the new state, the 

accrued reward and the episode's termination status. The step 

function is pivotal to Q-learning operations, defining the agent-

environment interaction paradigm, determining state transition 

based on agent actions, and establishing the reward allocation 

scheme. Consequently, the agent exploits this information to 

refine its Q-table, thereby optimizing its action-selection policy. 

G. Learning Rate 

The difference in learning rates can have a profound impact 

on the learning dynamics of an algorithm like Q-learning. A 

learning rate determines the extent to which newly acquired 

information overrides old information. In Fig. 3. The learning 

rate is 0.1 and in Fig. 5 is 0.01. Fig. 5. exhibits a steadier. 
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Fig. 5. Episode rewards learning rate = 0.01. 

 

ascent, suggesting a possibly more consistent learning or 

performance improvement. In contrast, Fig. 3.  shows more 

fluctuation in its average rewards line, which could indicate 

less consistent learning or performance. Thus, we opted to use 

a learning rate of 0.01 benefiting from a slower adaptation, 

allowing the model to better generalise from its experiences. 

 

 
Fig. 6. Episode rewards discount factor = 0.90. 

 

 
Fig. 7. Episode rewards discount factor = 0.95. 

 

H. Discount Factor 

The discount factor is a parameter used in reinforcement 

learning to balance immediate and future rewards. A value 

closer to 1 gives more importance to future rewards, promoting 

long-term planning, while a value closer to 0 prioritises 

immediate rewards, making the agent more short-sighted in its 

decisions.  

In Fig. 6, with a discount factor of 0.90, we observe a more 

consistent upward trajectory in average rewards over the 200 

episodes. This behaviour suggests a balanced approach between 

exploration and exploitation. Conversely, Fig. 7, which has a 

discount factor of 0.95, presents a more fluctuating profile in 

average rewards. This indicates that the algorithm, with a higher 

emphasis on future rewards, may be undertaking a more 

explorative approach in the initial stages but struggles to 

maintain a consistent performance in later episodes. Therefore, 

for more consistent learning we chose a discount factor of 0.90. 

 

V. EVALUATION 

To evaluate the Q-Learning algorithm, we compared the packet 

loss and throughput of a transmission with the default beta = 

0.7 with our algorithm. The sending node data rate was kept 

constant at 8Mbps. However, the receiving node data rate was 

tested at 4 different values, 4Mbps, 6Mbps, 8Mbps and 

12Mbps. These varying values allow us to test the performance 

of the Q-Learning algorithm in varying network conditions with 

different levels of packet loss and throughput. The lower 

receiving rates experience high packet loss as the receiver is 

unable to handle the sender’s higher data rate and the higher 

receiver rates experience lower packet loss. 

 

 
Fig. 8. Packet loss with a receiving data rate of 4Mbps. 
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Fig. 9. Packet loss with a receiving data rate of 6Mbps. 

 

 
Fig. 10. Packet loss with a receiving data rate of 8Mbps. 

 

 
 

Fig. 11. Packet loss with a receiving data rate of 12Mbps. 

 

A. Packet Loss 

In each of the evaluations described in Fig. 8., Fig. 9., Fig. 

10. And Fig. 11. the default packet loss from a transmission 

using the default beta of 0.7 is shown with the black line. At 

each step of each episode, the packet loss was logged. Each 

episode represents 100 steps and takes the average packet loss 

for each transmission.  

The most noticeable improvement in packet loss occurs with 

the 4Mbps receiving data rate described in Fig. 8. The average 

packet loss is consistently below the default transmission’s 

packet loss only going above on 4 occasions. Comparing the 

average packet loss to the default packet loss of 63.6% our 

algorithm averages a packet loss over the 500 episodes of 

58.2% which is an 8.6% improvement. While there is notably a 

large variance with the maximum packet loss consistently 

above 70% the majority of maximums sit around the default 

level. Overall, this shows that under conditions where there is a 

high level of loss, the algorithm performs well and reduces 

packet loss as intended. 

With a receiving rate of 6Mbps described in Fig. 9. Average 

packet loss is also consistently below the default packet loss of 

32.7%. The average packet loss for the 500 episodes was 31.3% 

which is a 4.3% decrease. During the purely exploratory stage, 

before epsilon decays at episode 100, the average packet loss 

fluctuates around the default value. However, as the algorithm 

reduces exploration average packet loss trends downwards. It 

appears to find a consistent policy around the 300-episode mark 

where the maximum packet loss is significantly reduced, and 

the maximum does not break 34%. Packet loss is not reduced 

as significantly as with the 4Mbps sender however, the 

consistency of the policy is much clearer in later episodes. 

Although the reduction in the change of packet loss with a 

6Mbps sender the algorithm still manages to find a successful 

policy. 

With the receiving rates of 8Mbps and 12 Mbps per second, 

the algorithm appears to have minimal effect. With the 8Mbps 

receiving rate as described in Fig.10. The average packet loss 

fluctuates around the average loss of 15.3%. With the 12Mbps 

receiving rate as described in Fig.11. The packet loss stays 

constant at the 2.7% rate. Although there are no improvements 

in packet loss at these rates, it does display the adaptability of 

the algorithm to handle lower rates of packet loss and not 

degrade performance. 

 

B. Throughput 

Throughput tells a similar story to packet loss. With 4Mbps and 

6Mbps receiver rates described in Fig. 12. and Fig. 13., 

respectively. The average throughput with a receiver rate of 

4Mbps is consistently above the default value of 242.9 packets 

per second. With an average of 275.1 packets per second, the 

throughput is increased by 13% on average. With the average 

only dropping below the default value during 4 episodes. This 

shows that in environments with high packet loss, the algorithm 

can reduce packet loss while keeping improving throughput.  
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With the 6Mbps receiver described in Fig. 13. Again, during the 

purely exploratory stage, the throughput is more variable than 

in later episodes. However, around the 250-episode mark 

 
 Fig. 12. Throughput with a receiving data rate of 4Mbps. 

 

 
Fig. 13. Throughput with a receiving data rate of 6Mbps. 

 

 
Fig. 14. Throughput with a receiving data rate of 8Mbps. 

 

 
Fig. 15. Throughput with a receiving data rate of 12Mbps. 

 

there is a consistent policy found, and the throughput 

bounces between 460 – 450 packets per second. Overall, the 

average increase is negligible at < 1%. However, with an 

improvement in packet loss at this data rate this shows that 

throughput is not being sacrificed at the expense of improving 

packet loss. 

At a receiving data rate of 8Mbps per second described in 

Fig. 14. The average throughput is affected negatively with the 

default transmission’s throughput of 565.2 packets per second 

and the average throughput over all episodes of 553.4 packets 

per second. This produces a 2.1% decrease in throughput.  

Interestingly, with a receiver data rate of 12 Mbps described 

in Fig. 15. there is no change in throughput which is the same 

result with packet loss.  

 

 
Fig. 16. Beta values during episodes with receiver data rate 

4Mbps. 

C. Beta 

When looking at the changes in beta during episodes, the 

algorithm chose a policy of lowering beta as described in Fig. 

16. Beta functions as the multiplicative decrease constant for 

TCP CUBIC. After loss events, the congestion window is 
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decreased by a factor of beta. Lower values of beta reduce the 

congestion window size more aggressively. Thus, when there 

are high levels of loss it makes sense that the algorithm would 

decrease the beta as this would allow for greater reductions in 

the congestion window size after each loss event. 

D. Summary 

The performance of the Q-learning algorithm developed in 

this project performs significantly better during transmissions 

of high levels of packet loss. The algorithm decreases beta 

which in turn causes a greater reduction in the congestion 

window size during loss events. With a packet loss decrease of 

8.6% and an increase in throughput of 13%, this is a significant 

improvement. However, this does not satisfy the goal of 15%. 

Furthermore, at a receiving data rate of 6Mbps, this is further 

reduced and at 8Mbps and 12Mbps there was negligible change. 

As packet loss grows 15% becomes larger and thus makes it 

more difficult to achieve this goal. While at lower rates of 

packet loss, there are fewer loss events meaning beta has a 

reduced effect on the congestion window size.  

Something to note is that as this algorithm can only modify 

TCP CUBIC parameters after each transmission this is 

something that is not ready to be implemented for general use. 

TCP is used for reliable data transfer and therefore consistency 

and practicality of a congestion control method is key. 

However, in situations where there is a need for repeated 

transmissions with similar data, this would simulate a set of 

conditions similar to our project. Our Q-Learning proves to be 

able to learn a policy which does decrease packet loss and 

increase throughput particularly.  

 

VI. CONCLUSION 

In this project, we looked to fine-tune TCP CUBIC’s 

parameters to improve congestion control. However, the goal 

of a 15% improvement in packet loss and throughput was not 

achieved. This project has demonstrated that tuning TCP 

CUBIC’s parameter beta can improve congestion control 

performance.  

In future work, the impacts of the scaling constant C on 

congestion control could be investigated. As with beta 

predominantly affects the reduction congestion window during 

loss events. However, C affects the congestion window growth. 

Investigating the tuning of both C and beta simultaneously 

could find a balance of improving congestion control during 

loss events and during normal transmission. In particular, as C 

affects window growth this could reduce the loss events in the 

first time with a modified congestion window growth. 
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