
1

ENGR 489 (ENGINEERING PROJECT) 2023

DOM Instrumentation to Display Provenance Data

Jayen Gulab

Abstract—With ever-evolving privacy laws, end users of

software systems are increasingly expressing concerns

about the usage of their data. Real-world incidents, such as

the 2019 data breach affecting up to 112,000 Air New

Zealand Airpoints customers, have contributed to a

growing awareness of data privacy issues. In response to

these concerns, New Zealand regulators re-evaluated the

privacy act in 2020, imposing financial liability on data

providers to mitigate potential data breaches. This project

aimed to contribute to an infrastructure enabling users to

monitor the usage of their data when interacting with web

applications. This has been accomplished by providing end

users with increased transparency regarding the handling

of their data during the browsing of web applications.

Modern web applications have complex layered

architectures, often involving server-side applications with

existing solutions. Developing and retrofitting systems to

support this transparency is both intricate and costly;

hence, automation is the desirable approach. This research

explored the implementation of a solution to expose existing

provenance data from the server-side domain to the client-

side domain through manipulation of the client-side

Document Object Model (DOM). To achieve this objective,

a range of prototypes to instrument the client-side DOM

and expose existing provenance data were developed. The

prototypes were browser plugins, pure JavaScript

instrumentations, and framework plugins. Throughout the

project, each decision was carefully evaluated before

initiating implementation. Performance was assessed by

measuring performance overheads to help determine

whether the performance cost is worth the functionality.

Keywords - Automation, Client-Side DOM

Instrumentation, Data Transparency, Development, End

Users, JavaScript, Performance Analysis, Privacy,

Provenance Data, Web Applications

I. INTRODUCTION

A. Background

The General Data Protection Regulation (GDPR) represents

a set of EU-based data protection regulations [1]. One of the

rules within this regulatory framework stipulated an

individual's entitlement to request the deletion of their data. As

per the GDPR's definition, personal data encompassed "any

information relating to an identified or identifiable natural

person" [2]. It is imperative for companies to maintain

compliance with data protection regulations and handle data

with utmost care. A notable instance of mishandling data

occurred in April 2023 when Meta Platforms Ireland Limited

was fined 1.2 billion euros by the Irish Data Protection Agency,

marking the largest GDPR fine issued to date [3]. The penalty

was a consequence of Meta's failure to comply with GDPR

standards concerning data transfers. To mitigate such

occurrences, numerous companies deliberately obscure the

origin and destination of data. This obfuscation can result in a

lack of transparency, making it challenging to fully understand

how your data is being utilised.

B. Motivation

The primary objective of this project was to cater to end-

users who want to gain insights into what information server-

side applications utilise when data is inputted into a web

application or when retrieving it from a server application. By

shedding light on obscured data, this project aimed to notify

users when their data is being utilised for purposes that differ

from the original intent. As an example, one scenario could be

where you send an image to a server, and that image is covertly

utilised for training an AI model. Users would become aware of

this through the provenance data that is now made visible to

them. Examples of provenance data include information about

the APIs being utilised when processing your data, and their

storage location. Contemporary web applications are layered

and have existing solutions for server-side applications. Given

this ongoing development it became crucial to establish

solutions that could be integrated into existing applications

without the need for extensive rewriting. The scope of this

project did not encompass rendering data directly to the

presentation layer which is often seen in real-world application

scenarios by using CSS. Rather, creating a simple rendering

solution using a popup which can be dynamically displayed on

web applications was the approach taken. This was pivotal in

determining the credibility and integrity of incoming and

outgoing data based on its source [4]. The main assumption

made during this project was that the server would generate this

provenance data, and it could be extracted by analysing header

information. The proposed approach involved DOM

manipulation and instrumentation. A similar concept of

provenance is employed by companies like Facebook and

Google for their advertisements. These companies use data to

display personalised ads and include a "Why am I seeing this

ad?" link where the user could access provenance information

by clicking the provided link [5] as seen in Figure 1.

Google Ad on Webpage Why am I seeing this Ad?

Figure 1. Example of Provenance Data

Ad embedded on webpage. Trying to close the ad will give

the option to see why you are seeing this add.

2

ENGR 489 (ENGINEERING PROJECT) 2023

C. Approaches

In pursuit of solving this objective, three distinct approaches

were explored. These included the development of browser

plugins, the utilisation of pure JavaScript instrumentations, and

the incorporation of Framework plugins. Each of these

approaches presented its unique set of challenges and

intricacies in design, with some being impractical due to their

specific limitations.

D. Environmental Concerns

Concerning its environmental footprint, this project did not

need hardware components, resulting in negligible resource

consumption during the development phase. The sole potential

environmental consideration revolved around the additional

power consumption associated with running the software

instrumentation. To address this issue, a deliberate effort was

made to ensure that all implementations imposed minimal

overhead. The Chrome Performance Profiler was employed as

my solution for this task. While this tool does not offer direct

power profiling capabilities, we utilised the CPU profiler as a

suitable alternative, effectively serving as a proxy for power

profiling.

II. PRE-DEVELOPMENT RESEARCH AND RELATED WORK

A. DOM Manipulation

The Document Object Model (DOM) is a programming

interface standardised by the W3C that treats HTML and XML

documents as a tree structure [6, 7]. Each node in the structure

represents a different part of the document on a webpage. This

allows the use of JavaScript to create dynamic web applications

[8]. This project goal is to manipulate DOM elements to expose

provenance data back to the end user. One way this can be done

is through JavaScript. Using JavaScript, users can get different

elements on a webpage, select distinct types of nodes, and

create and append new nodes [9].

B. Data Provenance

Provenance is the documentation of the origin, history, and

transformations of data, providing a clear lineage and

accountability for its usage [10]. In recent years data

provenance has become more important as it exposes

information flows of systems and allows users to make choices

based on this information. This increased transparency of data

flows allows us to hold misleading or incorrect data

accountable. There are several applications in which

provenance information is helpful. These include Data Quality

where the quality of information can be estimated through its

lineage, Audit Trail to trace the trail of data and detect errors,

Replication Recipes which allows for the repetition of data,

Attribution which can establish copyright or ownership of data,

and Informational which can provide context from the lineage

of metadata [11]. Exposing provenance data will allow end

users to apply these applications on data from a webpage. These

applications are beneficial for people in professions such as

science, medicine, computational, and geospatial fields [10].

All of these fields require information to be accurate due to

potential dangers which can occur from incorrect or misleading

data. Being able to infer the quality of data, where it is from,

having the ability to replicate it, establish copyright, and

analyse its metadata are all valuable tools that can be used to

increase the validity of a piece of data.

C. HTTP Headers

The Hypertext transfer protocol (HTTP) allows information

to pass between a client and a server. An example of this is an

end user's browser and server-side applications [12]. When this

information is exchanged request and response headers are

generated [13]. These headers contain additional information

that can be used for things such as security. Examples of these

Figure 2. Example of HTTP Header Response

requests are GET and POST Requests. Figure 2 shows what a

HTTP header capture may look like. Some of the headers we

are interested in are “method,” “type,” and “URL.” These

headers are important because they can provide data

provenance. In the example header image provided in this

section, the “URL” header shows the origin of where the data

came from. These URLs can be directly from the server-side

backend application or a URL on the internet. It is worth

highlighting that these headers can be customised to suit

specific requirements. For instance, in POST responses, the

location header is employed to appoint the redirection

destination for webpage navigation [14]. Customised headers

can be controlled and created by server-side applications.

D. JavaScript Instrumentation

Software instrumentation is a technique that is used in

software profiling, performance analysis, optimisation, testing,

and error detection [15]. Instrumentation involves adding extra

code to an application for monitoring some program behaviour.

It can be performed statically at compile time or dynamically at

runtime. There are different use cases when it comes to

Instrumentation. In one study Instrumentation was used to

apply policy-based code to web pages to avoid cyber security

threats such as XSS attacks [16]. This study holds significance

for my project as it aimed to enhance web application

functionality by introducing an additional layer of security.

Instead of relying on traditional security measures, this study

employed instrumentation to reveal provenance data.

Instrumentation serves another valuable purpose which is

enabling the measurement of test coverage. Test coverage

quantifies the portion of application code that undergoes testing

and verifies if the test cases comprehensively cover all aspects

3

ENGR 489 (ENGINEERING PROJECT) 2023

of the code. An illustrative instance of this is JaCoCo, a freely

available code coverage tool tailored for Java [17]. JaCoCo

employs bytecode instrumentation while a Java agent is in

operation to assess code coverage.

E. Plugin Architecture and Design

Developing browser and framework plugins are fairly

simple with a low barrier to entry. All you need is a JavaScript

file with your code and a manifest.json file for chromium-based

browsers or a package.json file for framework-based plugins.

This file has all of the metadata about your extension such as

what scripts you are using and browser actions [18]. An

important concept when it comes to good plugin design is to

have good security policies that do not compromise an end

user's experience [19]. Some common vulnerabilities in

browsers include Cross-Site Scripting where an extension uses

eval or document.write without sanitising inputs. Replacing

Native APIs where a malicious web page can confuse a browser

extension by replacing native DOM APIs with its own methods.

JavaScript Capability Leaks where if an extension leaks one of

its own objects the attacker can often access other JavaScript

objects, which could include powerful extension APIs [19].

Mixed Content where an active attacker can control content

loaded through HTTP. The most severe form of this attack

happens when a browser extension loads a script through HTTP

and runs it. A natural approach to mitigating these

vulnerabilities is to limit extension privileges. Browser plugins

can be divided into five groups “critical” where the plugin can

run arbitrary code, “high” where the plugin can access site-

specific information like cookies and passwords, “medium”

where the plugin can access private user data like their history,

“low” where the plugin can annoy the user, and “none” where

the extension has no privileges [19]. Ideally, plugins will fall

into the “low” and “none” category. This was achieved by

ensuring that the plugins did not require more permissions than

necessary.

F. Study of Existing Solutions

Through research, it was discovered that no one had

attempted to address this problem in the same manner as we did.

However, many studies have been conducted that have

approached parts of the project goals. These existing solutions

and studies came in helpful while developing different

prototypes.

One of the studies found was conducted at the Blekinge

Institute of Technology in 2022 where they compared DOM

manipulation performance when using vanilla JavaScript and

front-end JavaScript Frameworks [20]. This study was relevant

to the project because two prototypes we were attempting to

develop included a pure JavaScript implementation and a

framework plugin implementation. One of the project's

prerequisites was to minimise overhead during DOM

instrumentation. The performance evaluation conducted in this

study played a pivotal role in determining which approach

received a greater allocation of resources. The frameworks used

in this study were Angular, React, and Vue.js. This experiment

was conducted by creating Vanilla JavaScript and the selected

frameworks test applications. These applications were used as

a base for comparing application size and for comparison tests

of DOM performance-related metrics using Google Chrome

and Firefox. The results of this study found that there was a

distinct difference between the JavaScript and framework

implementations. It found that vanilla JavaScript had the best

performance and the smallest application size. The conclusions

gained from this study stated that both methodologies are viable

when manipulating the DOM, but a pure JavaScript

implementation will yield better performance. This was

reflected back in my implementation where the pure JavaScript

implementation returned a better performance compared to the

other approaches. This study also found that the DOM

manipulation tests ran faster on Google Chrome compared to

Firefox.

Another study discussed ways of visualising provenance data.

This study proposes multiple provenance visualisation

techniques where end-users can evaluate and understand the

provenance data. Proposed visualisation methods use the W3C

PROV-O specification for provenance data [21]. This data is

displayed through a user interface where you can filter data to

get information on a specific piece of data. While the initial plan

did not include displaying this provenance data to the extent

demonstrated in this project, it provided insights on potential

methods to present it. One of these ideas was to display the raw

data on a separate interface where the data was not formatted

heavily to meet the project specifications. This was evident in

the final product, where the provenance data was displayed

within the webpage as a popup.

III. DESIGN REQUIREMENTS

To achieve the goal of exposing end-user data, software

solutions were developed to instrument web applications DOM

Figure 3. HTML code and how the DOM represents this as a

tree-like structure of nodes.

exposing their provenance data. The DOM is an interface

standardised by the W3C that treats HTML documents as a tree

structure [6, 7, 22]. Each node in this structure represents a

different part of the web document. Figure 3 illustrates how this

process looks and the difference between HTML code and the

DOM. The idea was to manipulate elements of the DOM on

web applications through instrumentation to create new node/s

or child nodes to expose existing provenance data back to the

end user. This instrumentation would happen when an HTTP

Request is sent through a JavaScript framework. The scope of

this project was to develop provenance support for the middle

application layer only. Primarily this would be used for one-

4

ENGR 489 (ENGINEERING PROJECT) 2023

page applications which do not reload the entire page but use

Ajax to fetch information. Ajax (Asynchronous JavaScript and

XML) allows for the creation of asynchronous web applications

[23]. An advantage of this is that data can be loaded onto a

webpage without needing to reload the entire page.

Instrumentation is a technique that is used in software profiling,

performance analysis, optimisation, testing, and error detection

[15, 24]. It involves adding extra code to an application for

monitoring some program behaviour. It is used to transparently

add functionality without touching the actual application or at

least minimising modifications to reduce overhead. DOM

manipulation was represented as a red line where clicking it

displays the provenance data specific to that element.

Figure 4. Proposed data and control flow of my implementation

HTML will be altered because of DOM Instrumentation when

header information is captured. HTTP makes a request to the

server. Then the server sends back response headers.

Provenance Data is persistent and sent by a server-side

application. Exposed Provenance Data is received and

displayed back to the user as a separate interface.

Figure 4 shows the data and control flow that is executed during

this process. Existing Provenance is exposed by capturing

HTTP headers which will cause the DOM to be instrumented

and exposed provenance data to be displayed back to the end

user. This diagram assumes that the server-side application

facilitates provenance by incorporating a header within the

response headers that directs to provenance data encoded in

JSON. The development of this layer is not within the current

scope but is actively in progress through the SFTI-funded

Veracity Project [25, 26]. As part of my testing efforts for my

final solution, a mock-up of this functionality was created.

Three types of solutions were developed for this problem,

each of which contained multiple approaches attempted to solve

the problem. A browser plugin solution, a JavaScript

instrumentation solution activated in browser code, and a

framework plugin solution. Iterations of these software

solutions were developed to achieve the goal of DOM

instrumentation. While developing these solutions the Rational

Unified Process (RUP) was followed [27]. RUP has four stages.

The first stage is the inception phase. In this phase, an attempt

was made to gather feedback on the proposed solutions to

assess their viability. The subsequent stage is the elaboration

phase, during which the requirements of the solutions are

examined. This stage resulted in a more profound

understanding of the systems that were being developed. The

third step is the construction phase, where the software

components are built. During this phase, a return to the

elaboration phase was made whenever the development of a

new software component was required. The Transition phase

marked the conclusion of the project, involving performance

testing and the deployment of the software solutions to GitHub

for future development. Following this process meant that my

project met the ISO9126 usability standards as it provided

specification and an evaluation model for the quality of my

software [28]. This standard can be divided into four parts. The

Quality model, External Metrics, Internal Metrics, Quality in

use metrics. Within the Quality model it specifies six

characteristics to meet this standard. Functionality, Reliability,

Usability, Efficiency, Maintainability and Portability. To

ensure the software met these characteristics the criteria we

evaluated the prototypes against are runtime overhead,

difficulty to install, development costs, and how effectively it

meets the project requirements. While awaiting the

development of the Server-Side Provenance software, we

opted for alternative solutions by utilising various HTML and

header metadata in its place.

IV. IMPLEMENTATION

A. Browser Plugin

The development of a browser plugin was initially

undertaken as the first solution. The initial strategy involved

selecting the specific web browser to target for this plugin,

recognising that each browser comes with its unique

requirements and operates on distinct frameworks (e.g.,

Chromium). To make an informed decision, research was

conducted to determine which browser engine would be the

most suitable choice.

Once this was settled, the next step was to delve into the

intricacies of creating browser plugins tailored to that specific

platform. To validate the feasibility of this endeavour, a basic

mock plugin for testing purposes was used. Subsequently, the

primary objective shifted towards the development of a plugin

capable of instrumenting the Document Object Model (DOM)

and exposing some type of data not necessarily the provenance

data for the moment. Achieving this required extensive research

into the techniques for injecting JavaScript code into a browser

through a plugin.

This process involved the iterative process of refining and

rigorously testing prototype browser plugins that would

seamlessly integrate the functionalities of the previously

developed plugins. This resulted in having many different

iterations of browser plugins where some approaches were

more viable than others.

1) Planning and Justification

The Chrome browser was the opted target, primarily

because it has the highest popularity among its competitors,

such as Firefox and Safari [29]. A notable advantage of

choosing Chrome was its foundation on the Chromium web

browser, developed by Google. This decision also offered

compatibility with other browsers utilising Chromium,

including Microsoft Edge, Opera, and the Brave browsers [30].

5

ENGR 489 (ENGINEERING PROJECT) 2023

This multi-browser support represented a significant advantage

of this approach.

Nonetheless, a drawback of this choice was the lack of

compatibility with other widely used browsers like Firefox. The

incompatibility issue stemmed from the fact that each browser

employs its unique rendering methods and JavaScript engines.

For instance, Safari and Chrome utilise the Web kit browser

engine, while Firefox relies on the Quantum engine [31]. These

differences result in varying interpretations of data by different

browsers. Consequently, the development of plugins requires

conforming to distinct standards for each browser, complicating

cross-browser compatibility.

Having settled on Chrome as the target, research into

Chrome plugin architecture began. This enabled familiarity

with Chrome plugin development.

2) Chrome Plugin Architecture

Chrome Plugin Architecture, also known as Chrome

Extension Architecture, is a framework that enables developers

to enhance the functionality of the Google Chrome web

browser. These extensions or plugins are small software

programs that can modify and extend the browser's capabilities,

add features, customise the user interface, or interact with web

applications in unique ways. Here is a list of the aspects that

were of primary interest for this project [32]:

Manifest File:

At the core of a Chrome extension is the manifest file

(manifest.json). This file acts as metadata, defining the

extension's structure, permissions, and various settings. It

specifies what the extension can and cannot do, what web pages

it can access, and more.

Background Pages:

Extensions often include background scripts or pages that

run in the background, even when the user is not actively

interacting with the extension. These scripts can manage tasks

like monitoring changes in web pages, handling user settings,

or managing communication between distinct parts of the

extension.

Content Scripts:

Content scripts are JavaScript files that can be injected into

web pages. They allow extensions to interact with and modify

the content and behaviour of web applications. This is useful

for tasks like injecting custom CSS, altering page content, or

adding interactive elements.

Permissions:

To ensure security and privacy, extensions need to declare

the permissions they require in the manifest file. These

permissions specify what the extension can access, such as tabs,

cookies, and storage.

3) Plugin Implementations

The development journey commenced with the creation of

a plugin designed to insert a button into webpages whenever an

"img" tag was detected [33]. This button's purpose was to

redirect users to the original URL of the image upon clicking.

The mechanism behind this plugin involved assembling all

"img" tags into an array, which was subsequently traversed in

a loop. Within this loop, a "div" element was appended to the

page, serving as a parent to the "img" tag. Inside this "div"

Figure 5. Webpage with browser plugin activated

Source button attached to images by wrapping the image

element in a div element.

element, a button was dynamically added to facilitate image

URL navigation. You can visually see this in Figure 5 which

showcases the webpage after the plugin activation. You can see

that a button has been integrated with each of the images on the

webpage. The plugin was utilised as an educational tool to gain

experience in developing Chrome extensions and injecting

HTML elements into webpages using JavaScript.

Moving forward, the next endeavour was to explore how to

capture header requests and responses transpiring within web

pages. This project necessitated the capability to capture HTTP

Headers. To fulfil this requirement, an Intercept Headers Test

Plugin was designed, which harnessed the WebRequest API to

intercept and capture all headers arriving and departing from a

webpage [34]. These captured headers were then presented in a

separate Chrome devTools tab.

Lastly, before the final browser implementation, a Display

Headers Test Plugin was developed, which was responsible for

rendering the captured headers in a list formatted within an

HTML structure [35]. This process functioned by capturing

each incoming response header from a webpage and associating

it with a unique Chrome session key. This key was

automatically cleared upon closing the browser. Subsequently,

upon each browser refresh, these headers were appended to a

list and presented as a popup.

4) Primary Plugin Prototype

Through the testing of various plugins, a prototype plugin

was successfully developed. This plugin had two primary

functions: firstly, it can display data via HTTP headers, and

secondly, it can instrument a web applications DOM by

highlighting elements that have been altered by Ajax [36].
To evaluate this implementation, a mock webpage was

designed that can be launched in a web browser. Tests were also

conducted on specific internet web pages. The core

functionality of this plugin was centered around identifying

DOM elements that have been altered using Ajax, specifically

altered using the XMLHttpRequest API. It accomplishes this by

scanning the webpage, detecting instances of XMLHttpRequest

6

ENGR 489 (ENGINEERING PROJECT) 2023

usage within "script" tags, and storing the associated request.

Figure 6. Webpage and DOM before instrumentation

Figure 7. Webpage and DOM after instrumentation

Simultaneously, the plugin records all incoming responses to

the webpage. When a response is received, it compares the

response URL to the request URLs collected earlier. If there is

a match, it indicates that a DOM element has been manipulated

through Ajax and highlights that element in red. Furthermore,

the plugin can list all headers that have affected DOM elements

at the bottom of the page using HTML manipulation with

JavaScript.

For a visual representation of this process, refer to Figures

6 and 7, which provide before-and-after images of a test

webpage developed along with corresponding HTML [37].

Additionally, a short video demonstration of the main

prototype's capabilities has been created for those interested in

a showcase: Demo Video.

5) Challenges and Limitations

Throughout the development of these plugins, several

challenges were encountered due to the inherent limitations of

plugin development. One notable limitation was the absence of

a direct method to associate DOM Elements with HTTP

Headers. To address this limitation in the plugin's

implementation, we resorted to performing string searches to

determine if the URL arriving at the webpage matched the URL

sent in the HTTP Request. However, this approach had its

drawbacks, primarily the potential for false positives. This is

due to the exclusion of any query parameters included in the

URL during the string search. The query parameters are

appended when the request is sent, rather than being part of the

XMLHttpRequest. Consequently, there is a possibility of

associating a header with a webpage arrival that did not

manipulate the DOM. In future iterations, alternative

approaches to address this issue were explored.

Another challenge encountered was the plugin's impact on

browser performance. Some web pages generate numerous

requests, resulting in a slowdown when the plugin compares

each request URL with all the URLs used by the

XMLHttpRequest API. When observed, it had around 50%

slowdown on normal web application processes. To optimise

the plugin's performance, we modified its behaviour. Instead of

storing all incoming URLs in an array, We send each URL as a

message to my main.js script, where it is compared to the

request URLs received in each message. This approach

eliminates the need to compare two arrays, which had been

slowing down the browser.

Plugin security is also another challenge frequently

encountered. This was due to Chrome’s built-in security which

helps mitigate exposing unneeded data to plugins [38].

Unfortunately, this led to limitations on what tools we could

use. One of these was the cross-origin limitation. Plugins often

need to interact with external websites or APIs, but Chrome's

Same-Origin Policy and CORS (Cross-Origin Resource

Sharing) restrictions can hinder these interactions. This made it

extremely hard to evaluate whether the implementation worked

on public web applications. Secondly, Chrome enforces CSP

rules (Content Security Policy) that restrict the use of inline

scripts and any external resource in web pages [39]. This can

affect the ability of plugins to inject scripts into web pages or

manipulate page content, making it challenging to implement

certain features.

While these security measures are essential for safeguarding

user privacy and maintaining the integrity of the Chrome

browser, they do add complexity and constraints to plugin

development. These limitations underscore the motivation for

exploring a different approach to solve the project goals. As a

result of this, the development of this software was continued

using a different approach.

B. JavaScript Instrumentation

Having determined that the browser plugin approach was

not the most suitable solution for this project, we subsequently

shifted to exploring a pure JavaScript approach to fulfil the

project's objectives.

This process involved incorporating a script into the

browser's HTML code within a <script> tag to instrument DOM

elements [40]. Initially, research was conducted to gain insights

into JavaScript-based instrumentation techniques. Following

this research phase, a mock HTML webpage was created

specifically designed to assess webpage instrumentation. The

goal here was to assess its functionality and effectiveness.

Subsequently, a script was created to instrument the Document

Object Model (DOM) for the purpose of exposing metadata.

This script was evaluated on the mock website to ensure it

performed as expected. To make this instrumentation available

to the public, users needed to include the script in their projects

by inserting it within a <script> tag when publishing their web

applications. This approach aimed to achieve the desired

instrumentation goals while ensuring compatibility and

usability for end-users.

By the end of the JavaScript Instrumentation development

cycle, three program iterations had been produced, each one

extending upon the last.

https://drive.google.com/file/d/1VftMHpJXYHqSXD32-E-TIKN9C-EIW0o6/view?usp=sharing

7

ENGR 489 (ENGINEERING PROJECT) 2023

1) Iteration One: MutationObserver

a) Research and Planning

Initiation began by exploring methods to identify DOM

changes exclusively using pure JavaScript, without relying on

any frameworks. During this investigation, a JavaScript API

known as the MutationObserver was discovered [41]. The

MutationObserver provides a way to asynchronously observe

and react to changes in the DOM. It allows for the monitoring

of mutations signified by changes in the structure of an HTML

document. Mutations can include things like adding or

removing elements, modifying attributes, or changing the

content of elements. The key components of the

MutationObserver API include the MutationObserver object

which you can initialise to observe specific elements in the

DOM. These mutation types are:

childList:

Observes changes in the child elements of the target node.

attributes:

Observes changes to attributes of the target node.

characterData:

Observes changes to the text content of the target node.

subtree:

Extends the observation to the entire subtree of the target

node.

You can also designate a specific target node for

observation. In the context of this project, the target node

encompassed the entire webpage document. Whenever there is

a DOM mutation, it produces a mutation record, enabling the

extraction and analysis of both the previous and the updated

DOM values. This facilitates straightforward comparisons to

identify the specific changes made to the DOM element. The

Mutation Observer is commonly used for implementing

features like auto-saving forms, lazy-loading content, and

updating UI components in response to changes in the DOM.

This tool is powerful for constructing dynamic web

applications, precisely what we needed for this project.

b) Architecture and Implementation

The architecture of this iteration involved two main

components inject.js and detect.js [42]. The inject.js script

facilitates DOM manipulation while detect.js responds to these

manipulations. This architecture allows for dynamic and

conditional manipulation of web applications.

During implementation, the inject.js script was designed to

search for <script> elements in the HTML document that

contain the text "new XMLHttpRequest()". This is a similar

approach used in the browser plugin implementation. If found,

it modifies those <script> elements by adding code to set

properties of specific elements identified by their IDs. These

properties include the URL and Headers received by the HTTP

response initiated by the Ajax request. Specifically, it stores

these properties in a document variable. It assigns the response

headers to "document.getElementById().provenance". This

occurs when the webpage loads which is important for detect.js.

The detect.js script actively tracks DOM manipulations and

responds to them accordingly. When these changes take place,

it retrieves and presents properties defined in inject.js to the

browser console. These properties include the request URL and

response headers. Additionally, it visually emphasises the

altered DOM element by applying a randomly selected colour

from a colours array. The design pattern applied in this context

is the observer pattern, which falls under the category of

behavioural design patterns [43]. The observer pattern proves

valuable when seeking to monitor the state of an object and

receive notifications whenever it undergoes any changes.

Within this pattern, the entity observing the state of another

object is referred to as the "Observer," while the object being

observed is called the "Subject." This design pattern was

implemented through the utilisation of the MutationObserver.

c) Challenges and Limitations

While the code may work for some simple cases, it has

several limitations and issues. The code relies on parsing and

manipulating the JavaScript code embedded within <script>

elements. This approach is fragile because it assumes that the

Ajax calls are constructed using a specific pattern ("new

XMLHttpRequest()") and that they are directly embedded

within <script> elements. Modern web applications often use

more complex mechanisms for making Ajax requests, such as

using libraries like jQuery for which this code does not account.

This code's effectiveness also depends on the browser's ability

to oversee dynamic script replacement. Some browsers may not

execute dynamically inserted scripts reliably during runtime,

leading to inconsistent results and potential errors [44]. This

code also uses a linear search to iterate through all <script>

elements in the document to find the ones containing the target

text. This can be inefficient when there are many scripts on the

page, potentially impacting performance.

d) Evaluation

To evaluate this implementation, a simulated index.html

page equipped with buttons that triggered Ajax requests to

different public endpoints was constructed [45]. Through this

testing process, several of the limitations we had previously

outlined were found. While this iteration partially fulfilled

certain project goals, it became evident that it needed further

enhancement due to the uncovered limitations. Specifically,

there was a recognition of the need to dynamically identify Ajax

calls during runtime rather than in a pre-runtime context, and to

instrument other types of Ajax requests, including those using

jQuery. This iteration served as the foundational stepping stone

for all subsequent iterations.

2) Iteration Two: Aspect-Orientated Approach

a) Research and Planning

In the subsequent iteration, the direction of using Aspect-

Oriented Programming (AOP) to instrument DOM elements

during runtime was suggested by the supervisor. Aspect-

Oriented Programming is a programming paradigm that aims to

modularise cross-cutting concerns in software applications [46,

47]. Cross-cutting concerns are aspects of a program that affect

multiple modules or components, such as logging, security,

error handling, and performance monitoring. AOP provides a

way to separate these concerns from the main logic of a

program, making the codebase more maintainable and less

cluttered with repetitive code. You can wrap functions with

8

ENGR 489 (ENGINEERING PROJECT) 2023

"advice" functions that execute before, after, or around the

target function. One of the project's requirements is to ensure

that the program is lightweight and can be easily integrated into

webpages, and this programming paradigm addresses that

requirement effectively as it will automate the instrumentation

process.

b) Architecture and Implementation

The architecture of this iteration consists of several

JavaScript files that work together to implement a system for

adding aspects to functions in an API [48]. It uses JavaScript's

Proxy object to intercept function calls and execute additional

code (aspects) before, during, and after the original function

execution. Aspects are functions that can execute code before,

during, or after the original method execution. This architecture

encourages code reuse and allows for the dynamic adaptability

of the system. This approach is especially beneficial in large

and complex software systems where cross-cutting concerns

can quickly become unwieldy if not effectively managed.

Implementing this approach involved four JavaScript files.

The addAspects.js file defines a function called addAspects that

accepts a variable number of aspects as arguments. Inside the

function, it creates a get function that is used as a handler for a

JavaScript Proxy [46]. The get function intercepts property

accesses on an object (in this case, it is used as a Proxy handler).

If the accessed property is not a function, it returns the original

value using Reflect.get. If the accessed property is a function, it

wraps it in an async function that executes aspects before,

during, and after the original function call. The aspects are

executed using a run function for each pointcut ('before',

'during', 'after').

The api.js file creates an API object by calling the

addAspects function and passing in an aspect. The API object

has the addScripts method.

The logger.js file defines a logger object with the method

addScripts. It defines an aspect as an object with a before

method. In the before method, it parses and processes

JavaScript code looking for specific patterns (e.g.,

XMLHttpRequest). The aspect does not modify the original

function's behaviour.

The detect.js is the same as the last iteration as it still

captures manipulations that occur in the DOM during runtime.

c) Challenges and Limitations

The introduction of aspects can make it more challenging to

understand the flow of a program, as behaviour can be scattered

across several aspects making the codebase harder to maintain

and debug. This is known as weaving which occurs during

runtime [49]. We also found it had quite a steep learning curve

as it introduces a unique way of thinking about code

organisation and behaviour. It is commonly associated

languages such as Java and C#, but support in JavaScript is

limited [50].

d) Evaluation

To evaluate this code, a simulated index.html page was

constructed equipped with buttons that triggered Ajax requests

to different public endpoints the same as the previous iteration

[45]. During the testing process, it was realised that this

approach would result in the generation of numerous false

positives and could be challenging to comprehend. While this

iteration fulfilled the project goal of identifying Ajax calls

dynamically during runtime rather than pre-runtime, more

research was conducted as a simpler approach was desired. This

iteration served as another foundational stepping stone as in the

final JavaScript Instrumentation iteration, the concept of

proxying was used.

3) Iteration Three: Instrumentation through Proxying

a) Research and Planning

This was the final iteration of the JavaScript Instrumentation

approach. From researching the technique of proxying another

technique called functional hooking was found. Functional

hooking is a technique used to intercept and modify the

behaviour of functions or methods at runtime to extend its

functionality [51, 52]. It is commonly used for debugging,

profiling, monitoring, and extending the functionality of

existing code without modifying the original code. This was

precisely the technique that was sought after, as it would

facilitate the straightforward instrumentation of JavaScript code

while it was executing in the browser. It is remarkably similar

in design to Aspect-Oriented Programming except a lot easier

to understand and implement. Expanding on this proxying is a

technique employed in Aspect-Oriented Programming (AOP).

In this approach, however, XMLHttpRequest.prototype.open()

is directly proxied. While this method is lower level in nature

compared to AOP, it offers several advantages. Notably, it

provides developers with a greater degree of control, enhances

efficiency, and empowers them to wield a higher level of

control over the process [53]. Functional hooking is a powerful

technique that provides flexibility for extending and modifying

the behaviour of functions or methods in a dynamic and non-

invasive way. The plan moving forward was to implement this

technique to proxy Ajax methods when they are called. Then

detect when a DOM element is manipulated by Ajax using the

MutationObserver API.

b) Architecture and Implementation

This iteration consists of three files: proxy.js, observe.js,

and init.js. The observe.js file utilises the MutationObserver

API, similar to previous iterations, to identify changes in the

DOM. The init.js file is responsible for initializing global

variables. Lastly, the proxy.js file serves as a proxy for the

"open()" method of the XMLHttpRequest API. This

architectural design enables the monitoring and instrumentation

of JavaScript-triggered Ajax requests made by web

applications, with the collected information stored in a

document variable for subsequent analysis.

The code starts by creating proxies for the

“XMLHttpRequest.prototype.open()” method and the fetch

function [54]. When “XMLHttpRequest.prototype.open()” is

called, it creates event listeners for onload and load events.

These listeners capture response data, response headers, and the

request URL. It then stores the information in the DOM element

with the target's ID. Similarly, when a fetch request is made, the

code intercepts the response headers, stores them, and updates

the DOM element with the target's ID. When a mutation is

9

ENGR 489 (ENGINEERING PROJECT) 2023

detected, it checks if the provenance property of the mutated

target (DOM element) has data stored in it. The provenance

property is what the previous information was stored in. If this

has data written to it, it calls the “provenanceString” function

to log information about the mutation, including the old and

new values, the DOM element's ID, the request URL, and

response headers. The “provenanceString” function then

formats and logs information about DOM mutations, including

the old and new values of the DOM element, the ID of the

element, the request URL, and response headers.

c) Challenges and Limitations

In general, implementing this iteration was smooth and

straightforward, with few challenges and limitations

encountered. However, one notable challenge arose when

attempting to extend this functionality to server-sent requests

which is a push protocol. It is worth noting that this was

introduced as an experimental feature, as it was not even under

consideration in the previous iterations discussed.

Server-Sent Events (SSE) in JavaScript, also known as

Server-Side Events, provide a one-way, real-time

communication channel from the server to the client, typically

a web browser [55]. SSE allows for the immediate delivery of

updates or events from the server to the client, eliminating the

need for continuous client polling. Implementing this approach

involved creating a PHP server which would then send data to

the client as an “EventSource” every second [56]. A specific

issue encountered while working with SSEs was the absence of

response headers in SSE requests. To address this limitation, we

experimented with making a secondary fetch request each time

an SSE event occurred. Unfortunately, this approach had a

significant impact on performance since it required two

requests for each SSE event. Additionally, it did not accurately

reflect the original SSE call's results. Following a discussion of

this challenge with the supervisor, the decision was made to

forgo the instrumentation of Server-Sent Events (SSEs) for this

specific project. This choice was driven by the recognition that

the performance overhead introduced by the additional fetch

request outweighed the benefits of monitoring SSEs.

d) Evaluation

My assessment of this iteration mirrors my experience with

previous iterations, where an index.html file was constructed to

execute various HTTP requests via Ajax. Overall, this process

was found to be remarkably comprehensible and easy to

integrate into web applications. Moreover, it was observed that

this methodology aligned well with the project's objectives. It

effectively enabled the instrumentation of DOM elements in

real-time using the functional hooking technique and the

exposure of provenance data facilitated by HTTP Requests

through the MutationObserver API.

Notably, this was achieved solely with pure JavaScript,

without reliance on any JavaScript frameworks. This

independence from external dependencies means that it can

seamlessly integrate into a wide array of modern web

applications, ensuring its versatility and adaptability. As a

result, I implemented a similar approach when creating a

Framework plugin, which enabled the utilisation of the same

code with varying syntax depending on the JavaScript

framework.

C. Framework Plugin

Framework plugins are valuable tools in modern web

development because they allow developers to leverage

existing solutions and reduce the amount of code they need to

write [57]. This can speed up development and improve code

maintainability. Fortunately, prior experiences working on the

pure JavaScript program have supplied a codebase that can be

readily adapted into a JavaScript Framework. The next step in

this process was selecting the specific framework intended for

use before embarking on the implementation phase. After

making this decision, we proceeded to seamlessly incorporate

the previous JavaScript code into the chosen framework. Once

the integration was finalised, the subsequent task revolved

around deciding the method to be employed for publishing this

plugin.

1) Planning and Justification

The planning process commenced with an assessment of the

ideal framework for the plugin's development. Among the

notable JavaScript frameworks under consideration were

ReactJS, Angular.js, Vue.js, and Next.js. Of these, ReactJS and

Angular.js emerged as strong contenders due to prior

experiences with them. Each framework had its own set of

advantages and drawbacks within the development community.

The decision leaned towards ReactJS for several compelling

reasons [58]. Firstly, React's utilisation of a virtual DOM

allowed for efficient updates and rendering of UI changes,

targeting only the modified portions of the DOM, thus

enhancing performance—a critical factor for this lightweight

and highly integrable implementation. Secondly, React has

widespread popularity, ranking among the most frequently used

JavaScript frameworks, ensuring extensive documentation and

a broader user base, making the plugin more accessible.

Additionally, React exhibited excellent compatibility with the

jQuery JavaScript library [59]. This synergy was attributed to

React's component-based architecture, which worked well with

jQuery's approach to managing UI elements, particularly in

cases involving HTTP calls where jQuery employed Ajax.

After finalising the framework selection, the next phase of

planning focused on the publication strategy. It was decided

that NPM would serve as the optimal platform for releasing the

plugin. NPM's immense user base, composed of JavaScript and

Node.js developers, would offer unparalleled accessibility to a

thriving community well-versed in the ecosystem [60].

2) ReactJS Architectural Elements

Numerous architectural elements in React piqued our

interest, with one of the most significant ones being

components. In React, components serve as the foundational

building blocks of an application. They are reusable, self-

contained entities that encompass both the user interface (UI)

and the behaviour of specific parts of the application.

Components in React can take two forms: functional or class-

based, with class-based components offering additional

features like state management. Given these characteristics, it

was concluded that the most effective approach for

10

ENGR 489 (ENGINEERING PROJECT) 2023

incorporating this functionality into the project was to

transform my JavaScript instrumentation code into a React

Component. End-users could then easily install and utilise it

through the Node Package Manager (NPM).

ReactJS components can also maintain an internal state that

represents data specific to that component. This state can be

modified within the component, and whenever it changes,

React automatically initiates a re-render of the component and

its child elements. This mechanism was invaluable, particularly

in the displaying of provenance information to the end-users.

3) Implementation

Implementing this plugin was straightforward due to the

existing codebase that we could seamlessly migrate. We only

had to adjust the code to align with ReactJS programming

conventions [61].

The code begins by importing the useEffect hook from the

React library. The useEffect hook is a critical tool for managing

side effects in functional components. Within this custom React

hook, the useEffect hook is employed to establish and dismantle

a MutationObserver, which observes changes within the

Document Object Model (DOM). The observer's configuration

encompasses monitoring character data alterations, subtree

mutations, and attribute modifications in the DOM. When the

component utilising this hook is unmounted, the observer is

disconnected to ensure resource cleanup. Otherwise, the code

functions identically to the JavaScript instrumentation code

previously developed, retaining its ability to instrument DOM

elements in response to Ajax calls.

After this integration, this component was then published to

NPM so that it could be used by any end-users who are

developing React Projects.

4) Evaluation

The evaluation of this solution entailed the development of

a React web application using Node.js, similar to previous

implementations. This web application incorporated Ajax

functionality for testing purposes. Subsequently, a server

application was created to assess the effectiveness of the

instrumentation when Ajax calls were initiated.

The evaluation yielded results similar to those obtained through

my earlier pure JavaScript instrumentation approach. Notably,

several challenges encountered previously did not reoccur,

thanks to my prior experience in developing diverse solutions

to address this issue. Furthermore, the solution's accessibility

was enhanced as it was made readily available through NPM,

simplifying its deployment and integration.

D. Final Implementation

The approach found to be the most suitable for meeting the

requirements, and the one chosen for further development, was

the pure JavaScript Instrumentation approach. This decision

was primarily influenced by its versatility and straightforward

usability. Here is a demo video of how this implementation

works Demo Video.

1) Usage Instructions

To integrate this into any JavaScript web application, follow

these steps:

1. Add the instrument.js file to your HTML page with the

following script tag:

 <script src="instrument.js"></script>

2. Include the popup.css stylesheet in your HTML page

with the following link tag:

<link rel="stylesheet" href="popup.css">

3. In the instrument.js file, you can customize the

“provHeaderName” variable to match the name of the

header you are using to store the URL pointing to your

provenance generation endpoint.

This straightforward setup allows for the seamless

incorporation of this functionality into web applications while

offering the flexibility to adapt it to specific requirements.

2) Architecture and Implementation

This implementation consists of two core components: a

JavaScript file named "instrument.js" responsible for program

logic, and a CSS file called "popup.css" dedicated to styling the

provenance popup [62]. The code is modular and organised into

contrasting functions to streamline instrumentation.

DOM Mutation Observation:

The program initiates a MutationObserver, which tracks

changes in the Document Object Model (DOM). When DOM

mutations occur, the observer's asynchronous callback function

is invoked. It inspects mutations for the presence of provenance

data within manipulated DOM elements. If provenance data is

detected, the code schedules a delayed call to

displayProvenance() to present this information.

Proxying AJAX Calls:

The code extends the functionality of the XMLHttpRequest

object's open method to capture details about Ajax requests.

Similarly, it augments the behaviour of jQuery Ajax requests

using the addEventListener method. Information such as the

HTTP method, URL, response data, and headers is captured.

The findProvenanceHeader() function is invoked to search for

a specified provenance header within the response headers.

Header Search and Data Retrieval:

The findProvenanceHeader() function searches the response

headers for the specified provenance header. If the header is

found, it triggers getProv() to fetch and store the associated

provenance data. The getProv() function performs a fetch

operation to obtain provenance data from a designated server,

using the provided URL. The acquired data is then stored within

the relevant DOM element.

Displaying Provenance Information:

The displayProvenance() function is invoked when

provenance data is identified in a DOM mutation. This function

extracts pertinent information and creates a toggleable pop-up

element for presenting the provenance data to end users.

Furthermore, createTable() is called to generate an HTML table

from the JSON-based provenance data, which is then inserted

into the pop-up.

Table Creation:

The createTable() function is responsible for producing an

HTML table from a JSON object. It is designed to manage

nested JSON objects and construct the table accordingly.

https://gitlab.ecs.vuw.ac.nz/course-work/project489/2023/gulabjaye/dom-instrumentation-to-display-provenance-data/-/blob/main/Demo%20Video.mp4?ref_type=heads

11

ENGR 489 (ENGINEERING PROJECT) 2023

Popup Creation:

The createPopup() function generates a pop-up element for

DOM elements that have been updated via Ajax. These popups

allow users to toggle the visibility of provenance information.

If a popup for a specific element already exists, it is updated;

otherwise, a new one is created. The content within the pop-up

includes comprehensive details about the Ajax request and the

associated provenance data.

Styling:

The styling and formatting of the popup elements are

defined in the "popup.css" file.

In summary, this implementation serves as a robust

instrumentation system for tracking and presenting provenance

data linked to Ajax requests in web applications. It effectively

combines DOM mutation observation with the interception of

XMLHttpRequest and jQuery calls to achieve these goals. The

result is a user-friendly display of provenance information

within popups and informative console logs for debugging

purposes.

3) Justification

The selection of the JavaScript Instrumentation approach

was primarily driven by the code's readability and ease of

understanding. A significant advantage of this choice is the

enhancement of collaboration. Code that is straightforward to

read and grasp promotes smoother collaboration and

contributes to a more open-source environment. It allows for

multiple developers to work on the same codebase efficiently,

as they can swiftly comprehend the logic and purpose of the

code. This ease of comprehension also ensures that future

developers can easily onboard, which is a notable advantage.

Furthermore, this approach offers flexibility, which was a

pivotal reason for favouring it over the Framework plugin

approach. The code's flexibility enables seamless adaptation to

various JavaScript frameworks, exemplified by the

development of the React plugin. Adapting the code to match

React's syntax and coding conventions was a straightforward

task. Consequently, should the need arise to employ the code in

a different JavaScript framework in the future, minimal

adjustments would be required, thanks to its lightweight nature.

Its lightweight quality also translates into effortless usage, as

demonstrated in the Usage Instructions section. Deploying this

code on a web application entails only three simple steps,

primarily involving referencing it in HTML documents.

The code also boasts low coupling, meaning that its modules

or components have minimal external dependencies. This

reduces the risk of unintended side effects when making

modifications and broadens its applicability in various modern

web applications.

In terms of design, a deliberate choice we made during the

final implementation was to consolidate all the code into a

single file. This decision was motivated by the desire to

simplify usage within web applications, where the inclusion of

just one JavaScript file enhances user-friendliness.

Additionally, this consolidation made it more convenient to

monitor the program's performance within a web application, as

it facilitated the need to only track one JavaScript file rather

than multiple files, allowing me to easily gauge Overhead.

4) Challenges and Limitations

During development, notable challenges we encountered,

particularly when attempting to display the provenance data

within the popup. The difficulty in this aspect primarily

revolved around dynamically formatting the provenance JSON

into a table. This posed a challenge because a solution needed

to be devised so that it could manage the complexities of

potentially nested JSON structures. Fortunately, this challenge

was successfully resolved by researching and implementing

algorithms for JSON formatting [63].

Overall, this implementation exhibits few limitations that

would hinder the achievement of project objectives. Many of

the limitations are a result of my conscious effort to maintain

alignment with the project's defined scope, ensuring that the

development did not become overly complex. For instance,

choosing only to instrument Ajax calls, as specified in the

project outline, rather than extending instrumentation to other

types of HTTP calls.

One limitation that warrants mention, not explicitly outlined

in the project guidelines, is that an HTML ID must be attached

to the element for it to be instrumented. For example, an HTML

element like <p>Example Text</p> will not be instrumented,

whereas <p id="example">Example Text</p> will be. This

limitation was accepted based on the convention of assigning

important HTML elements an ID for identification, tracking,

and styling purposes. To ensure transparency with end users,

this has been clearly documented in the project’s README

under the limitations section [62].

V. EVALUATION OF FINAL SOLUTION

A. Methodology

My evaluation methodology spanned all facets of the

project, encompassing both the development and post-

development phases. Throughout the development phase, the

Rational Unified Process (RUP) was employed, a structured

approach that comprises four distinct stages [27].

The inception phase marked the project's initiation, during

which we conducted extensive research and meticulous

planning. This phase laid the groundwork, defining project

goals and objectives. Subsequently, the elaboration phase

followed, where plans were justified, refined project

requirements, and actively sought feedback. This iterative

process allowed for the validation and adjustment of project

direction. As development progressed into the construction

phase, solutions were diligently implemented while adhering to

the refined project requirements. Whenever required, a return

to the elaboration phase was made to ensure alignment with

project goals. The final transition phase involved performance

testing and the transition of my codebase to GitHub. This last

step ensured a solid foundation for future development and

collaboration.

Following the conclusion of the development phase, an

evaluation of the finalised solution was undertaken. This

evaluation sought to determine the extent to which the project

goals had been met. Based on this assessment, a well-informed

judgment regarding the overall success of the project was made.

For transparency, it is important to note again that the

server-side provenance software, which is being developed by

12

ENGR 489 (ENGINEERING PROJECT) 2023

a separate entity, had not reached a state of completion at the

time of this project. For testing purposes, initiative was taken to

create our own provenance endpoint and generate relevant

provenance data to demonstrate what the final implementation

would resemble.

B. Performance Testing

A mock webpage was established on localhost to assess the

functionality and performance of the instrumentation [64].

Performance testing was conducted using the native Chrome

performance tools to assess the additional load introduced by

the solution.

These performance assessments were saved as JSON files,

allowing for easy visualisation of the event timeline within

Figure 8. Performance metrics within Chrome DevTools

the Chrome DevTools as seen in Figure 8 [65]. This panel

allows developers to record and analyse the runtime

performance of web applications. It provides insights into CPU

usage, memory allocation, rendering performance, and network

activity. The simplicity of this process was facilitated by the

fact that my implementation resided within a single file.

Figure 9. Performance Metrics

To quantify the extra overhead a straightforward approach

was adopted where the performance metrics of functions that

were invoked during a browser session contained within

"instrumet.js" were examined. Figure 9 illustrates the outcomes

derived from this performance testing. A series of ten tests were

conducted for each use case on the mock webpage. Average

execution time for all scripts was then calculated. The results of

this testing revealed the following average overhead generated

by my instrumentation:

• Inputting data into a form and performing a POST

request: 11.97ms

• Fetching text from a server and performing a GET

request: 10.46ms

• Sending information via a POST request: 21.09ms

• Downloading a file through a GET request: 20.03ms

• Performing both a GET request and a POST request:

23.85ms

When consolidating these averages, my implementation

introduced an average overhead of 17.48ms on my mock

webpage. It is important to note that this value may vary when

testing on Chrome using different machines, as each device has

varying amounts of available RAM for the browser's use.

This result is highly favourable since Google recommends

an average response time of under two hundred milliseconds to

create the perception of an instant response [66]. The

instrumentation we have implemented typically introduces a

mere twenty milliseconds of overhead on average. This

amounts to just 10% of the average response time

recommended by Google, indicating that my software falls

comfortably within the range of desirable response times. The

percentage contribution when evaluating the mock webpage,

typically fell within the range of 0.2% to 0.5%. On average, this

value is less than one percent, indicating that it has a minimal

impact on the overall program performance.

C. Evaluation

In summary, confidence is held that the project goals

initially set out in this report have been successfully achieved.

These goals revolved around exposing end-user data by

creating software solutions tailored to instrumenting the

Document Object Model (DOM) of web applications. This

instrumentation was specifically designed to reveal provenance

data when changes in the DOM occurred due to Ajax requests.

This has been achieved by implementing DOM

instrumentation, which proved to be effective in consistently

capturing and displaying provenance data whenever the DOM

was manipulated. This capability ensured that changes were

monitored and recorded accurately, guaranteeing the reliable

capture of provenance data. Moreover, user-friendliness was

prioritised in the design of these solutions, making them

intuitive and convenient for both developers and end-users to

work with. Furthermore, a focus was placed on optimising the

software's performance to ensure it maintained a lightweight

profile and met acceptable performance benchmarks.

Throughout this project, the Rational Unified Process

(RUP) methodology was followed, which played a pivotal role

in helping attain the project objectives.

13

ENGR 489 (ENGINEERING PROJECT) 2023

VI. CONCLUSION AND FUTURE WORK

Throughout this project, the focus was on the development

of software solutions aimed at instrumenting the DOM of web

applications and presenting provenance data to end users. This

endeavor aimed to enhance the transparency and traceability of

data within web applications, particularly for one-page

applications using Ajax. Through the manipulation of the DOM

via instrumentation, a method was devised to exhibit

provenance data to users as they interacted with specific

elements on a webpage. Three different approaches to address

this challenge were pursued: a browser plugin solution, a

JavaScript instrumentation solution within browser code, and a

framework plugin solution. Throughout the development

process, Rational Unified Process (RUP) was adhered to, which

helped ensure the quality and usability of the software [27]. To

evaluate the quality of my software, criteria such as runtime

overhead, installation complexity, development costs, and

alignment with project requirements were considered. Through

adherence to these criteria, it was guaranteed that the software

satisfied the ISO9126 characteristics of Functionality,

Reliability, Usability, Efficiency, Maintainability, and

Portability as the final implementation met all these broad

aspects [28].

While this project has achieved its primary objectives, there

remain opportunities for future work and enhancements.

Expanding the compatibility of the browser plugin and

JavaScript instrumentation solutions to work seamlessly across

various web browsers would make the software more accessible

to a wider user base. Instrumenting HTTP calls other than Ajax

to cover more use cases. Once the Server-Side Provenance

software is developed by veracity [25], explore how effectively

it works with this solution, making changes when needed.

By addressing these future work areas, the usability, reliability,

and effectiveness of our DOM instrumentation solutions can be

enhanced, providing users with a valuable tool for

understanding data provenance in web applications.

VII. REFERENCES

[1] "General Data Protection Regulation (GDPR) Compliance Guidelines," GDPR.EU,

[Online]. Available: https://gdpr.eu. [Accessed 4 April 2023].

[2] "Art. 4 GDPR Definitions," Intersoft Consulting, [Online]. Available: https://gdpr-

info.eu/art-4-gdpr/. [Accessed 31 May 2023].

[3] "1.2 billion euro fine for Facebook as a result of EDPB binding decision," EDPB,

22 May 2023. [Online]. Available: https://edpb.europa.eu/news/news/2023/12-

billion-euro-fine-facebook-result-edpb-binding-decision_en. [Accessed 31 May

2023].

[4] "Importance of Data Provenance in Scientific Research," Washington.edu, [Online].

Available: https://faculty.washington.edu/hazeline/ProvEco/generic2.html.

[Accessed 28 March 2023].

[5] "How personalized ads work," Google, [Online]. Available:

https://support.google.com/My-Ad-Center-Help/answer/12155656?hl=en.

[Accessed 28 March 2023].

[6] J. Robie, "What is the Document Object Model?," Texcel Research, [Online].

Available: https://www.w3.org/TR/WD-DOM/introduction.html. [Accessed 2023

03 20].

[7] W3C, "W3C," [Online]. Available: https://www.w3.org. [Accessed 11 October

2023].

[8] "JavaScript HTML DOM," w3schools, [Online]. Available:

https://www.w3schools.com/js/js_htmldom.asp. [Accessed 29 May 2023].

[9] "DOM manipulation in JavaScript," Scaler Topics, [Online]. Available:

https://www.scaler.com/topics/javascript-dom-manipulation/. [Accessed 29 May

2023].

[10] T. D. Huynh, M. Ebden, J. Fischer, S. Roberts and L. Moreau, "Provenance

Network Analytics," 15 February 2018. [Online]. Available:

https://link.springer.com/content/pdf/10.1007/s10618-017-0549-3.pdf. [Accessed 29

May 2023].

[11] B. Plale, D. Gannon and L. Y. Simmhan, "A Survey of Data Provennace in e-

science," 3 September 2005. [Online]. Available:

https://dl.acm.org/doi/pdf/10.1145/1084805.1084812. [Accessed 29 May 2023].

[12] "HTTP Vs HTTPS | What is HTTPS? | What does HTTPS mean?," cWatch, 9

November 2022. [Online]. Available: https://cwatch.comodo.com/blog/website-

security/what-is-https-and-why-switching-to-https/. [Accessed 29 May 2023].

[13] W. J. Buchanan, S. Helme and A. Woodward, "Analysis of the adoption of security

headers," 27 September 2017. [Online]. Available:

https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/iet-ifs.2016.0621.

[Accessed 29 May 2023].

[14] MDN, "Location," [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/HTTP/Headers/Location. [Accessed 11 October 2023].

[15] T. Kempf, K. Karuri and L. Gao, "Software Instrumentation," 2008. [Online].

Available: https://onlinelibrary.wiley.com/doi/10.1002/9780470050118.ecse386.

[Accessed 29 May 2023].

[16] K. Harukal, Y. Dachuan, C. Ajay, I. Hiroshi and S. Igor, "JavaScript

Instrumentation in Practice," 2008. [Online]. Available:

https://link.springer.com/chapter/10.1007/978-3-540-89330-1_23. [Accessed 29

May 2023].

[17] Codilime, "Top 7 code coverage tools for Java," 10 March 2023. [Online].

Available: https://codilime.com/blog/code-coverage-tools-for-java/. [Accessed 11

October 2023].

[18] "manifest.json," MDN, [Online]. Available: https://developer.mozilla.org/en-

US/docs/Mozilla/Add-ons/WebExtensions/manifest.json. [Accessed 30 May 2023].

[19] A. Barth, A. P. Felt and P. Saxena, "Protecting Browsers from Extension

Vulnerabilities," [Online]. Available: https://storage.googleapis.com/pub-tools-

public-publication-data/pdf/38394.pdf. [Accessed 30 May 2023].

[20] P. M, "JavaScript DOM Manipulation Performance : Comparing Vanilla JavaScript

and Leading JavaScript Front-end Frameworks," 2020. [Online]. Available:

https://www.diva-portal.org/smash/get/diva2:1436661/FULLTEXT01.pdf.

[Accessed 29 May 2023].

[21] I. M. Yazici and M. S. Aktas, "A novel visualization approach for data provenance,"

24 June 2021. [Online]. Available:

https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.6523. [Accessed 29 May

2023].

[22] "From JavaScript to React," Next.js, [Online]. Available:

https://nextjs.org/learn/foundations/from-javascript-to-react. [Accessed 31 May

2023].

[23] "What is AJAX," w3schools, [Online]. Available:

https://www.w3schools.com/whatis/whatis_ajax.asp. [Accessed 28 March 2023].

[24] K. Torsten, K. Kingshuk and G. Lei, "Software Instrumentation," Wiley Online

Library, 15 February 2008. [Online]. Available:

https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470050118.ecse386.

[Accessed 20 March 2023].

[25] Veracity Lab, "Veracity Lab," [Online]. Available: https://veracity.wgtn.ac.nz.

[Accessed 11 October 2023].

[26] M. G. M. L.-R. J. Dietrich, "On Retrofitting Provenance for Transparent and Fair

Software - Drivers and Challenges," in 2023 IEEE/ACM International Workshop on

Equitable Data & Technology (FairWare), Melbourne, Australia, 2023.

[27] K. Joydip, "Introduction to Rational Unified Process (RUP)," Developer.com, 7

December 2022. [Online]. Available: https://www.developer.com/project-

management/rational-unified-process-rup/. [Accessed 6 April 2023].

[28] "ISO/IEC 9126 in Software Engineering," Geeksforgeeks, 8 December 2022.

[Online]. Available: https://www.geeksforgeeks.org/iso-iec-9126-in-software-

engineering/. [Accessed 6 April 2023].

[29] "Most Popular Web Browsers in 2023," Oberlo, [Online]. Available:

https://www.oberlo.com/statistics/browser-market-share. [Accessed 23 May 2023].

[30] T. Alvaro, "15 Best Chromium Browsers 2023," Alvaro Trigo, [Online]. Available:

https://alvarotrigo.com/blog/best-chromium-browsers/. [Accessed 23 May 2023].

[31] D. Nield, "Which Browser Engine Powers Your Web Browsing and Why Does It

Matter?," Gizmodo, 4 August 2022. [Online]. Available:

https://www.gizmodo.com.au/2022/08/which-browser-engine-powers-your-web-

browsingand-why-does-it-matter/. [Accessed 31 May 2023].

[32] Chrome for developers, "Architecture overview," 18 September 2012. [Online].

Available: https://developer.chrome.com/docs/extensions/mv3/architecture-

overview/. [Accessed 5 10 2023].

[33] J. Gulab, "Browser Plugin," GitLab, [Online]. Available:

https://gitlab.ecs.vuw.ac.nz/course-work/project489/2023/gulabjaye/dom-

instrumentation-to-display-provenance-data/-

/tree/main/Browser%20Plugin/Browser%20Plugin%20Injection%20Test. [Accessed

23 May 2023].

14

ENGR 489 (ENGINEERING PROJECT) 2023

[34] J. Gulab, "Intercept Headers Test," [Online]. Available:

https://gitlab.ecs.vuw.ac.nz/course-work/project489/2023/gulabjaye/dom-

instrumentation-to-display-provenance-data/-

/tree/main/Browser%20Plugin/Intercept%20Headers%20Test. [Accessed 5 October

2023].

[35] J. Gulab, "Display Headers Test," [Online]. Available:

https://gitlab.ecs.vuw.ac.nz/course-work/project489/2023/gulabjaye/dom-

instrumentation-to-display-provenance-data/-

/tree/main/Browser%20Plugin/Display%20Headers%20Test. [Accessed 5 October

2023].

[36] J. Gulab, "DOM Manipulation Detector," [Online]. Available:

https://gitlab.ecs.vuw.ac.nz/course-work/project489/2023/gulabjaye/dom-

instrumentation-to-display-provenance-data/-

/tree/main/Browser%20Plugin/DOM%20Manipulation%20Detector. [Accessed 5

October 2023].

[37] J. Gulab, "Test Website," [Online]. Available: https://gitlab.ecs.vuw.ac.nz/course-

work/project489/2023/gulabjaye/dom-instrumentation-to-display-provenance-data/-

/tree/main/Browser%20Plugin/Test%20Website. [Accessed 5 October 2023].

[38] Chrome, "Stay secure," [Online]. Available:

https://developer.chrome.com/docs/extensions/mv3/security/. [Accessed 5 October

2023].

[39] MDN, "Content Security Policy (CSP)," [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP. [Accessed 11 October

2023].

[40] I. Okechukwu, "A light intro to instrumentation on the web frontend," Medium, 22

January 2022. [Online]. Available: https://isocroft.medium.com/a-light-intro-to-

instrumentation-on-the-web-frontend-27a12e1e965a. [Accessed 21 March 2023].

[41] MDN, "MutationObserver," [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/API/MutationObserver. [Accessed 5 October 2023].

[42] J. Gulab, "Detect changes in DOM Elements," [Online]. Available:

https://gitlab.ecs.vuw.ac.nz/course-work/project489/2023/gulabjaye/dom-

instrumentation-to-display-provenance-data/-

/tree/main/JavaScript%20Instrumentation/Detect%20changes%20in%20DOM%20E

lements. [Accessed 5 October 2023].

[43] DigitalOcean, "Observer Design Pattern in Java," 4 August 2022. [Online].

Available: https://www.digitalocean.com/community/tutorials/observer-design-

pattern-in-java. [Accessed 11 October 2023].

[44] "How is it possible that a <script> tag was injected, but not executed?," [Online].

Available: https://security.stackexchange.com/questions/240353/how-is-it-possible-

that-a-script-tag-was-injected-but-not-executed. [Accessed 11 October 2023].

[45] J. Gulab, "Test Website," [Online]. Available: https://gitlab.ecs.vuw.ac.nz/course-

work/project489/2023/gulabjaye/dom-instrumentation-to-display-provenance-data/-

/blob/main/JavaScript%20Instrumentation/Detect%20changes%20in%20DOM%20

Elements/index.html. [Accessed 5 October 2023].

[46] C. Nicholas, "Aspect-Oriented Programming in JavaScript," 29 November 2021.

[Online]. Available: https://www.ctnicholas.dev/notes/aspect-oriented-

programming-in-javascript. [Accessed 5 July 2023].

[47] K. Gregor, L. John, M. Anurag, M. Chris, L. Cristina, L. Jean Marc and I. John,

"Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds) ECOOP'97 —

Object-Oriented Programming," in ECOOP 1997. Lecture Notes in Computer

Science, vol 1241, Berlin, Heidelberg, 1997.

[48] J. Gulab, "Aspect-Orientated Approach Example," [Online]. Available:

https://gitlab.ecs.vuw.ac.nz/course-work/project489/2023/gulabjaye/dom-

instrumentation-to-display-provenance-data/-

/tree/main/JavaScript%20Instrumentation/Aspect-

Orientated%20Approach%20Example?ref_type=heads. [Accessed 6 October 2023].

[49] Spring, "Aspect Oriented Programming with Spring," [Online]. Available:

https://docs.spring.io/spring-framework/docs/3.0.x/spring-framework-

reference/html/aop.html. [Accessed 11 October 2023].

[50] H. P. Singh, "Aspect Oriented Programming," 17 December 2022. [Online].

Available: https://medium.com/hprog99/aspect-oriented-programming-

b9a06ca256db. [Accessed 6 October 2023].

[51] StackOverflow, "https://stackoverflow.com/questions/10273309/need-to-hook-into-

a-javascript-function-call-any-way-to-do-this," [Online]. Available:

https://stackoverflow.com/questions/10273309/need-to-hook-into-a-javascript-

function-call-any-way-to-do-this. [Accessed 6 October 2023].

[52] MDN, "Using XMLHttpRequest," [Online]. Available: developer.mozilla.org/en-

US/docs/Web/API/XMLHttpRequest/Using_XMLHttpRequest. [Accessed 6

October 2023].

[53] L. Eggleston, "A Guide to Low Level Programming for Beginners," [Online].

Available: https://www.coursereport.com/blog/a-guide-to-low-level-programming-

for-beginners. [Accessed 11 October 2023].

[54] J. Gulab, "Instrumentation through Proxying," [Online]. Available:

https://gitlab.ecs.vuw.ac.nz/course-work/project489/2023/gulabjaye/dom-

instrumentation-to-display-provenance-data/-

/tree/main/JavaScript%20Instrumentation/Instrumentation%20through%20Proxying

?ref_type=heads. [Accessed 6 October 2023].

[55] MDN, "Using server-sent events," [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/API/Server-

sent_events/Using_server-sent_events. [Accessed 6 October 2023].

[56] J. Gulab, "Instrumentation Proxying (SSE)," [Online]. Available:

https://gitlab.ecs.vuw.ac.nz/course-work/project489/2023/gulabjaye/dom-

instrumentation-to-display-provenance-data/-

/tree/main/JavaScript%20Instrumentation/Instrumentation%20Proxying%20(SSE)?r

ef_type=heads. [Accessed 6 October 2023].

[57] J. Olawanle, "What is a Framework? Software Frameworks Definition," 6

September 2022. [Online]. Available: https://www.freecodecamp.org/news/what-is-

a-framework-software-frameworks-definition/. [Accessed 7 October 2023].

[58] N. Raval, "React vs Angular: Which JS Framework to Pick for Front-end

Development?," 3 July 2023. [Online]. Available: https://radixweb.com/blog/react-

vs-angular. [Accessed 7 October 2023].

[59] M. Mandal, "How to use jQuery in your React App | by Manish Mandal | How To

React | Medium," 26 April 2020. [Online]. Available: https://medium.com/how-to-

react/how-to-use-jquery-in-your-react-app-b425727a32fd. [Accessed 6 October

2023].

[60] NPM, [Online]. Available: https://www.npmjs.com. [Accessed 7 October 2023].

[61] J. Gulab, "Framework Plugin," [Online]. Available:

https://gitlab.ecs.vuw.ac.nz/course-work/project489/2023/gulabjaye/dom-

instrumentation-to-display-provenance-data/-

/tree/main/Framework%20Plugin?ref_type=heads. [Accessed 7 October 2023].

[62] J. Gulab, "Instrumentation Code," [Online]. Available:

https://gitlab.ecs.vuw.ac.nz/course-work/project489/2023/gulabjaye/dom-

instrumentation-to-display-provenance-data/-

/tree/main/Instrumentation%20Code?ref_type=heads. [Accessed 10 October 2023].

[63] Geeksforgeeks, "How to convert JSON data to a html table using JavaScript/jQuery

?," [Online]. Available: https://www.geeksforgeeks.org/how-to-convert-json-data-

to-a-html-table-using-javascript-jquery/. [Accessed 9 October 2023].

[64] J. Gulab, "Use Case Webpage," [Online]. Available:

https://gitlab.ecs.vuw.ac.nz/course-work/project489/2023/gulabjaye/dom-

instrumentation-to-display-provenance-data/-

/tree/main/Use%20Case%20Webpage/News%20Webpage?ref_type=heads.

[Accessed 9 October 2023].

[65] J. Gulab, "Performance Testing," [Online]. Available:

https://gitlab.ecs.vuw.ac.nz/course-work/project489/2023/gulabjaye/dom-

instrumentation-to-display-provenance-data/-

/tree/main/Use%20Case%20Webpage/Performance%20Testing?ref_type=heads.

[Accessed 9 October 2023].

[66] Sematext, "What Is Response Time & How to Reduce It - Sematext," [Online].

Available: https://sematext.com/glossary/response-time/. [Accessed 9 October

2023].

[67] "Data Provenance," National Library of Medicine, [Online]. Available:

https://www.nnlm.gov/guides/data-glossary/data-

provenance#:~:text=Definition,to%20where%20it%20is%20presently.. [Accessed

20 March 2023].

