ENGR 489 (ENGINEERING PROJECT) 2023

Learning to Use Money through
Reinforcement Learning

John Flynn

Abstract—Money, in its various forms, has played a pivotal
role in shaping civilisations throughout human history. By fa-
cilitating cooperation among strangers, currencies have enabled
monumental advancements in trade, settlement, and migration
that surpassed the limitations of barter systems and other early
exchange mechanisms. But despite its benefits and ubiquitous
nature, it remains a mystery how humans learned to use these
mediums of exchange in the first place. This project explores
the origins of money through reinforcement learning, chosen for
its resemblance to human learning processes. Two multi-agent
Q-learning models were designed, developed, and experimented
on, drawing from recent research into safe swapping behaviours.
The first model, or the “swapping model”, examines whether a
population of agents can naturally learn the behaviours necessary
to perform safe swaps with strangers in episodic meetings.
The second model, or the ‘“token model”, builds on this by
investigating learned agent behaviours when inherently worthless
yet persistent tokens are introduced in a continuous stream
of meetings. With the versatility to represent a diverse range
of swapping scenarios and interactions, these models provide
valuable insights into the motivations behind money’s use and
the fundamental requirements for a population to adopt such
behaviours.

I. INTRODUCTION
A. Motivation

UMAN beings have been using money in various forms

for approximately 40,000 years [1]. Every day, monetary
systems demonstrate their power to foster cooperation between
strangers, enabling the exchange of goods and services, set-
tlement, migration, and more. With cooperation as one of
humankind’s most beneficial traits [2], it only makes sense
that money has been with us for a long time. However, this
gives money an enigmatic origin that has largely been left up
to speculation [1].

Popular theories suggest money emerged to address chal-
lenges with bartering [3]. Bartering requires a simultaneous
coincidence of wants between parties, and scales poorly
when determining exchange rates among a growing array of
products. In contrast, money is a persistent and standardised
medium of exchange, simplifying debt and pricing. While
these explanations of money are reasonable, they assume
individuals already recognise they can trade it for something
of value, which does not reflect reality. Money is intrinsically
worthless, and monetary exchanges between strangers are
fraught with risk. Furthermore, these theories are susceptible
to hindsight bias, as the widely known benefits of money today
may inadvertently influence the interpretation of historical

This project was supervised by Marcus Frean and Stephen Marsland.

motivations, potentially conflating the origins of money with
its positive outcomes [4].

Artificial intelligence offers a fresh perspective on the
origins of money. While traditional theories focus on historical
and economic factors, the avenue of reinforcement learning
has the potential to simulate the creation of a monetary system
through a population of agents. As reinforcement learning
closely resembles how humans learn through experience [5],
this novel approach could provide insights into the emergent
behaviours that led to the establishment and attribution of
value to money. Can agents learn to use money through
reinforcement learning? And if so, what can we learn from
this?

It is important to note that this project is not concerned
with model optimisation, and thus typical benchmarks are not
appropriate. Rather, it explores whether reinforcement learners
can naturally arrive at behaviours that amount to using money,
the fundamental requirements of this, and any theoretical
insights that can be gleaned. Regarding sustainability, this
project primarily overlaps with the United Nation’s 4th and 7th
sustainability goals [6]; “Quality Education” and “Affordable
and Clean Energy”. This project promotes quality education
through attempting to deepen the general understanding of
money and its origins, potentially contributing to several fields
of research, including artificial intelligence, economics, cogni-
tive science, and anthropology. In terms of energy efficiency,
the software in this project was designed with simplicity
in mind, utilising a lightweight variant of Q-learning as its
reinforcement learning algorithm, keeping the model sizes to
a minimum, and taking advantage of efficient software libraries
for computation such as NumPy. This keeps energy use low,
with the additional benefit of minimising agent training times.

B. Solution

The problem of getting a population of agents to learn
money-like behaviours can be represented as a multi-agent
reinforcement learning (MARL) control problem [7]. This
involves agents interacting with each other in a sequence of
repeated games or “meetings”’, where agents perform actions
within a shared environment or “Markov Decision Process”
(MDP) to maximise their own cumulative rewards [8]. Using
a reinforcement learning algorithm such as Q-learning, each
agent should independently learn the expected rewards of
certain actions, and therefore an optimal strategy or “policy”.
Ultimately, these strategies should resemble the use of money.

To achieve this goal, two reinforcement learning models
were designed, implemented, and experimented on. The en-
vironment and training process of each model extends the

ENGR 489 (ENGINEERING PROJECT) 2023

ideas in “Holds enable one-shot reciprocal exchange” by M.
Frean and S. Marsland [9], which demonstrates through value
iteration that safe swapping is possible between strangers.
Howeyver, these new models address certain limitations in their
work, which is detailed further in Section 2.

The first model, referred to as the “swapping model”,
examines whether a population of agents can naturally learn
the behaviours necessary to perform safe swaps with strangers
in episodic meetings, in a system akin to bartering.

o Each episode, the population is randomly divided into
pairs, and each agent pair undergoes a “meeting”. In a
meeting, one agent is hungry but starts off holding a
drink, while the other is thirsty but starts off holding
food. This creates a coincidence of wants. Agents take
turns toggling holds on each item and each other, until
the agents exit with the items they are holding. If an
item is held by both agents, or an agent is being held,
neither can exit. Each agent is rewarded for how well
their obtained items meet their needs, but punished (with
a negative reward) the longer they stay in the meeting.

o This creates a mixed-sum game [10], where the optimal
outcome for either agent is to exit with both items, but
the optimal strategy is to cooperate and achieve a swap
as quickly as possible. This serves as a prerequisite to
monetary exchanges by demonstrating that safe swaps
between strangers can be learnt through experience, given
the ability to hold. In this context, a “hold” is any means
of preventing the other agent from leaving with or using
items, although it can be thought of as a physical grasp
for example.

The second model, referred to as the “token model”, builds
on the first by investigating learned agent behaviours when
intrinsically worthless yet persistent tokens are introduced in
a continuous stream of meetings.

o Each meeting, one agent is hungry, while the other is not
hungry but starts off holding food. Leaving a meeting
hungry and without food incurs a massive pain (a negative
reward) due to starvation. However, either agent may also
start a meeting with a token. A token is a holdable item
just like food, but instead of giving a reward upon exit, the
agent will bring it into their next meeting. One token each
is given to a random 50% of the population at the start
of training, and tokens are then free to flow throughout
the population like an economy.

o This creates a scenario where barter is impossible; food
is the only item of value, and there is never a coincidence
of wants. Gift-giving is also a suboptimal strategy as
agents have no way of identifying each other. Therefore,
this model provides the perfect opportunity for agents
to use tokens as money, simply due to its property of
persistence.

Both models use an extension of the Q-learning algorithm
designed specifically for this project, referred to as “variable
order Q-learning”, or VOQ. VOQ extends the trajectory of
the Bellman optimality equation [11] to dynamically adjust
the number of state transitions considered when updating Q-
values. This borrows ideas from temporal difference (TD)

learning [12] and allows agents to learn from passive state
transitions. Passive state transitions, where an agent’s state
is changed by a different agent’s actions, arise due to the
use of MARL in shared environments, and must be learned
from for agents to adapt to each other’s actions. Each agent
stores their own Q-values in a Q-table, and the epsilon-greedy
policy is used to balance exploration of the environment with
exploitation of learned behaviours [13].

Additionally, both models are equipped with features for
aiding experimentation and analysis. A diverse suite of pa-
rameters can be modified in code or loaded from a JSON file
to customise the MDP, the agent population, and the training
process. Agent Q-tables can also be saved and loaded from a
JSON file alongside parameters, allowing the training process
to be seamlessly paused and resumed, or inspected in a human-
readable format. Finally, the models produce a variety of
visualisations for investigating learned agent behaviours. This
includes Q-table plots for examining a single agent’s preferred
actions, “swap dance” graphs displaying what actions two
agents would perform across the span of a meeting, and
cosine distance plots for measuring the consistency of agent
behaviours across the population.

C. Key Findings

The ultimate goal of this project was to determine whether
reinforcement learning is capable of learning safe swapping
behaviours and money-like behaviours, extending the work in
“Holds enable one-shot reciprocal exchange” by M. Frean and
S. Marsland [9]. Therefore, the models were evaluated by their
effectiveness in determining whether the target behaviours can
be learned or not. These involved analysing visualisations
of the learned behaviours of each model across a range of
population sizes. Shown in Figures 8 and 9, each run produced
a swap dance graph and cosine distance plot. These were
used to quickly determine if two agents had learned the
target behaviours, and whether the rest of the population had
converged to the same or similar behaviours. The population
size in each visualisation is 2, 4, and 8, from top to bottom.

In Figure 8, the swap dance graphs across all population
sizes exhibit identical sequences of actions, showcasing suc-
cessful and symmetric swaps between agents. Additionally,
a consistent downward trend in the cosine distance can be
seen for all population sizes during training, signifying con-
vergence toward similar swapping behaviours. Notably, larger
populations demonstrated a slightly smoother downward trend,
suggesting increased stability and scalability of these swapping
behaviours. This evidence strongly supports the conclusion
that the swapping model can learn safe swapping behaviours,
and therefore that safe swapping behaviours can be learnt
through reinforcement learning.

Figure 9 shows successful token-food swaps with mostly
symmetric action sequences in the swap dance graphs for
population sizes 4 and 8. However, a population size of 2 fails
to achieve a token-food swap, displaying seemingly random
actions without clear cooperation. The cosine distance plot
for the population of 2 ends with an upwards trend, indicating
divergence at the end of the training process. Despite this,

ENGR 489 (ENGINEERING PROJECT) 2023

there are some instances of small cosine distances, suggesting
sporadic convergence. On the other hand, the cosine distance
plots for population sizes 4 and 8 show similar stable trends
to each other, both gradually converging after the bulk of
exploration is done. The cosine distance plot is the most stable
with population size 8, implying potential scalability and
increased stability of the token model with larger populations.
This evidence affirms that the token model is capable of
learning money-like behaviours, and therefore that money-like
behaviours can be learnt through reinforcement learning.

II. LITERATURE REVIEW

To ensure the reinforcement learning models being produced
are unique and advantageous, a literature review has been con-
ducted on the value iteration model this project is extending.
This review discusses the model’s approach and outlines its
limitations regarding the purpose of this project.

In the paper “Holds enable one-shot reciprocal exchange”
[9], M. Frean and S. Marsland created a value iteration
model that trains two agents to optimally navigate a compet-
itive Markov decision process (MDP). An MDP represents
a decision-making problem containing states, actions, state
transition probabilities, and rewards [8]. In this case, the MDP
models the combined states of two agents and two items,
where agents can toggle holds on items or each other, pass,
or exit with the items they are holding if not contested.
Additionally, the agents value the items differently and start off
holding the item they value least. This means that although the
best outcome for an agent is to exit with both items, the best
outcome overall is for them to achieve a swap. On the other
hand, value iteration is a dynamic programming algorithm
used to solve MDPs, proven to converge to an optimal solution
given enough iterations [14]. Therefore, the value iteration
model is able to prove when safe swapping is possible and
when it is not.

In terms of developing insights into the initial motivations
behind the use of money, this existing model has severe
limitations. Firstly, value iteration as an algorithm requires full
knowledge of the MDP from the start [14]. This means any
agent using value iteration already has omniscience regarding
the immediate outcomes of every possible decision. As this
requirement is impossible for humans, behaviours observed
in humans cannot be accurately modelled or compared using
value iteration alone. Secondly, the closest example to mercan-
tile exchange the model can produce is having a money-like
item with the same perceived value to both agents. However,
for safe swapping to remain the optimal behaviour, this value
cannot be zero (unless the agent holding the other item wants
to give it away for nothing). As safe swapping requires an
immediate reward for receiving money, the model is incapable
of representing it as an inherently worthless token as it is in
reality.

To address these limitations, both of the project’s models
utilise reinforcement learning, and the second model imple-
ments truly worthless tokens. Through reinforcement learning,
the models naturally learn from interactions with the environ-
ment and adapt their behaviour based on feedback, similar

to humans. This allows for a more realistic representation of
the decision-making process concerning the use of money. In
the second model, the introduction of truly worthless tokens
better captures the essence of money as an inherently valueless
medium of exchange. By not giving the tokens an intrinsic
value, the model can explore the motivations behind the use of
money without the bias of immediate rewards or preconceived
notions of value.

III. TOOLS AND METHODOLOGY
A. Programming Language

There are several popular programming languages available
for reinforcement learning. For this project, it was important
that I selected a language in which I had sufficient experience
to reduce the learning curve and start prototyping quickly.
Additionally, the selected language needed to have libraries for
easy numerical handling and processing, along with the ability
to display results in the form of various graphs. I considered
Java, C++, and Python for this project, but ultimately went
with Python.

Python is a high-level programming language that offers
similar features to Java and C++, like extensive library support
and object-oriented programming [15]. However, its relative
simplicity, readability, and fast prototyping capabilities were
key advantages that proved essential to achieve the scope
of this project in the given time [16]. Python’s short, easy-
to-understand syntax and use of dynamic typing allowed
for more time spent on functionality and experimentation
instead of fixing syntax. Additionally, Python supports various
libraries that are popular for manipulating numerical data and
generating various types of graphs, such as NumPy [17] and
MatPlotLib [18]. These libraries are known for their ease of
use and efficiency, and were invaluable for implementing the
learning algorithm and visualising results. Furthermore, my
prior experience with developing machine learning models
in Python minimised the personal learning curve. For these
reasons, Python was the most suitable programming language
for this project when compared to Java and C++.

B. Software Libraries

As mentioned in the previous subsection, Python offers
several popular software libraries that simplify and optimise
the implementation and analysis of reinforcement learning
algorithms. Two libraries in particular were used extensively
throughout the project: NumPy and MatPlotLib.

NumPy [17], short for Numerical Python, provides a
powerful multidimensional array object, the NDArray or N-
Dimensional Array, that enables efficient and flexible opera-
tions on large data sets. It includes a diverse set of mathemat-
ical functions for array manipulation, linear algebra, and sta-
tistical analysis. Almost every component of each model uses
NDArrays or NumPy operations to achieve otherwise tedious
or error-prone tasks. These tasks included initialising arrays
with arbitrary dimensions and size, determining the maximum
or minimum value of a multi-dimensional array, or chaining
functions to perform complex operations like normalisation of

ENGR 489 (ENGINEERING PROJECT) 2023

MDP Creation

Sub-state
Parameters

MDP

Used to

create Training Process

Graph Creation

Transition Probability Used in No

Episode/ ¢S
Agent Creation Meeting Limit Swap Dances
Troin AcontPai Reached?
Population ‘:"\"Mg:”u'si:g"s Cosine Distance
Plot
Variable Order
Gt Q-Learning (VOQ)
Q-Table s
Agent
Rewards

Figure 1. Base Model Flow Diagram. Shows the high-level design of
both models. Execution generally flows from left to right. Object types are
organised by type; white is collections, red is classes/instances, yellow is class
fields/methods, and blue is graphs.

an entire Q-table. Ultimately, this made these operations much
more concise, efficient, and easier to implement.

MatPlotLib [18], on the other hand, is a versatile data
visualisation library with user-friendly functions for creating
a wide variety of plots and charts. It is used in the graphing
component of the models to plot Q-tables, state diagrams,
state transition graphs, and cosine difference scatter plots.
Due to its incredible flexibility, it is the only visualisation
library required to produce every plot except swap dances,
meeting almost every need. Some complex features used from
MatPlotLib included manually-positioned, styled text labels on
state transition graphs, colour bars next to Q-tables, manually-
resized elements, and the saving of diagrams to different
file formats like PDF and PNG. This heavily streamlined
the iterative design process, as plots took very little time to
implement, update, and display, allowing results to be viewed
very quickly.

C. Development Methodology

This project explored a novel approach combining rein-
forcement learning, swapping behaviours, and money, which
made it prone to unforeseen design problems. Therefore, its
development methodology needed to accommodate frequent
design changes and feedback from supervisors. I considered
two popular methodologies; waterfall and agile. The waterfall
methodology follows a strict linear approach with phases that
must be completed sequentially and little room for change.
On the other hand, the agile methodology promotes flexibil-
ity, incorporating short development cycles with continuous
feedback and adaptive planning. Due to the project’s evolving
nature and the factors discussed above, the agile methodology
was chosen as the most suitable option. This was expressed
through weekly iterations and meetings with the project’s
supervisors, and proved essential for quickly handling the
many design problems we faced. These design problems are
discussed in Section 4.

IV. DESIGN

The two models share a very similar design in most aspects.
Their architecture, as shown in Figure 1, is composed of four
main components: MDP (Markov decision process) creation,

agent creation, the training process, and graph creation. These
are each responsible for different tasks, but flow on from each
other to train a population of agents in a curated environ-
ment and visualise their learned behaviours. Ultimately, this
design aims to demonstrate whether a population of agents is
capable of learning to safely swap items or exhibit money-
like behaviours through reinforcement learning, given certain
parameter values.

Firstly, MDP creation is responsible for defining the states,
actions, and transition probability matrix of the environment.
These components are derived from sub-state parameters
defining the items available, the holds that can be established,
and how agents can feel (hungry agents get a larger reward
from food, etc.). A state is defined by how an agent feels, what
items exist in their current meeting, what they are holding,
and what the other agent is holding. Actions include toggling
holds on the other agent or any item in the meeting, pass-
ing, or exiting the meeting. The transition probability matrix
represents the possible state transitions of the environment,
dictating which actions are possible in each state and what
the resulting state would be when that action is taken.

Next, the agent creation component is responsible for cre-
ating the population of agents. An agent is a single reinforce-
ment learner that has its own Q-table and rewards function,
which act as the agent’s brain and source of pleasure/pain
respectively. The Q-table is created at the same time as the
agent, and is used for determining what action the agent
will take in each state. The rewards function calculates the
immediate reward of a certain state transition.

The training process component is responsible for training
the population of agents over a number of meetings using
variable order Q-learning (VOQ). Each meeting, agents are
randomly sorted into pairs and take turns performing actions to
navigate the MDP. The immediate and future rewards of these
actions are then used to update the agent’s Q-table. When
working correctly, agents should learn to prefer actions that
maximise their long-term rewards.

Finally, the graph creation component constructs plots that
visualise the results of the training process. Each plot displays
the learned behaviours of agents from a different perspective,
with a trade-off between the number of agents shown and the
level of detail. Q-Table plots show individual agent behaviours
in each state, swap dance graphs show two agents’ behaviours
across a sequence of a states, and cosine distance plots show
the similarity between all agents’ behaviours over time.

A. Design Problems

While designing the two models, some of the initial ideas
resulted in practical issues that impeded agent learning, or
conceptual issues that made the models less applicable to the
real life phenomenons they were trying to recreate. Of these
problems, the most significant one was getting Q-learning to
work in a MARL context. This issue ultimately resulted in
the design of variable order Q-learning (VOQ), which is now
used in both models.

The swapping model initially used a plain Q-learning
algorithm, where the temporal difference target of a state-
pair would be the immediate reward of the action, plus the

ENGR 489 (ENGINEERING PROJECT) 2023

Q(st,at) + Q(st,a1) + (Tt + ymaxQ(set1, a) — Q(Stvat))

Figure 2. Q-learning equation.

discounted Q-value of the best action in the next state. The
full Q-learning equation is shown in Figure 2.

Q-learning was chosen for its general effectiveness in rein-
forcement learning problems, and its simplicity which would
help streamline the debugging process. The idea was that if
there was a bug, it would be easy to verify that the bug was not
located in the Q-learning algorithm due to its straightforward
and transparent implementation. Ironically, using plain Q-
learning itself resulted in a major bug.

In both models, every “meeting” involves two agents in-
teracting with each other. The environment is shared between
both agents, and therefore, the actions of one agent can change
the state of the other agent. This introduces two concepts:

o An agent can change state without performing an action.
Le., a “passive state transition.”

o An agent’s actions can influence future actions of the
other agent.

In order to learn these two concepts, agents must learn
from passive state transitions, despite not performing an ac-
tion. Plain Q-learning is incapable of this, as agents only
learn when they themselves are performing an action. This
creates discontinuities or gaps in the propagation of Q-values
whenever a passive state transition occurs, and as a result, Q-
values only consider rewards up until the other agent acts. In
other words, with plain Q-learning, agents do not learn from
the effects of other agents’ actions, and thus are unable to
learn any behaviours that require the other agent to perform
certain actions. This makes deliberate cooperation impossible,
preventing agents from learning swapping behaviours.

I experimented with two different approaches to get agents
to learn from passive state transitions.

Firstly, I implemented “Pseudo-Passing”. Passing is an
action that keeps an agent in the same state, allowing them
to wait for the other agent to perform an action. Therefore,
a passive state transition could be interpreted as one agent
passing while the other performs an action. Le., a fake/pseudo
pass. This approach gave passive state transitions an action,
allowing Q-learning to learn these state changes and fully
propagate Q-values throughout each agent’s Q-table. This en-
abled cooperation and worked for the most part, but introduced
a major flaw: pseudo-passing and regular passing shared the
same Q-values, inflating the expected value of regular passing.
Even when an agent could perform other more beneficial
actions, they would often prefer to pass. This resulted in agents
perpetually passing in some states instead of exiting with
their desired item, because they falsely learned that waiting
in the same state is the same as changing state due to another
agent’s actions. In other words, with pseudo-passing, each
agent valued regular passing as if it forced the other agent
to act, leading to sub-optimal behaviours where agents pass at
inappropriate times.

Secondly, I took inspiration from temporal difference (TD)
learning, and attributed passive state transitions to the agent’s
last action and the state they were in when they performed
it. This essentially blames an agent’s last decision for all the
following actions performed by the other agent. This approach
was effective at ensuring agents considered the consequences
of their actions, and its design evolved into a new learning
algorithm referred to as variable order Q-learning, or VOQ.
VOQ extends the Bellman optimality equation for Q-values in
a similar way to higher-order TD learning, allowing VOQ to
perform a single Q-value update from an arbitrary number of
state transitions. The full VOQ equation is shown in Figure 3.

When updating a Q-value, VOQ considers all rewards the
agent receives until its next action, along with the estimated
value of the state where it can take that next action. These
are discounted appropriately, and the equation accounts for
any number of passive state transitions in between actions. In
other words, with VOQ, an agent learns that their last action
was responsible for all the following state transitions, and
they need to pick a different action next time if they want
the other agent to respond differently. This teaches agents the
full consequences of their actions, making them fully capable
of learning cooperative behaviours. Figure 4 gives a visual
overview of how each learning algorithm updates Q-values
from the perspective of one agent.

B. Sustainability Considerations

In terms of sustainability, the design of the two models fo-
cuses primarily on environmental and technical considerations.
This is through design decisions that minimise energy usage
and future maintenance requirements.

The models prioritise energy efficiency through a combina-
tion of lightweight design and optimisation strategies. Both
models employ a variant of Q-learning, a computationally
lightweight algorithm compared to more complex alternatives
like deep Q-networks and actor-critic methods. The design
emphasises minimising the size of various components, includ-
ing individual states, state space, transition probability matrix,
agent Q-tables, and the number of actions. For instance, the
swapping model contains 129 states, and the token model
has 673, demonstrating a conscious effort to maintain small
state spaces while retaining the ability to recreate complex
social interactions. Additionally, the use of the NumPy library
optimises numerical operations involving agent Q-tables and
transition probability matrices, contributing to lower energy
usage and shorter training times.

To reduce future maintenance requirements, the models
prioritise code reuse. Key components, such as the MDP class,
Agent class, graphing functions, persistence functions, and
utility functions, are shared across both models. This approach
minimises the need for redundant fixes and enhances code
clarity. The entire code-base, including classes, methods, and

ENGR 489 (ENGINEERING PROJECT) 2023

n

Q(st,at) « Q(st,at) + a Z (ViTH-i) + ’y"“mng(anH,a) — Q(s¢,a4)

=0

Figure 3. Variable Order Q-learning equation, where 'n’ is the “order”, or the number of passive state transitions since the agent’s last action at time-step ’t’.

Agent 0's Actions:

Plain Q-Learning
(Bad):

Agent 0's State:
Agent 1's Actions:

Agent 0’s Actions:
Pseudo-Passing i .
(Better): Agent 0's State:

Agent 1's Actions:

Agent 0’s Actions:

Variable Order .
Agent 0's State:

Q-Learning (Best):

Agent 1's Actions:

Figure 4. Overview of Q-value updates for each attempted learning algorithm,
from the perspective of agent 0 (red). Actions by agent 0 (red) create active
state transitions, and actions by agent 1 (blue) create passive state transitions.
Arrows point from the state that had its Q-value updated (paired with the
action under the arrow) to the state that provides the estimated future value
of the update. Gap’ indicates a state transition where Q-values failed to
propagate backwards.

functions, is thoroughly documented, lowering the knowledge
barrier for future maintainers. Finally, the software’s dynamic
design facilitates customisation through a diverse set of pa-
rameters for the MDP, population, and training process. This
flexibility ensures ease of adaptation to new ideas, reducing
the maintenance burden for future users.

V. IMPLEMENTATION

Like with their designs, both models have very similar
implementations. Parameters defined by the user are used to
create an MDP and a population of agents. Variable order Q-
learning (VOQ) is then utilised to train the agents as they
explore the shared MDP over a number of episodes. The
results of this training are then plotted using three plots:
a Q-table plot, a swap dance graph, and a cosine distance
plot. Firstly, the resulting Q-table plot shows that an agent
is able to learn optimal behaviours for individual states.
Secondly, the swap dance graph shows that a pair of agents
are able to learn optimal behaviours across the span of a whole
meeting. Finally, the cosine distance plot shows that the entire
population of agents has learned similar optimal behaviours
across their entire Q-tables by the end of the training process.

The models were developed in Python using classes and
methods in a structure that follows the design described in
the design section. Extra functions were also created for
persistence and general utility operations. Overall, the code
can be split into five parts: MDP creation, agent creation,
the training process, graph creation, and utility functions.
All code can be found in the “src/” folder of the project’s
repository, with “src/main.py” controlling overall execution
of the swapping model, and ‘“‘src/main_token_continuous.py”
controlling overall execution of the token model.

A. MDP Creation

MDP creation starts with a set of customisable parameters
defining the possible states each agent can be in. These param-
eters include what items can be brought into each interaction,
the number of holds each agent is capable of, and the various
“feels” or preferences that agents can have. These parameters
are then passed into the MDP class, which determines the full
list of possible states, starting states, actions, and transitions
between states. States are represented as binary strings (e.g.,
[0, 1, 1, 0, 0, 1, 1, 0, 1]), and possible state transitions are
stored as values within a transition probability matrix. This is
all stored within the MDP object, representing the “world” of
the agents, which can then be passed around in later functions.
The MDP class is stored in “src/mdp.py”.

B. Agent Creation

Agent creation defines the population of agents to be used
in the training process. The size of the population is set, and
a corresponding number of instances of the Agent class are
created. Each agent instance contains its own Q-table, which
acts as the agent’s brain for deciding which action is best
in a given state, a rewards matrix, which defines the value
of leaving with certain items with a given “feels” value, and
a rewards function, which calculates the immediate reward
experienced by the agent for any state transition. The Agent
class is stored in “src/agent.py’.

C. Training Process

The training process uses variable order Q-learning (VOQ)
to train each agent over a specific number of episodes or
meetings. An episode or meeting begins with randomly pairing
up all agents within the population. Each pair is then given a
random set of compatible starting states from the MDP, and
the agents randomly take turns making actions until an agent
exits or the maximum number of steps is reached. Actions
are selected using the epsilon greedy policy. Each action
changes the states of both agents, gives them rewards, and
consequently updates values in their Q-tables such that better
actions are made in following episodes. This process also
comes with other adjustable parameters, including an epsilon
value (the likelihood of picking a random action), learning rate
(scales each Q-value change), and gamma value (scales the
importance of possible future states when updating Q-values,
aka the discount factor). Linear, exponential, and logarithmic
functions have been implemented for decreasing epsilon and
the learning rate with each episode. The linear function is
currently in use as it has been found to provide a good balance
between exploration and exploitation of the MDP.

In terms of differences between the swapping model and
token model, states are completely reset between episodes in

ENGR 489 (ENGINEERING PROJECT) 2023

the swapping model. With the token model, states are also reset
between meetings, aside from an agent’s stored tokens. Tokens
are persistent, and at the end of each meeting, each agent will
increment their “stored token count” by the number of tokens
they exited with. Upon starting a new meeting, an agent will
always start with one token if their stored token count is one
or more, and their stored token count will be decremented. All
training-related code can be found in “src/training.py” for the
swapping model, and “src/training_token_continuous.py” for
the token model.

D. Graph Creation

Graph creation starts with generating a unique run ID and
creating the directory “results/(run_id)/plots/” for the swap-
ping model, or “runs/{run_id)/results/(most_recent_meeting_
id)/plots” for the token model, to house the graphs of the
current run. The Q-tables of the agent population are then
processed to produce three plots: a Q-table plot, a swap dance
graph, and a cosine distance scatter plot. All plots are created
using the MatPlotLib Python library, and additionally the
GraphViz Python library [19] for swap dances, then saved as
PDFs or PNGs. All graphing-related code can be found in
“src/graphing.py”.

For the Q-table plot, as shown in Figure 5, an random
agent’s Q-table is divided by its item preferences or “feels”
(e.g., one column for when it is hungry, the other for when it
is thirsty). Each sub-Q-table is then plotted as an image where
each pixel’s (X, y) coordinates correspond to its (action, state),
and the colour represents its value. This plot is especially
useful for analysing an agent’s behaviours within a single state,
as it is made explicitly clear which actions have higher Q-
values, and therefore which actions the agent prefers. It is
also invaluable for checking if their training was insufficient
or faulty, as this would cause it to prefer sub-optimal actions.

For the swap dance graph, as shown in Figure 6, two
random agents are selected and a breadth-first search is used
to find each agent’s preferred state transitions from a particular
starting state. This creates a graph that branches out from the
starting state, showing each agent’s preferred actions and its
resulting state transitions until they exit, pass, or enter a state
they have already visited. The swap dance demonstrates the
behaviours of both agents over an entire episode or meeting,
showing their effectiveness at planning ahead, influencing each
other, and cooperating. Like the Q-table plot, it can also detect
insufficient or faulty training. However, it does so from a
different perspective, focusing on decision sequences instead
of individual decisions. This allows the model to be evaluated
from two distinct dimensions.

Finally, for the cosine distance plot, as shown in Figure 7,
every possible pairing of agents has their Q-tables compared
with each other to calculate their cosine distance. These cosine
distances are then plotted, with the episode or meeting number
of the Q-table on the x-axis. Cosine distance measures the
angle between two vectors, which in this context represents
how different the values in two Q-tables are. Therefore,
the cosine distance plot demonstrates how agent behaviours
have become more similar (lower values) or different (higher

7
: 1 H 1
Q Values Split By ['"hungry/thirsty']
()] [1]

0,0,0,0,0, 0] 0 714 . 751 5.0
0,0,0,0,0, 1] b 772 by 802
0,0,0,0,1,0] O 1.39K 1.74K
0,0,0,01,1 bq 1.22K bq 1.12K
0,0,0.1,0,0 1.92K . 1.26K
0,0,0, 1,01 b 1.19K P 1.19K
0,0,0,1,1,0] [2.60K 251K as
0,0,01,1,1 by 1.56K by 1.57K
0,0,1,0, 0 0] B RN 874 2 671
0,0,1.0,01 by 873 iy 722
0.0.1,0.1.0 Py 144K P 1.36K
0,0,1,0,1,1 by 1.20K bq 266
0,0,1,1,0,0 P 1.34K P 1.30K a0
0,0,1,1,0,1 P 106K 1" 004 :
0,0,1.1,1,0 P 168K $ 1.58K
001111 b 1.44K b 1.17K
0,1,0,00 00 1.92K |®] N 141K
0,1,0,0,0,1 Py 1.34K P 122K
0,1.0,0,1,0] € b] 5.33K B 531K
0,1,0,0 1, 1] b 1.87K b4 2.09K ~ 35
0,1,0,1,0,0 15.4K (Start)] 6.32K
0,1,0,1.0,1 b 2.66K e x EXT
0,1,0.1,1,0] [' .40k B 10.4K
01,01, 1,1 P 2.68K "B 360K
0,1,1, 0,0, 0] Ch By 1.38K OO 1.08K
0,1,1.0.0,1] 1.02K P 102k - 3.0
0,1,1,0,1,0 M 2.21K P 2.07K
01,1011 by 1.33K B 130K
0,1,1,1,0,0 1 2. 70K " 202k
0,1.1.101 £ 1.50K 1 B4 1.66K
0,11, 1.1.0 by 2.76K s x[ERELS
0,1,1.1,1,1 by 182K] 1.77K Loos
1,0,0,0,0, 0] " CHMRN 145K . 1.95K
1,000,011 B4 151K td 1.26K
1,0.0,0,1,0] 6.65K 15.1K (Start)
1,0,0,0.1,1 Bq 309K] 2.64K
1,0.0,1,0.0 i x [EFET B
1,001,011 £ 2. 18K b4 2. 10K
1,0,0,1,1,0 B 103K P 514K - 2.0
1,001, 1,1 By 3.65K x EREL
1,0,1,0,0,0 VR 126K ey 1251
10,1001 b4 1.22K b4 972
1,0.1,0,1,0 s x EEETS x [ERLIS
1,0,1,0,1,1 o Bq 192K 1 1.40k
1,0.1,1,0,0 1 2.19K P 1.85K 15
1,011,011 b 1.45K £q 1.30K
1,0,1,1,1,0 O x [EXET P 251k
1,0, 1113 Py 211K 1 150K
1,1.0,0,0,0 " 108K [2.01k
1,1,0.0,0,1 tq 1.68K _Bq 162K
1,1,0,0,1, 0] BCENE] 8.98K b4 8.09K
1,1,0,0,1, 1] [SEINEEY 313K 8% 2. 94k 1.0
1,1.0,1,0,0 L b 8.34K B4 B.39K
1,1,0,1, 0,1 b 257K B 342K
1,1,0,1,1,0] 0 P 9.44K P o.16K
1,1.0,1,1,1 ' 3.48K P 353K
1,1,1,00,0] BOSCINES 1.36K bq 1.39K
1,1,1001 Py 1.22K $ 1.20K 05
1,1,1,0,1,0 e x ERTTY 250K
1,1,1.0.11 B 175K P 1.51K
1,1.1.1,0,0 P 271k b x ERETS
1,1,1,1,01 Py 1.59K P 1.83K
1,1,1,1,10 x [ERIT x [EXERL
1,1, 1.4, P 2.00K b1 1.90K &

ey @l =R T

I by 400 Uiy 958

6759 S5
o oo
& 58
2L LE

Figure 5. An agent’s learned Q-table, split into two columns of hungry states
vs thirsty states. Each cell represents a Q-value, with its numerical value
visually represented by a colour. Colours can be interpreted by referring to
the colour bar on the right. For each cell, the x coordinate represents the
action, while the y coordinate represents the state. The values on the right
of each row show how many times that state’s Q-values have been updated.
Cells with crosses describe impossible actions, and cells with white circles
are the preferred action/s when in that state.

Swap Dance [20, 98], Feels: [0, 1]
PASS

N
\ PASS
TOGGLE item 0. °d° OGGLE em 0 N
one /H' \ on »
TOGGLE item K y— TOGGLE_item N
"] JER - []
B . o Yo .| \ P
1OGGLE item 0 TOGGLE item w GOLE item | PASS o 0
\ A N TOGGLE _item_0. d
1 R 0GoLE .1 py B /n /
- \) oo 1 o o |

m
©,
-}

Figure 6. The swap dance of two agents after training on the swapping model.
Each node depicts a state, while the edges/arrows represent the preferred
action that the agent of that colour would take when in a given state. The top
agent (red) is hungry, as shown by the "H’ label, and the bottom agent (blue)
is thirsty, as shown by the *T’ label. In between them is two items, food on
the left CF’), and drink on the right ("'D’). The box underneath each state
shows a row from each agent’s Q-table that corresponds to their current state.
As shown by final state on the right where they both exit with their desired
item, the agents have successfully learned how to swap items.

ENGR 489 (ENGINEERING PROJECT) 2023

Cosine Distances per Episode

0.0035{ ®
@
0.0030 s
°

0.0025
I '
el
2 @
o i
2 0.0020 l e
()
&
w
S 0.0015 I

¢ l
0.0010 A
I I .
0.0005 4 ® l '
10000 20000 30000 40000 50000 60000 70000 80000 90000
Episode

Figure 7. The Cosine Distances of the population after training on the

swapping model for 100,000 episodes with a population size of 8. Having 8
agents creates 36 unique agent pairings. The cosine distance of each pairing
is plotted using the agents’ current Q-tables at every 10,000 episode interval.
As the plot shows a clear trend downwards, agent behaviours across the
population are becoming more similar over time.

values) over time. This allows the model to be evaluated
from one final dimension: the consistency of agent behaviours
across the entire population.

VI. EVALUATION

The ultimate goal of this project was to determine whether
reinforcement learning is capable of learning safe swapping
behaviours and money-like behaviours, extending the work
in “Holds enable one-shot reciprocal exchange” by M. Frean
and S. Marsland. Therefore, the models should be evalu-
ated on their effectiveness in determining whether the tar-
get behaviours can be learned or not. Typical performance
benchmarks would be inappropriate for this. Instead, learned
behaviours from each model must be analysed to form these
conclusions.

Learned agent behaviours throughout a population can be
most effectively understood through viewing a corresponding
swap dance graph and cosine distance plot. Swap dances
display the preferred actions of two agents within a meeting,
giving a high-level overview of their learned behaviours that
is easy to follow. This makes it simple to tell whether the
target behaviours were learned or not at a glance. On the
other hand, cosine distance plots show how similar learned
behaviours are throughout the population at different points
during training. Used together, one can quickly determine if
two agents have learned the target behaviours, and whether
the rest of the population has converged to the same or similar
behaviours.

Swap dances and cosine distance plots for the swapping
model and token model are shown in Figure 8 and Figure 9
respectively. Both figures show plots for runs with population
sizes of 2, 4, and 8, ordered from top to bottom.

As shown in Figure 8, the swap dances at all popula-
tion sizes are identical, demonstrating successful swaps with
completely symmetric agent behaviours. Furthermore, all the

population sizes achieve a clear downwards cosine distance
trend during the training process, indicating that the rest of
the population has converged to these same or similar clean
swapping behaviours. If the cosine distance trend is affected
by population size in any way, a larger population appears
to make convergence more stable. This is indicated by the
slightly smoother downwards trend when the population size
is 8 as compared to the other two. This suggests that these
swapping behaviours are scalable and can be achieved by
even larger population sizes. From this evidence, it is clear
that the swapping model is capable of learning safe swapping
behaviours, and therefore they can be learned through rein-
forcement learning.

As displayed in Figure 9, the swap dances for population
sizes 4 and 8 demonstrate successful swaps of a token for
food. These two swap dances are also mostly symmetric,
with agents mirroring many action sequences. However, a
population size of 2 fails to converge on a swap, with its swap
dance showcasing seemingly random action sequences without
clear cooperative behaviours. Additionally, the cosine distance
plot for a population of 2 appears very chaotic when compared
to the other cosine distance plots, with no discernible trend for
the first three points, and a concerning upwards trend for the
last three points that suggests its behaviours have diverged
from those of the other agent. However, it is worth noting
that the cosine distance plot shows a downwards trend in the
middle like the other population sizes, and there are three
points with a very small cosine distance, possibly implying
that the agents learned similar money-like behaviours a couple
of times, but kept diverging due to instability. On the other
hand, the cosine distance plots of population sizes 4 and 8
show very similar trends. This includes a period of divergence
for the first third of the training process, probably due to
high epsilon values and thus exploration, before converging
throughout the remainder of the training as epsilon falls. This
trend appears to be more stable with a population size of 8, as
it has no gaps in between points for the same meeting. This
could suggest that, like the swapping model, the token model
might be scalable to larger population sizes, or even more
stable as the population grows. From these observations, it is
evident that the token model is capable of learning money-
like behaviours, and therefore they too can be learned through
reinforcement learning.

VII. CONCLUSIONS AND FUTURE WORK

In this project, two reinforcement learning models, re-
ferred to as the swapping model and token model, were
designed, implemented, and experimented on to determine
whether reinforcement learning could learning safe swapping
and money-like behaviours in restrictive general-sum games,
composing the episodes or meetings. Through the analysis of
visualisations from various runs, it can be safely concluded
that both the swapping model and token model are able to
achieve their desired agent behaviours.

However, the models are not free from limitations, with
plenty of room for improvement regarding their implementa-
tions.

ENGR 489 (ENGINEERING PROJECT) 2023 9

Swap Dance [20, %81, Feels: [0, 1] Cosing Distances per Episode
[

500 00 TIOO 30000 1700 13000 1THO0 0000 33300

Couina Destancet per Epaade

000 10000 18608 J00OO 3000 30000 1S0CO 4DOOD OO0
Epnode.

Cosne Distances per Epinade

Figure 8. Swapping model results across population sizes 2, 4, and 8, from top to bottom. Trained for 25k, 50k, and 100k episodes respectively. At every

population size, agents have learned safe swapping behaviours and execute them in a clean, symmetric fashion. These behaviours are consistent throughout
each population.

Cosine Distances per Meeting

o0s I
e TOUGLE g 1) H 1
oo03 L
000 0000 TS00 100000 125000 130000 175000 200000
o

Cosine Distances per Meeting

e Lo .
TOGOLE_ftem g

]
HGGLE item 0

Cosine Destance

RS i $0000 100000 150000 200000 250000
Meeting

Figure 9. Token model results across population sizes 2, 4, and 8, from top to bottom. Trained for 100k, 150k, and 200k meetings respectively. The models
of population sizes 4 and 8 successfully converged to money-like behaviours, swapping tokens for food, while 2 failed to achieve a swap. These behaviours
appear more stable at larger population sizes. Note that the top swap dance is split in half due to its width.

ENGR 489 (ENGINEERING PROJECT) 2023

Firstly, the majority of the code-base is written once and
reused for both models. This includes all classes and func-
tions for MDP creation, agent creation, graphing, persistence,
and utility operations. However, this does not extend to
“main.py” and “main_token_continuous.py”, or “training.py”
and “training_token_continuous.py”, which contain plenty
of duplicate functionality between them for handling each
model’s initialisation and training process. For example, both
training files contain the exact same function implementing
the epsilon greedy policy. Like the rest of the code-base, these
files should have their functionality merged together to remove
redundancy and make it more concise and maintainable.
Although this is not a functional limitation, it is important
for supporting future maintainers and achieving sustainability
goals regarding long-lasting code.

Secondly, manually setting parameter values is currently a
very unintuitive process. The models allow parameters to be
loaded from a saved run, loaded from a JSON file, or manually
set in the code. However, specifying the path of the JSON file
must also be done in the code, so there is practically no way
of customising the models without navigating the code-base.
This would be a cumbersome process for any future users
or maintainers, and there should at least be a way of setting
parameters through command-line arguments when running
the program, either through specifying a file path to load values
from or entering which values to set directly. Along with
this being more user-friendly, it would also allow a greater
degree of automation, promoting the use of automated scripts
to execute the models many times with different parameters.
Overall, this would make the models more user-friendly and
versatile.

Finally, although the models already benefit from plenty
of optimisations from efficient libraries like NumPy, they
could be significantly more optimised through multi-threading.
Every pair of agents learns independently from the rest of
the population each meeting or episode. Due to this natural
partitioning of the training process, multi-threading could
significantly speed up training if implemented properly. This
could save future users plenty of time, and make the user-
experience of the model feel better overall.

In terms of future work, all the limitations and potential
improvements listed above could greatly improve the experi-
ence of future users and maintainers. However, a key idea that
builds on the results of this project is investigating how easily
bartering behaviours can transition to money-like behaviours.
In this project, agents learned both how to safely swap and how
to use money from scratch. However, this process does not
fully reflect human history. Instead of learning from money-
like behaviours from scratch, humans already had knowledge
of how to barter, and could then use that swapping knowledge
when learning how to use primitive forms of money. Therefore,
it could be worth testing this idea through reinforcement
learning to see if that process could be recreated. In particular,
one approach could be achieving safe swaps with food and
drink, then gradually swapping out drinks for persistent tokens,
and observing whether agents are able to smoothly transition
from one behaviour to another. This could further contribute
to research regarding money and social behaviours.

ACKNOWLEDGMENTS

I would like to thank Marcus Frean and Stephen Marsland
for their tremendous support as supervisors of this project,
pitching ideas and navigating the many design problems we
encountered along the way. I would also like to thank Victoria
University of Wellington for the use of their hardware to
run these models, and the rest of humanity for running on
inherently worthless, persistent tokens.

REFERENCES

[1] C. Kusimba, “When — and why — did people first start using
money?,” The Conversation, Feb. 28, 2019. https://theconversation.com/
when-and-why-did-people-first-start-using-money-78887

[2] D. Despain, “Early Humans Used Brain Power, Innovation and Teamwork
to Dominate the Planet,” Scientific American, Feb. 27, 2010. https:/www.
scientificamerican.com/article/humans-brain- power-origins/

[3] N. Szabo, “Shelling Out: The Origins of Money — Satoshi Nakamoto In-
stitute,” nakamotoinstitute.org. https://nakamotoinstitute.org/shelling-out/

[4] Wikipedia Contributors, “Hindsight bias,” Wikipedia, Sep. 24, 2019.
https://en.wikipedia.org/wiki/Hindsight_bias

[5] “Reinforcement Learning: An Introduction — MIT Press eBooks — IEEE
Xplore,” ieeexplore.ieee.org. https://ieeexplore.ieee.org/book/6267343

[6] United Nations, “The 17 sustainable development goals,” United Nations,
2023. https://sdgs.un.org/goals

[7] Wikipedia Contributors, “Multi-agent reinforcement learning,” Wikipedia,
Jun. 09, 2023. https://en.wikipedia.org/wiki/Multi-agent_reinforcement_
learning

[8] Wikipedia Contributors, “Markov decision process,” Wikipedia, May 20,
2019. https://en.wikipedia.org/wiki/Markov_decision_process

[9] M. Frean and S. Marsland, “Holds enable one-shot reciprocal exchange,”
Proceedings of the Royal Society B: Biological Sciences, vol. 289, no.
1980, Aug. 2022, doi: https://doi.org/10.1098/rspb.2022.0723.

[10] “Non-Zero-Sum Games,” cs.stanford.edu. https://cs.stanford.edu/people/
eroberts/courses/soco/projects/1998-99/game- theory/nonzero.html

[11] “Bellman equation,” Wikipedia, Apr. 25, 2021. https://en.wikipedia.org/
wiki/Bellman_equation

[12] “Temporal difference learning,” Wikipedia, Jul. 12, 2021. https://en.
wikipedia.org/wiki/Temporal_difference_learning

[13] “Papers with Code - Epsilon Greedy Exploration Explained,”
paperswithcode.com. https://paperswithcode.com/method/
epsilon-greedy-exploration

[14] “What is value iteration in reinforcement learning?,” Google
LaMDA, Apr. 21, 2023. https://lambdagoogle.com/ai- faq/
what-is-value-iteration-in-reinforcement-learning/

[15] Python, “Welcome to Python.org,” Python.org, May 29, 2019. https:
//www.python.org/

[16] GeeksforGeeks, ‘“Python Language Advantages and Applications
- GeeksforGeeks,” GeeksforGeeks, Oct. 23, 2017. https://www.
geeksforgeeks.org/python-language-advantages-applications/

[17] Numpy, “NumPy,” Numpy.org, 2009. https://numpy.org/

[18] Matplotlib, “Matplotlib: Python plotting — Matplotlib 3.1.1 documen-
tation,” Matplotlib.org, 2012. https://matplotlib.org/

[19] S. Bank, “graphviz: Simple Python interface for Graphviz,” PyPI. https:
/Ipypi.org/project/graphviz/

