
ENGR 489 (ENGINEERING PROJECT) 2023 1

Ipipri Digital Trails: Augmented Reality Experience
Liam Fenneman

Abstract—Augmented reality is a growing technology about
bridging the gap between the virtual world and the real world.
Most people carry around a mobile phone that is equipped with
a rear-facing camera and a touch screen. Augmented reality
applications make use of the rear-facing camera to place virtual
elements such as three-dimensional models into the physical
environment. The Ipipri digital trails project is a larger project
developed by the Russell Museum that aims to showcase Māori
history in Kororāreka (now known as Russell). This project
aims to develop augmented reality elements that will enhance
the experience of users by showcasing three-dimensional models
that people can view anywhere. Augmented reality is a relatively
new technology with many features being experimental which
comes with large trade-offs. The biggest of these trade-offs is
speed versus accuracy. This project leans towards the speed side
of this trade-off as the accurate placement of models was not a
priority. The solution that I have developed uses persistent ray
casting to determine where in the physical environment should
be the origin of the virtual scene. This allows for the instant
placement of models into the virtual scene and then uses depth
information to further refine the virtual scene. Along with the
augmented reality elements my solution also includes a quick-
response (QR) code scanning system. This allows users to scan a
code to choose which model is used for augmented reality. This
project is important to help make learning the history and stories
of Kororāreka more engaging by giving people a visual element
that is hard to otherwise recreate.

I. INTRODUCTION

Augmented reality (AR) is a growing technology that aims
to bridge the gap between the real world and the virtual world.
This is done by using a mobile device’s camera as the view
into the real world and then placing virtual elements in front
of the real world. This allows for the perception that those
virtual elements are in the real world. The key issue that has
made AR difficult to develop is how to map a virtual scene
onto the camera view in a way that makes the virtual scene
look like it is part of the real world.

Kororāreka (now known as Russell) is a small town in
the Bay of Islands, New Zealand. It has a long and rich
history for both Māori and Europeans. Before the arrival of
Europeans, Kororāreka was a Māori settlement. When visiting
Russell many people focus on European history which can
overshadow the rich Māori history and stories. The Ipipiri
Digital Trails project by the Russell Museum is a project that
aims to showcase the Māori history of Russell.

Attracting tourists to Russell is important for the Russell
Museum as well as other businesses in Russell since tourism
is a major component driving the local economy. By creating
an AR application the Russell Museum can enhance the
experience of tourists and potentially entice more tourists to
come to Russell. This theory is supported by a 2022 study
that showed innovation and AR quality are important factors

This project was supervised by Kevin Shedlock.

Fig. 1: Example of how the map and QR codes could look on
a pamphlet.

in influencing a person’s attitude to AR [1]. This can then
lead to a positive impact on the intention to visit a particular
destination [1].

The primary problem being solved in this project is the
AR experience component of the Ipipiri Digital Trails project.
The Russell Museum is developing a pamphlet that will be
sold which will be the primary way that people will be able
to access the AR experiences.

The pamphlet includes a fold-out map of Russell with QR
codes spread along the edges similar to what is shown in
Figure 1. The QR codes are needed to be able to view any
of the AR experiences. For this project, I implemented the
scanning of the QR codes and the mapping of the QR codes
to various AR experiences.

The solution that I have developed is an Android application
that is built using the Unity game engine. This application
handles both the QR code scanning and the creation of AR
experiences.

The system for viewing the AR experiences allows users
to place a three-dimensional (3D) model into the real-world
environment. In total, nine AR experiences can be viewed.
Each experience is associated with a QR code. The AR
experiences are Frigate L’Aurore, hakari, kiwi, kororā (little
blue penguin), whale tooth scrimshaw, a shark jaw, beetle
whaleboat, giant weta, and a small Māori village scene. The
models for this project were provided by the Russell Museum.
Figure 2 shows an example of a model that has been placed
in the real-world environment.

II. RELATED WORK

Augmented reality is a technology with multiple different
methods of creating an experience. This is best described
in a 1995 paper that discussed the existence of a ”Reality–
Virtuality continuum” where both AR and virtual reality (VR)



ENGR 489 (ENGINEERING PROJECT) 2023 2

Fig. 2: The penguin model placed in the real-world environ-
ment.

existon a spectrum with multiple levels based on the particular
implementation [2]. In this paper, Milgram et al. described two
types of displays for AR: see-through and monitor-based [2].

See-through displays work by embedding a display into
a see-through panel usually made of glass. This can be
used to eliminate the perspective problem that occurs with
monitor-based displays, however, this approach comes with
its problems. The first is the balance that has to be achieved
between displaying a clear graphic and blocking the vision
of the user. If the graphics completely block the user from
seeing through the panel then it just becomes a regular display,
however, if the graphics are barely visible then the experience
can be very poor.

An example of a see-through display is found in the helmets
of F-35 pilots [3]. A heads-up display (HUD) is mounted to
the pilot’s helmet which provides them with information from
the aircraft and its sensors. While the HUD is intended to be
the ”primary display system” for the pilot, it also allows the
pilot to retain vision within the cockpit [3].

This use case is not only applicable to fighter pilots but also
to regular people in the form of a HUD for their car. Figure 3
shows how this HUD can work. This particular implementation
also includes other screens such as Global Positioning System
(GPS) navigation and phone notifications [4]. This example
shows how the balancing problem can be solved by reducing
the opacity of user interface (UI) elements and keeping the
size of the panel large enough to see the content but small
enough to not block the whole vision of the user.

Monitor-based means that the environment is recorded
and digitally overlaid onto a monitor [2]. Since this paper’s
publication in 1995, smartphones have become a piece of
technology nearly everybody carries around with them. This
is important because a smartphone contains a digital camera
capable of recording the environment, a high-quality display,
and a processor capable of taking a live recording of the
environment and mapping it onto the built-in display. This
is a major advantage of this type of approach as it is the most

accessible since most people carry a smartphone with them
and, therefore, don’t require any additional hardware to be
able to use AR.

An example of the monitor-based approach is the Nosfer-
ARtu project which was built to ”explore the possibilities and
advantages of the gamification methods with the combination
in Augmented Reality technology” [5]. This application takes
users around the Orava Castle in Slovakia collecting virtual
objects that are placed around the castle. While the project
was done to explore the impact of the gaming element, it also
highlights the advantages and disadvantages of the monitor-
based approach to AR. As shown in Figure 4, the phone
camera takes up the entire screen and a virtual object (the
statue) is overlaid to give the perception that the statue exists
in the real world.

A key disadvantage of the monitor-based approach is that
the perspective that is being displayed is not the user’s per-
spective but rather the camera’s perspective. For an application
like NosferARtu, this might not degrade the experience, but
in other use cases for AR this might be a factor to consider.

A 2016 study was done to find the user requirements for
wearable AR glasses [6]. The study was done in the context of
an art gallery and made use of a see-through display to show
the user information about the art piece they were looking at.

When the user looked at a piece of art they would be shown
additional information about the painting in the form of text
[6]. One of the observations that was made from this study is
the requirement that the information needs to balance along
the line of providing enough usefulness while not providing
too much information.

Another important observation that was made is the novelty
factor which is a ”crucial determinant of participants’ percep-
tion” of the usefulness of the AR application [6]. What this
could mean is that as AR becomes more popular the novelty
factor will decrease and therefore could affect the perception
of the usefulness of AR applications in terms of attracting

Fig. 3: Example shot of the HUDWAY Drive panel.
Source: [4]



ENGR 489 (ENGINEERING PROJECT) 2023 3

Fig. 4: Monitor-based AR in the NosferARtu project.
Source: [5]

tourists.
One of the reasons why this project is being done is to

explore the use of AR for tourism activities. One study that
has been done looking at this exact topic is a 2022 study that
looked at the use of AR as a way for people to have a positive
experience before they decide to travel to the destination the
AR experience is made for [1].

In this study, the researchers aimed to find the motivating
factors of AR that would positively influence a person’s
attitude towards the destination [1]. They conducted a survey
and found that the quality of the augmentation and the
perceived usefulness of an AR application are factors to
improve a person’s attitude towards AR which contributes
to a person’s expected enjoyment of the destination [1]. The
expected enjoyment then leads to a positive impact on the
intention to visit the destination.

A major limitation of this study is the fact that it was only
proven by the results of a survey. What people say they might
want is not necessarily how they would actually behave when
given an AR application.

This study also only considered the impact when the person
uses the AR application before travelling to the destination.
This means that for this project the outcomes could be different
since the people who will use the application must first be in
Russell to get the pamphlet.

III. DESIGN

A. Constraints

One of the key constraints on the project is the fact that I
am the sole developer. This means that my time spent working
on the project is limited. The scope of the project must also
be limited to take into consideration this fact.

Another constraint for this project is the lack of mature
frameworks, guides, articles, and research for augmented re-
ality. There is no clear pathway for creating AR applications
and therefore many features are experimental and there are no

industry standards to provide compatibility between different
tools.

In terms of object tracking systems, many require some form
of physical thing to exist in the real world to generate the
virtual world from a known point. However, for this project,
the user is only expected to need the pamphlet and no other
physical items. This limits the choice of object tracking as it
will have to be done purely using the users’ camera.

B. Scope

As iteration occurred the scope of the project along with the
requirements changed to make the project not have to wait for
outside parties. An example of this is the change from using
a virtual map that uses AR to a QR code-based solution. This
decision was made since this would require working with a
digital artist to create the map and get it integrated with the
application I built. When taking into consideration the time
constraint this decision is sound.

The primary deliverable for this project is a working ap-
plication with AR elements. For this, we agreed that 10-12
models would be used to create AR experiences. However,
only 9 models were provided and therefore only 9 AR expe-
riences are included in the application.

Also included in this project is the QR system which scans
QR codes and uses the text that is contained in the codes to
determine which AR element to show to the user.

The application also needs to include a basic UI to move
between different states of the application. The UI includes a
slider to control the rotation of the AR element. The design
of the UI is not a part of the scope of this project. However,
it should include basic usability requirements.

To keep the scope focused on the AR technology and
implementation I decided to only build the application to target
Android devices. Building an AR application for iOS would
require setting up and testing both Android and iOS devices
which each have their corresponding software development kit
(SDK) for implementing AR.

While all of the tools that I have used for this project have
integrations and systems to support iOS development there is
still the issue that iOS development must be done using a
machine running MacOS. To test that the application works
on iOS I would also need access to a phone that is running
iOS.

Building for Android only makes managing the build system
significantly easier since I only have one target. It is also made
easier by the fact that I have all the equipment to be able to
run and test the application.

C. Methodology

The process for designing this project was iterative as I
explored what is possible within Unity/ARCore and adjusted
based on feedback given from both Kevin and the Russell
Museum. This was done to find a solution that best fit the
needs of the Russell Museum.

Within the iterative process, I designed around creating a
single working AR experience which can then be duplicated
and scaled to support multiple experiences. This was to limit



ENGR 489 (ENGINEERING PROJECT) 2023 4

the complexity of the AR elements and allow for any number
of AR elements to be included in the final artefact.

The problem that is being solved in this project is split into
two systems. The first is the QR code system and the second
is the AR elements and experience system. These systems can
be decomposed since they are mutually exclusive in terms of
when they are used.

The AR system has to wait until the user has chosen an
experience before any work can be done to display AR to the
user. The AR system doesn’t need to care about how the user
selects an experience since the system is only responsible for
handling the display of AR elements.

This contrasts with the QR code system which is only
responsible for scanning QR codes and telling the AR system
which experience the user has selected. This is done to
minimise the dependency boundaries between the two systems.

Creating the mapping between the virtual world and the
physical world is one of the most important decisions to make
as there are many trade-offs to consider. With ARCore there
are four different methods to create this mapping: anchors,
planes, raycasts, and tracked images [7]–[10]. Table I shows a
simplified comparison of the trade-offs between each method.
Each option has its advantages and disadvantages which makes
it more or less useful for different applications.

The purpose of AR in this project is to place a 3D object
at any point in the environment. The two types of trackable
objects that are viable for this project are plane detection and
raycasts because they don’t require any physical thing to create
the virtual scene. The trade-off between the two can be reduced
to a simple factor: ease of setup and speed to initialise.

D. Functional Requirements

As shown in Figure 5, there are two core systems for
the application: the QR code system and the AR Experience
system.

As the name suggests, the QR code system has a single
responsibility: scan for QR codes. Therefore, the first require-
ment is that the system can scan text-based QR codes.

The QR are going to be placed on a pamphlet which means
that the size of the QR codes is small. The second requirement
for the QR code system is that the system must be able to
handle physically small QR codes. However, this issue is
partially solved by how the QR codes are generated in the
first place. Figure 6 shows a comparison of two types of QR
codes that are possible to create. Figure 6a shows a QR code
generated by a short text and Figure 6b shows a QR code
generated by a long text. The difference is clear that the longer
the text the larger the QR code will be. By using the short text

TABLE I: Comparison of AR tracking methods. Source: [7]–
[10].

Method Advantages Disadvantages
Anchor Good accuracy Difficult, Resource Intensive
Plane Easy to set up Slow, Average accuracy
Raycast Fast to initialise Poor accuracy
Tracked Image Good accuracy Requires image to be

present in real-world

Fig. 5: System flow diagram of the application.

method the QR codes can be made small enough to fit on a
page of a pamphlet while still being large enough to be easily
scanned.

The third requirement for the QR code system is the user
needs to be given feedback from the system about what it is
doing and what has been scanned. Multiple QR codes will
be on the same page of the pamphlet which means that the
user needs to know what they have scanned before the AR
experience starts. This is as simple as displaying a message to
the user saying ”scanning” when the system is still scanning
and the name of the AR experience when it has successfully
scanned.

The input to the QR code system are frames from the device
camera. Since the camera is used for the background of the
application, the QR code system can hook into the Unity
renderer with a callback when frames are created. Within this
callback, the QR code system can scan individual frames from
the camera.

Upon successful scanning of a QR code, the QR code
system will update a globally readable string with the content
of the QR code and pause. The QR code system will only
resume scanning upon receiving the ”Reset” signal.

The AR experience system has the responsibility of dis-
playing the AR elements to the user. The first requirement
for this system is that it needs to allow the user to place an
object anywhere in the environment. This means that the user
doesn’t need to be at a specific location to be able to use the
application.

The second requirement for the AR experience system is
that it needs to support multiple AR experiences. While an

(a) QR code with the text:
”Kiwi.”

(b) QR code with the text:
”This is a long QR code.”

Fig. 6: Example of version 1 and version 2 QR codes.



ENGR 489 (ENGINEERING PROJECT) 2023 5

application with a single experience might be interesting, the
ability to support any number of experiences is important for
future development. This also allows the users to be able to
decide what they want to view.

The third requirement for the AR experience system is that
it needs to implement some form of interactivity. By using
AR you are not limited in the level of interaction that you can
provide to the user as you would be with a video or picture.
By taking advantage of the game engine nature of developing
an AR application we can implement some of the same ideas
that are done when developing a game.

E. Performance Requirements
The project’s dependence on ARCore means that the mini-

mum version for Android is set by ARCore which is Applica-
tion Programming Interface (API) level 24 [11]. This is a fairly
old version which was released in 2016 and has a cumulative
usage of 96.19% [12].

The biggest performance requirement for this project is the
target frames per second (FPS) which determines how smooth
the experience is for users. As this project is a real-time
application this is important to keep as high as possible. For
this project, I target 60 FPS which is a standard target for
real-time applications. This target means that there is less than
16.67 milliseconds to complete any work as blocking the main
thread for longer would lead to missing the target.

An alternative FPS target is 30 FPS which is the default
for mobile applications in Unity. The time between frames at
this target is double that of 60 FPS, however, I decided to use
a higher target until I needed to drop that requirement. This
is because the two primary systems can both be designed to
complete work over multiple frames.

The QR code system’s primary performance requirement
is that it needs to provide quick feedback to the user. Ideally,
this feedback is in the form of a successful scan. However, the
user must be made aware of what the system is doing. This is
important because the user could believe that they are doing
something wrong when they have done everything correctly
but the system is processing a QR code. This could lead to
a frustrating situation for the user. A reasonable window for
scanning a QR code would be within 1 second assuming that
the QR code is within view of the camera.

Similarly, the AR elements need to be placed quickly. This
is for the same reasons as the QR code system since the user
needs to be given feedback that the AR elements are being
placed. A reasonable window for placing the elements would
be within 1 second of the user tapping the screen.

Another requirement for the AR elements is that they need
to be placed reasonably accurately. AR technology is limited in
the accuracy that it can achieve, however, the accuracy needs
to be good enough that the user can easily see the AR element
in a realistic position. This is further limited by the constraint
on supporting hardware that would allow for more advanced
tracking such as the use of anchors.

F. Usability Requirements
The target audience for this project is mostly tourists.

This poses some challenges when it comes to designing the

usability of the application. Firstly, there are likely to be users
who have limited or no understanding of English. Secondly,
there is no targeted age range which means that users of all
ages could be using the application and therefore consideration
needs to be made to ensure that the UI is accessible for all
ages.

To be able to objectively consider the usability requirements
of the project I used Nielsen’s heuristics to guide features that
need to be implemented to meet the usability requirements
that users expect. [13].

The first of these heuristics requires that the application is
designed to ”always keep users informed about what is going
on, through appropriate feedback within a reasonable amount
of time” [13]. This was partially discussed in the performance
requirements section, however, it is also important to consider
the UI elements that are used to provide feedback to the user.

The second and fourth heuristics are concerned with the
language used within the application. The second heuristic
states that the application should ”speak the users’ language”
and the fourth heuristic states that the application should
”maintain consistency within a single product” [13]. What this
means for this project is that any text used is widely used by
the target audience and remains consistent across the entire
application.

The third heuristic is concerned with the user’s ability to
move freely between different states of the application. For
this project, this is reasonably simple as there are only two
systems that the user can interact with. Therefore, the user
should be able to move between the QR code system and the
AR experience system. This can be achieved by using a button
to trigger the transition.

The remaining heuristics are more applicable to larger
applications that have more complex UI elements and user
interactions. However, some important takeaways from these
heuristics are that the application should be designed to keep
users in a valid application state, and help users recover from
errors. The design of the application should only provide a
minimal UI to reduce the cognitive load on the user.

IV. IMPLEMENTATION

A. Dependencies, Tools, and Frameworks

The first step in the process of implementing this project was
to decide on the tools that I would use to build the application.
The problem this project is solving is not the process of
building an application but rather the systems required to
create AR elements. Therefore, I decided to use a game engine
rather than building a native application as this would allow me
to focus on the creation of the systems required to create AR
experiences. The following list of features that are provided by
a game engine are systems I would have to create if I decided
to build a native application:

• Build system to generate Android package (APK) files to
deploy to Android devices.

• Dependency management.
• Debugging tools such as logging and a profiler.
• Rendering pipeline for 3D graphics.
• Asset management.



ENGR 489 (ENGINEERING PROJECT) 2023 6

• Mobile input handling.
• UI development.
The prototype I built before my trip to Russell was using

the Unreal game engine. However, this was changed to Unity
as I found that the version of ARCore that was being used
was older than the version that Unity was using. This meant
that some features that I wanted to use such as the Depth API
were not available.

Unity’s package management system handles the dependen-
cies for the project. This means that I just need to define which
dependencies I want to use and they will be included when
I build the project. This includes the Android SDK, ARCore,
and the ZXing library.

One of the advantages of using Unity as the build system
for this project was the fact that I didn’t have to directly
interface with the Android SDK. However, I made use of
one of the many tools that come with the Android SDK.
Android Debug Bridge is a tool that allows me to connect
to my Android device over the Universal Serial Bus (USB)
interface or wirelessly and run my application [14]. Since
Unity also has integrations for Android that make use of these
tools I was able to make use of incremental compilation which
significantly reduced the time it took to build and deploy the
application to my device.

ARCore is the most important dependency for this project
as it provides the API to be able to create AR experiences.
However, I use ARCore through the use of a Unity package
called AR Foundation which is a cross-platform API that
exposes features of the ARCore API [15]. This is done since
AR Foundation also supports iOS, among other platforms,
which means that the same code can be used to build for
multiple platforms in the future. AR Foundation itself doesn’t
provide any functionality but instead maps the APIs of dif-
ferent libraries to a single API that can be used within C#
[15].

To handle the scanning of QR codes I decided to use a third-
party library called ZXing.Net [16]. This library provides sup-
port for scanning QR codes and is compatible with Unity [16].
The reason that I am using a library rather than implementing
the scanning myself is that the ZXing.Net library has been
developed over many years and includes many optimisations
that I would not be able to implement in the time frame of
this project. ZXing.Net is provided as a dynamic-link library
(DLL) which means that it can be included in the project as a
plugin and used within C#. Unity will handle the management
of the DLL and include it when the application is built.

B. Scene Management
Unity makes use of an abstraction called scenes to manage

what assets and scripts are included in different parts of the
application. This abstraction allows for multiple scenes to be
loaded at different times based on what the user is doing. For
this project, I made use of two scenes.

The first scene is the entry point to the rest of the applica-
tion. Within this scene is the UI that the user first encounters
which contains the title of the project and a start button. When
the start button is pressed the second scene is loaded and the
first scene is unloaded.

The second scene is the primary scene that contains both the
QR code system and the AR experience system. The reason
why this scene contains both the QR code system and the
AR experience system is because they both make use of the
phone camera. Splitting this scene in two would require the
camera to be initialised twice which would lead to a moment
of blackness on the screen which switching between the two.

The entry point scene is split from the main scene since
this allows for multiple development scenes to be loaded
at the same time to test different configurations of the QR
code system or AR experience system. For example, when
developing the QR code system I didn’t need any of the
AR elements to be loaded which meant that they didn’t
interfere with the development of the QR code system. I was
also able to build an application that could use either plane
detection or persistent raycasts by using a different scene
for each configuration. This allowed for testing the different
configurations without having to change any code and rebuild
the application.

C. AR Experience System

The AR experience system is responsible for displaying
the AR elements to the user. While there are multiple ways
of implementing the system, I decided to use a finite state
machine which allows for the representation of the entire
system to be made explicit. This is done by defining the states
that the system can be in and the transitions between those
states.

The benefit of using a finite state machine is that it allows
for asynchronous behaviour to be created. This is important
for this project as the performance requirement of targeting 60
FPS only allows for 16.67 milliseconds to complete all work
before the next frame must be rendered. Allowing for the work
to be done asynchronously means that the work can be split
up over multiple frames.

One of the challenges with an asynchronous system is that
it can introduce bugs that are difficult to reproduce and debug.
However, using a finite state machine to control which states
the system is allowed to be in will ensure that the system is
not able to be in an invalid state.

The AR experience system is implemented as a Unity game
object called the AR Experience Manager. For every frame
Unity will call the Update function within this system which
will then do whatever is needed based on the current state of
the system. This allows for creating an asynchronous system
since the Update function can return and wait until the next
frame.

As shown in Figure 7 the AR experience system contains
three states: QR, Placement, and AR.

When the AR experience system is in the QR state it will
check for updates from the QR code system and ensure that the
QR code system is in the correct state to scan for QR codes.
This is to ensure that the QR code system is only scanning for
QR codes while the user is expected to be scanning for QR
codes. When the QR code system has successfully scanned
a QR code the AR experience system will check to see if
the text that the QR code contains matches any of the AR



ENGR 489 (ENGINEERING PROJECT) 2023 7

Fig. 7: State transition diagram of the AR experience system.

elements that the AR experience system is storing. If there
is a successful match then the state of the AR experience
system is transitioned to the Placement state. However, if the
text doesn’t match any AR elements then the AR experience
system stays in the QR state.

The Placement state exists to allow for an in-between state
to exist that allows the user to select where they want to place
the AR element in the environment. This state also allowed
me to display additional information to the user during this
time. A secondary advantage of using this in-between state is
that it allows the user to scan a QR code and physically move
their phone to a different location before the AR element is
placed. This is important for the user experience since once
the object is placed the location is not able to be changed.

To transition to the AR state the user must touch their
screen to place the selected AR element. This is done by
using Unity’s Input system which provides a screen-space
coordinate of where the user clicked. When the AR experience
system detects the user has touched their screen a persistent
raycast is created using the AR Foundation API. This raycast
is then used to instantiate a new instance of the AR element
that the user had selected and the state of the AR experience
system is transitioned to the AR state.

The AR state doesn’t have much functionality other than
changing the UI to display a slider and hide the help panel.
This is because the ARRaycastManager that is provided by AR
Foundation will ensure that the mapping between the virtual
world and the real-world is updated as more information
from the phone’s camera and depth sensors (if available) is
collected. This means that once the AR element is placed in
the virtual world the position within the virtual world doesn’t
need to be updated.

D. Plane Detection vs. Persistent Raycasts

Both plane detection and persistent raycasts are methods
that can be used to generate the mapping between the vir-
tual world and the real world. They both make use of the
ARRaycastManager that is provided by AR Foundation which
then uses AR Core to do the work of generating the mapping.

The initial implementation of this project made use of plane
detection since this is the easiest method to get started with.
Figure 8 shows the steps in the process of placing an AR
element using plane detection. The scanning for planes is done
by the ARRaycastManager which will take the most amount

of time as the user needs to move their phone around to
gather as much data as possible which can be used to generate
the mapping. Once a plane is detected an ARPlane object is
created which can then be used to place other objects on top
of it.

The process of detecting planes has a major disadvantage
since the time it takes to detect a plane can be as long as
20 seconds. This is not acceptable to achieve the performance
requirements of this project.

Persistent raycasts are similar to plane detection except that
instead of waiting for a full plane to be created the system
will create a raycast from a certain point on the screen and
estimate the distance from the camera to the surface that the
raycast intersects. The estimated distance is something that I
can directly control and have set to 3.5 meters. Figure 9 is
a bit more involved since after the raycast is added to the
ARRaycastManager the flow of the system splits to allow for
an AR element to be immediately placed at the intersection
point while the ARRaycastManager continues to update the
raycast.

The reason these raycasts are called persistent is because
internally they are constantly being updated to ensure that the
point of the intersection remains the same. This means that
as the user moves their phone around the raycast will still
intersect with the same point in the real world. By constantly
updating the point of intersection the accuracy can also be
improved as more information is collected.

I was able to do some basic manual testing of both methods
and found that plane detection was taking around 5 seconds
from starting the application to having an AR element placed.
Persistent raycasts, on the other hand, were able to reduce
this to under 1 second. This is a significant improvement and
therefore I kept the persistent raycast implementation.

The difference between the two implementations in terms
of accuracy is negligible as long as the raycast point remains
in roughly the same spot when using the persistent raycast
implementation. This is because the initial accuracy of per-
sistent raycasts cannot be as good as the accuracy of plane
detection since accuracy improves over time. However, both
implementations suffer from accuracy issues when the user is
moving too much or too quickly so this is a minor issue.

E. QR Code System

Similar to the AR experience system the QR code system
also makes use of a state machine to decide what the system
needs to be doing. The importance of using a state machine
is greater with this system since blocking the main thread
would mean that the camera is not being updated which would
effectively freeze the application.

Fig. 8: Plane detection implementation diagram.



ENGR 489 (ENGINEERING PROJECT) 2023 8

Fig. 9: Persistent raycast implementation diagram.

Figure 10 shows the state machine diagram for the QR code
system which has three states: Idle, Scanning, and Done.

The QR code system starts in the Idle state since this
allows for other systems in the application to initialise and
then request that the QR code system start explicitly. This is
because there is no point in handling any errors that could
occur from starting the QR code system if the AR experience
system hasn’t been initialised and waiting for a QR code.

The AR experience system must explicitly call the Scan
function to transition the QR code system into the Scanning
state. When a QR code has successfully been scanned the state
transitions to the Done state.

The scanning is done by listening to the
OnCameraFrameReceived event that is called after the
current frame is rendered. This event makes use of the
rendering pipeline for the ARCamera which is responsible
for rendering the background of the application. This means
that the QR code system can hook into the rendering pipeline
and scan the latest frame without needing to initialise its own
camera feed.

This event listener checks for the current state of the QR
code system. If the state is Scanning then the current frame is
scanned for QR codes. Otherwise, the event listener will return
and wait for the next frame to be received. This means that
the Idle and Done states are functionally identical. However,
Done indicates to any system that the value currently held by
the QR code system is the latest valid QR code that has been
scanned. The Idle state only indicates that the system is not
scanning for QR codes and the QR code result stored by the
system could be old or invalid.

The implementation of scanning a single frame is done

Fig. 10: State machine diagram for the QR Code system.

by an external dependency, ZXing.Net. This is because the
implementation of scanning a single frame is complex and
requires a lot of optimisations to be able to accurately and
quickly find QR codes. This would be a significant amount of
work to implement myself and is ultimately out of the scope
of this project.

F. Scriptable Objects

One of the features that Unity provides is called scriptable
objects which are objects that can be created within the Unity
editor to store data for use within a C# script.

I make use of scriptable objects for storing information the
name, text used for the QR code, and the 3D model for each
AR experience. These objects are then added to a list within
the Experience Manager.

Since scriptable objects are a type of Unity asset like a
texture or 3D model they can be checked out with git which
means that any changes are tracked and can be reverted if
needed.

Another advantage of using scriptable objects is the fact that
creating them and adding them to the Experience Manager
can be done entirely within the Unity editor and without any
changes to the code.

G. User Interface

The user interface is implemented using Unity’s built-in
UI development system which makes use of pre-built game
objects for various UI elements.

In terms of the typography that is used throughout the
application, I decided to import the same font that is used on
the Russell Museum website. This is because I wanted to make
the design feel relatively consistent with the Russell Museum
brand without having to follow an explicit design guide.

The UI for the entry-point scene consists of a title and a
start button. I wanted to ensure that the UI is as minimal as
possible to reduce the options that the user has to think about
to get to the AR experiences.

Within the main scene, the UI remains minimal by providing
only the information that the user needs to be able to work the
application. Four UI elements are used within the main scene:
a text element at the top of the screen, a help panel, a slider,
and a reset button.

The text at the top of the screen shows the name of the AR
experience when the user has scanned a QR code or a message
that indicates that the system is expecting the user to scan a
QR code.

The help panel is a panel at the bottom of the screen
that shows some helpful information about what exactly is
expected of the user a various points of the application. For
example, when scanning for a QR code this panel will display:
”Place a QR code in the center of your screen.” When the user
has scanned a QR code this help message is changed to: ”Tap
to place the object.” This panel was implemented to ensure
that the user is not confused about what they need to do at
any point in the application.

When the user has placed an AR element a slider will appear
at the bottom of the screen which allows the user to change the



ENGR 489 (ENGINEERING PROJECT) 2023 9

rotation of the AR element. This is because physically moving
around the element is not always possible and having a slider
is also more convenient.

A reset button is always present in the bottom right corner
of the user’s screen that will allow the user to reset to the
QR state and will ensure that the QR code system is also
reset. This allows the user to freely move between different
AR experiences without having to restart the application.

V. EVALUATION

The functional requirements for the QR code system re-
quired that the user can scan QR codes, and handle when
the QR codes are small. This was achieved by using a third-
party library that has implemented many features that make
the scanning of small QR codes possible. The minimum size
that a QR code can be is 2 centimeters as measured from the
perspective of the phone camera. This is something that could
be different on different devices since this is affected by the
camera’s ability to focus on code well enough to be able to
scan it.

The performance of the QR code scanning system is as
good as it can be since the time to scan a QR code is less
than 100 milliseconds. This is well within the performance
requirement of less than 1 second. The feedback from the
QR code system is done at the same time which means that
the user can immediately see if the QR code that they have
scanned is valid.

For the AR experience system, one of the functional re-
quirements was to allow the user to place an element anywhere
they want to. This was achieved by using persistent raycasts
which converts the screen-space point from where the user
tapped their phone into a world-space point which is used to
place the AR element. This is further extended by using the
Placement state in the AR experience system which allows
users to scan a QR code and physically move before tapping
their screen to place an element.

Supporting multiple experiences was one of the most impor-
tant requirements for this project and was achieved by using a
list of scriptable objects that contain all the information that
the application needs to be able to place arbitrary 3D models
in the environment. In total, I was provided with 9 3D models
which all have a unique QR code that is used to identify them.

The interactivity is done by using a slider that allows the
user to rotate the AR element. This is a simple implementation,
however, the user also has the ability to physically move
around to view the AR element from different angles.

To achieve the 60 FPS performance target I ensured that
all of the systems were designed to be able to complete their
work over multiple frames. This was done by implementing
a basic async runtime with the use of state machines. This
metric is hard to evaluate after reaching the point of 60 FPS
since allowing the application to produce more than 60 FPS
has little effect on the performance of the application since
most phones’ refresh rate is 60 Hz so frames are being created
and dropped without the user ever seeing them. However,
producing more frames could impact the battery life of the
device since the phone is creating frames rather than being
idle.

The placement of AR elements is also within the 1 second
window outlined in the performance requirements. This was
done by using persistent raycasts which allow the placement of
an AR element to be done as quickly as possible by removing
the need to wait for plane detection. This comes at the cost of
the immediate accuracy since there is not as much information
being used to generate the mapping between the virtual world
and the real-world. However, the accuracy improves over time
as more information is collected by the phone’s camera and
depth sensor.

VI. CONCLUSIONS & FUTURE WORK

This project is a great place to start implementing a more
featureful application that could be used by the Russell Mu-
seum. The project has achieved the primary goal of creating a
system that allows for the placement of AR elements, however,
to make a successful application many more features could be
added to make the experience of using the application better.

One of the first features that I would implement is building
the storytelling elements. The current state of the project can
show users 3D models of things that they might’ve never seen
or be able to see up close, however, there is no contextual
information about the models. For example, the hakari model
was designed from a painting of a hakari that was once located
in Russell.

Similarly, the project could be extended to include more
of a gaming element like what was done in the NosferARtu
project. By making the application more of a game the users
will be more engaged with the application. This could also be
made into a social experience which was one of the motivating
factors that was found in the art gallery example [6].

With the modularity that comes from the implementation
using scriptable objects, the project can be the base for any
number of different applications. For example, if the Living
Pa wanted to create an AR application they could use this
project as a base and just need to create the 3D models and
QR codes.

Overall the project was successful in implementing the AR
experience for the Russell Museum and allows for future
development to be done on top of the project.

REFERENCES

[1] H. Ahmad, A. Butt, and A. Muzaffar, “Travel before you actually travel
with augmented reality – role of augmented reality in future destination,”
Current Issues in Tourism, vol. 26, no. 17, p. 2845–2862, 2022.

[2] P. Milgram, H. Takemura, A. Utsumi, and F. Kishino, “Augmented
reality: a class of displays on the reality-virtuality continuum,” in
Telemanipulator and Telepresence Technologies, H. Das, Ed., vol. 2351,
International Society for Optics and Photonics. SPIE, 1995, pp. 282
– 292. [Online]. Available: https://doi.org/10.1117/12.197321

[3] “F-35 Gen III helmet mounted display system (HMDS),” Collins
Aerospace. [Online]. Available: https://www.collinsaerospace.com/what-
we-do/industries/military-and-defense/displays-and-controls/airborne/
helmet-mounted-displays/f-35-gen-iii-helmet-mounted-display-system

[4] “HUDWAY Drive: The heads-up display that lets you keep your eyes
on the road,” HUDWAY. [Online]. Available: https://hudway.co/drive

[5] P. Mésároš, T. Mandičák, A. Mesarosova, M. Hernandez, B. Kršák,
C. Sidor, L. Strba, M. Molokáč, L. Hvizdák, P. Blistan, and R. Delina,
“Use of augmented reality and gamification techniques in tourism,” e-
Review of Tourism Research, vol. 13, pp. 366–381, 01 2016.

[6] M. C. tom Dieck, T. Jung, and D.-I. Han, “Mapping requirements for the
wearable smart glasses augmented reality museum application,” Journal
of Hospitality and Tourism Technology, vol. 7, no. 3, p. 230–253, 2016.



ENGR 489 (ENGINEERING PROJECT) 2023 10

[7] “AR Anchor Manager component,” Unity. [Online]. Available: https:
//docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.1/manual/
features/anchors.html

[8] “AR Plane Manager component,” Unity. [Online]. Available: https:
//docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.1/manual/
features/plane-detection.html

[9] “AR Raycast Manager component,” Unity. [Online]. Available: https:
//docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.1/manual/
features/raycasts.html

[10] “AR Tracked Image Manager component,” Unity. [Online]. Available:
https: / /docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.1/
manual/features/image-tracking.html

[11] “ARCore supported devices,” Google. [Online]. Available: https:
//developers.google.com/ar/devices

[12] E. Belinski, “Android API Levels.” [Online]. Available: https:
//apilevels.com/

[13] J. Nielsen, “10 usability heuristics for user interface design,” 1994.
[Online]. Available: https://www.nngroup.com/articles/ten-usability-
heuristics/

[14] “Android Debug Bridge (adb),” Android. [Online]. Available: https:
//developer.android.com/tools/adb

[15] “Unity’s AR Foundation Framework,” Unity. [Online]. Available:
https://unity.com/unity/features/arfoundation

[16] M. Jahn, “ZXing.Net.” [Online]. Available: https://github.com/micjahn/
ZXing.Net


