ENGR 489 USER IMPERSONATION 2023

User Impersonation Project

Jonathan Ergas

Abstract—Volpara Health is a company focused on finding
ways to detect breast cancer with Al in the early stages before
it becomes lethal. They have a customer facing application that
helps clinicians better assess if their clients have a possibility of
breast cancer. Currently, Volpara has no system in place that
allows a support team member to log in as one of their clients
to help diagnose issues/problems with the dashboard without the
client needing to provide their login information. This causes
a lot of issues with privacy and security as anyone with the
login information of users can access confidential files and other
internal systems. This led to the need for a custom solution that
allows the impersonation of a user to access the dashboard and no
other service. This project provides the desired custom solution
that would allow the support staff to check the customers’
dashboard quickly and efficiently for their issues causing less
downtime and a better customer support experience. Tools used
for developing the project include TypeScript, Angular for the
front-end and C#(.Net) for the backend. The performance and
security of this project are key, this requires website and backend
load tests and performance metrics, as well as security tests
to make sure all sensitive methods require authorization to be
executed and that the website cannot be bypassed in any way to
gain sensitive information. On top of these tests are user tests to
make sure the solution is easy and straightforward to use without
the need for extra training that would cause more overhead for
Volpara Health.

I. INTRODUCTION

OLPARA Health is a company focused on using Al to
detect breast cancer in the early stages. This involves
training an Al to detect cancerous cells in an image and say if
that image has cancer cells in it or not. The problem they are
facing is with their dashboard because they want customer
support members to be able to log in as their clients to
diagnose issues and problems faster. Their current system does
this functionality, but the underlying API calls are still done
by the support team members’ account, not the person they are
impersonating so the data and the view of the dashboard would
be different due to permissions being different between both
parties. This project aims to replace their current system and
do the impersonation at the API level so the impersonated user
would be identical to the real user allowing the support team
member to see exactly what their client sees if they were them
without the need of asking them for their login information.
Volpara needs this solution because without it the dashboard
view of analytics could be desynced from the actual state and
could have some inaccuracies. Resulting in a misrepresentation
of the data and can lead to situations where it’s a case of
“it works on my machine”. This is mainly caused by the
dashboard doing a pseudo impersonation already that just cuts
down the view until you see what that user should see but
this causes problems because the underlying dashboard token

This project was supervised by Jyoti Sahni (primary), Alvin Valera, and
Ben MacDonell (Volpara Health).

used has the privileges of the logged-in user, not the user they
are impersonating resulting in mismatched permission that can
lead to different views of the dashboard that is not what we
want.

The proposed solution is a TypeScript Angular/Ionic front
end with a .NET C# API backend this is because Volpara
Health uses .NET in their backend so it would be easy for them
to integrate the final solution with their existing server code.
The reason TypeScript Angular/Ionic for the front end was
chosen is that I have lots of experience using these frameworks
and can efficiently mock up a functional front end for them to
use. Also, later in the project if there is time, I can rewrite the
front end using Blazor to future-proof the app since Volpara is
going to use exclusively Blazor as their front-end framework.

By having the solution written in TypeScript Angular/Ionic
it allows for the web application to be used on all platforms
(PC, Android, I0S) and could be converted into a native
mobile application in the future if Volpara wants to with no
effort at all.

The measurable performance and functional requirements
are that the solution works for its intended purpose and is
easy to use. Also, it must be quick and efficient with the
whole process taking less than 3 seconds to complete to give
a good user experience and to make the solution feel snappy
and responsive. This is to make the user experience as painless
as possible and contributes to the quick and easy aspects of
the solution.

Sustainability goals of the solution is that it should be
performance focused and well optimized to reduce wasted
compute and lower the overall power draw of the solution
to the bare minimum when not in use. Also the solution must
be maintainable and upgradable so ensure the long life of the
solution.

II. BACKGROUND RESEARCH

The aspects covered in the background research are different
ways to do user impersonation and what are their pros and
cons. This is so we can determine what method would be best
to fit our use case. Also, it will cover some background on
the types of tokens that would be used in the solution and
their roles. Another part is what tools and languages would be
considered for the solution and why.

A. Impersonation Choices

Azure User impersonation
There are some existing solutions for example using azures
built-in solution to do the impersonation[1] but with this
solution, Volpara’s Analytics dashboard wouldn’t be able to
distinguish an impersonated user from the real user which
could create a major security flaw because then the logs



ENGR 489 USER IMPERSONATION 2023

wouldn’t know who did the impersonating. This is because
Azure’s user impersonation works at the Azure Active Di-
rectory Authentication level the closest level to the user,
meaning it’s like the user just logged in with their username
and password. This level is not required to do impersonation
on Volpara systems because this authentication token goes
replaced with a dashboard token meaning we only need the
information to create a dashboard token of the user we want to
impersonate. We must build a custom system because Azure’s
user impersonation requires that it is turned on for all users
of the active directory including admin users this would cause
a major security flaw and opens a door for hackers and other
malicious actors.

Session Hijacking
Is the process of taking the user’s session token from their
browser and injecting it into your own making you seem like
the other person from the server’s point of view this would
work like the azure built in solution but would require that the
user doesn’t logout or change their password. This approach
is very dubious because it’s hacking and would be illegal to
do also it runs into the same problem of not being able to
know if the user is an impersonated user or not.

Modifying Volpara Analytics Dashboard
One of my first ideas was to modify the Analytics Dashboard
to take modified/invalid access tokens with the caveat that
this modified token would be created using the user data (IP
address, Login Token, date and time. .. etc) and encrypting it
making it so the dashboard can look up this data to check if
its valid and if the IP address is on the whitelist of authorised
Volpara Health support team members or is using the company
VPN (Virtual Private Network). Volpara liked this idea, but it
required lots of tweaking to the Analytics Dashboard and there
were potential security holes and there was an easier way.

Implement our own custom solution.
When thinking about this approach this guide[2] gave a lot of
outlines on how to do an impersonation correctly and safely
this was important when making a custom solution since the
motto of encryption is “don’t reinvent the wheel” but since
there are no other options, I had to make a custom solution.

The custom solution uses the “secure token service” to
generate an access token with the valid user information
provided by the database lookups in the backend. This allows
me to bypass the login token and pass the checks of analytics
to get a valid dashboard token as the impersonated user.
This also came with a slight modification of the analytics to
support extra information being provided along with the access
token. This extra information would be the impersonators’
information (IP address, login token, name, date and time...etc)
and would set off a flag in analytics to allow it to know this is
an impersonated token and not the real user. This is good so
in the log the IT people can know if it was an impersonated
user doing that action or the real user and they would know
who exactly did the impersonation.

B. Tokens

Tokens are used to authenticate the user in the place of
a username and password for every request made to an

API/server but in this solution, there are three different kinds
of tokens since each token is used at a different stage in the
authentication process and used for different purposes outlined
below.

Login Token
This token is acquired from Azure Active Directory and is
given to the server once the user has authenticated. This would
be the token used if Azure Impersonation was turned on and
used to get the access token.

Access Token
This token is created after the login token when the user tries
to authenticate with Volpara Health’s Analytics Dashboard to
prevent XSS (Cross-Site Scripting). This token also expires
after 2 minutes or when the user logs into Analytics making
it a one-use token.

Dashboard Token
The dashboard token gets generated after the access token has
been received and validated and is used as the session token
within the dashboard to track, log and give the user access to
what they have permission to use. with no effort at all.

C. Tools and languages

Volpara Health wants to build a representation of the
platform to allow the testing of functionally and training of
how to use the tool. That’s why I chose Ionic/Angular with
Typescript for the front end since it’s the framework and
language I am the most comfortable with and would allow
me to write the front end easier since I wouldn’t need to
learn something new. Also, it has native browser support and
looks very professional and easy. Also, the front-end code is
independent of the backend code this allows me to replace the
entire front end and migrate to Blazor without much trouble
since Blazor is based upon HTML. This allows me to reuse
the HTML code and has an inbuilt JavaScript support allowing
the reuse of the JavaScript code.

NET (C#) was chosen for the backend API because that’s
what Volpara uses for its backend so it would make integration
with their servers a breeze in the future.

For testing, we can use the Stopwatch class in .Net(C#) or
the JavaScript function Performance.Now to time how long
it takes for an API to return the result this can be done for
the website as well to see how long it takes for it to get the
result back from the API and for it to display it to the user.
The lower these numbers are the better the performance the
usability of the solution becomes.

III. DESIGN AND IMPLEMENTATION
A. Conceptual Design

The solution should be separated into two parts a frontend
and a backend this is because it allows the best security since
everything is filtered through the backend and the frontend
would not need to handle authentication or data manipulation.
The front end should only be used to show information to the
user and redirect them to the Volpara Analytics Dashboard or
to the Active Directory login page.

As seen in Figure 1 the front end mainly interfaces with the
backend and is only exposed to those API endpoints this is to



ENGR 489 USER IMPERSONATION 2023

make sure only authenticated users can access the information
from the backend and to limit the information returned. For
example, there is a case where there are usernames and emails
of the users stored but the support team member is not required
to know the emails since it’s not required to know to do
the impersonation. This allows the filtering of the result to
return only the usernames limiting the access following the
rule of least privilege. As well the frontend never interacts
with the Volpara backend API directly to prevent bypassing
of the backend authentication and logging. The front end only
interacts with Volpara Analytics when it has the user token
and the required information from the backend to finish the

impersonation.
Azure Active Directory

Backend

Front End

A A

A
h 4

h 4 h 4

Volpara Analytics Volpara backend API

Figure 1: Conceptual Design

The backend is the bridge for the frontend to access the
azure active directory to login and authenticate a new user
and to get the list of companies and users for the frontend
to select which user they want to impersonate. While doing
all of this it also protects itself from unauthorized access
by having the requirement of all endpoints requiring active
directory permissions per user. Also logging all interactions
internally so later on it can be seen what users impersonated
other users and when.

B. Sustainability Considerations

Sustainability considerations I took into account were social,
environmental and technical. Since privacy and security are
key for this tool, since it has access to sensitive information
and can give a user the power to impersonate another user. This
could be used for malicious purposes if in the wrong hands. I
also considered environmental factors making sure my solution
is as efficient as possible to reduce wasted computing and
power. Then the technical aspect is making sure the solution
is maintainable into the foreseeable future by using common
software design patterns and comments in the code to inform
future developers of the function of methods and classes.

In implementation
I programmed the backend API using C# because Volpara
is a Microsoft-sponsored company meaning they only use
Microsoft products this makes sure that the backend is main-
tainable for the foreseeable future. This is combined with using
the latest Dot Net framework (7) to ensure the solution has

the maximum amount of software updates and patches into
the foreseeable future.

Privacy
The solution is privacy and security-focused and implements
Cyber Security ideas like least privilege and accountability this
means in the implementation I give the user the least amount
of information as possible and limit their access to any other
sources. This refers to making the frontend only interact with
my backend solution and only at the end Volpara Analytics
dashboard.

My solution also logs all events triggered by the front end
calling the API. These logs are in depth with recording IP
addresses, usernames, timestamps... etc. To ensure the tool is
used by authorized personnel only and to record who does the
impersonating and of what user. My solution requires that the
user be authenticated with Azure Active Directory to interact
with the API in any fashion to prevent any unauthorized data
leaking.

C. Implementation

Requires Authentication and is monitored

Front-End Back-End API

Redirect to Azure AD

for authentication

Request to /login

Redirected to
impersonation
screen

Creates cookie with

auth token

Volpara Backend
APl

:

Request list of
companies

Request list of
companies

companies

Return list of ’

H

User selects
company the user is
in

Get users in
company

Return users inside
a company

H

User selects
company and user to
impersonate

Processes
impersonation
packet

:

Sends
impersonation
packet

Forward relevent |
information to Secun
Token Semvice

Create valid
l authorization token

'Send token and other|
information

[ Redirect browser to ‘
logged in client
analytics dashboard

Figure 2: Application Flow Diagram

I originally stuck with the Typescript and angular framework
for the front end so I could get to MVP relatively quickly, with
the back end being written in C# to make authentication and
integration with all azure services and functions as painless as
possible.



ENGR 489 USER IMPERSONATION 2023

D. Flow of the solution implemented

As seen in the flow diagram figure 2 the information only
travels between the front end and back end of my system and
no other external parties this is to reduce points of failure and
reduce the risk of exposing private or confidential endpoints to
the front end that could be abused and cause privacy failures.
The back end only returns enough information for the user
to make an informed choice on who to impersonate IE only
gives the usernames and not the emails of the clients.

E. Problems with SPA’s

The first attempt was to implement a SPA (Single Page
Application), theoretically, my use case would benefit from
this because it would have made the authentication process
a lot easier since there are templates for both Angular and
Blazor that have the Azure authentication code built in. But
with this convenience comes privacy and security concerns
as well as it didn’t function at all in both cases. This could
have been because of the lack of SSL (Secure Sockets Layer)
encryption along with no HTTPS support, since I don’t have
a valid certificate and self-signed certificates don’t bypass this
restriction. By not having this certificate it would cause lots
of CORS (Cross-origin resource sharing) errors since it would
need to reach out to Azure to authenticate the user anyways.
Also, SPA’s adds extra complexity to the front end since
there would be extra “boilerplate” code for the authentication
process that wouldn’t be transferable between frameworks
since it has to be specifically written for the framework that
is used.

F. Backend For Frontend (BFF)

Next, I got recommended to use BFF[3] from Rob one of
Volpara’s developers since it would get rid of the need to have
a SPA and would be more secure. This is because it’s a reverse
proxy basically you get redirected with OpenIDConnect to the
Azure login once authenticated you would be given an “auth
cookie” that can be used to interface with the back-end APT’s
protected endpoints. By doing it this way it allows us finer
control of the data getting sent to the front end and gives us
the ability to monitor all outgoing traffic so we can make sure
the people interacting with the API are authenticated and if so
who they are? and what did they do?. Another benefit is all the
authentication happens on the back end meaning a lighter and
interchangeable front end that means in the future the front
end could be replaced relatively easily with no change needed
in the back end.

The advantages of BFF over SPA’s are that it separates
the responsibilities since the front end can focus on only
displaying the information and getting user input while the
back end does all the getting, filtering and computing of
the data resulting in a major performance increase for the
front end since it doesn’t have to do any of this. As well
it allows security and authorization to happen in the back end
for example the user logs in through the login endpoint and
gets returned an authentication cookie without the need for the
front end to do anything apart from redirecting to the endpoint.

This approach also allows us to ensure all data is only getting
sent and received by the back end without the need for the
front end to go to multiple places and exposing extra endpoints
that are not necessary since the back end can make requests
to these places and combine the data and send it back to the
front end with only one request. This comes with the added
benefit of fewer network requests from the front end since
these network requests can be combined in the back end.

G. Why the change to Blazor?

Since day one sustainability and maintainability of the
solution have been a priority that’s why Blazor seems like
the obvious choice since Volpara is transitioning to Blazor in
the future it seems like the best choice for this solution to be
in Blazor so in the future if it needs to be updated or changed
they wouldn’t need to learn anything new meaning this process
can be easily done by anyone. Combined with the MVP being
finished in typescript and Volpara being pleased with the user
interface and design as well as Blazor being mostly in HTML
and JavaScript made it easy to port the code over and gain the
same functionally relatively quickly with the added support
for future features. This in combination with BFF meaning I
wouldn’t have to redo all the authentication made it an easy
choice to do the rewrite in Blazor.

1V. EVALUATION
A. Testing Methodology

These tests are done in “runs” This means the tests are run
one after the other on a local machine since the solution is
not hosted on the cloud as of yet. This is so we can see the
effect of multiple runs on the API and website this could also
be done to simulate multiple users using the same website and
how their expected response times are going to be. This will
show how each run affects the next run with tendencies to
have better performance and a lower average response time as
the runs go on.

(All results are in Milliseconds)

B. Website Performance

RESPONSE TIME OF
IMPERSONATION

800
400

200

Runl Run2 Run3 Run4 Run5 Run? Run8 Run9 Runld

Figure 3: Impersonation page loading times



ENGR 489 USER IMPERSONATION 2023

Figure 3 shows the time it takes for the impersonation page
to load as you can see the times are pretty consistent with each
other with run 1 being the outlier. This is because the tenants
are not cached at this point so there has to be a database lookup
to get all the tenants (companies) resulting in a slightly longer
load time on the first load.

RESPONSE AFTER
SELECTING A COMPANY

25,000
20,000
15,000
10,000

5,000

0

Runl Run2 Run3 Run4 Run5 Run? Run8 Run® Runld

Figure 4: Response time to load a selected company

Figure 4 shows the time it takes after selecting a company
for it to load all the users in that company. As seen in the
graph the first time selecting a new company can take as long
as 22 seconds to load this is due to a database call and a call to
the key vault to get the user’s email and username. But after
the first call has been made the rest would only take about
200ms since the result is cached for 20 minutes.

C. API Performance

GET USER

30
20

10

Runl Run2 Run3 Run4 Runb5 Run& Run?7 Run8 Run9 Runld

Figure 5: Get user response time

Figure 5 shows the get user endpoint that is used to get
the currently logged-in users’ (first and last) names to check
if they are authenticated and to show who is using the tool.
As seen in the graph this process takes less than 20ms most
of the time since it’s a simple query but the variation in the
data is most likely caused by the lack of processing power
of the computer since running the whole solution is CPU and
memory-intensive.

GET TENANTS

80
80

40

0
Runl Run2 Run3 Run4 Run5 Runé Run? Run8 RunS Runld

Figure 6: Get tenant response time

Figure 6 shows the get tenant endpoint that is used to get
all the companies that the user could impersonate. The graph
looks pretty consistent at around 20-40ms with the outlier
being run 10 because I suspect it was performing the database
query again since at the point of testing 20 minutes or so had
passed.

GET IMPERSONATION

20,000
15,000
10,000

5,000

0
Runl Run2 Run3 Run4 Run5 Run$ Run? Run8 Run?® Runld

Figure 7: Get impersonation response time

Figure 7 shows the get impersonation endpoint that is used
to get the users of a company/tenant. The graph shows that the
first run can take 18 seconds to complete since this is the call
to key vault that is a lengthily query this is also the reason why
the page can take a while to load when selecting a company.
But after the result is cached the response time goes down to
around 200-500ms.

GET IMPERSONATION
WITHOUT CACHING

25,000

20,000

15,000

10,000

5,000

8]

Runl Run2 Run3 Run4 Runb Run6 Run7 Run8 Run® Runl0

Figure 8: Get impersonation without cache response time



ENGR 489 USER IMPERSONATION 2023

Figure 8 shows the initial first run of the get impersonation
endpoint done multiple times to show the worst-case scenario
of how long a user would have to wait if the tenant/company
wasn’t cached. As the graph shows this could take 15-20
seconds showing the importance of caching this is why on
the front end the result is cached so if a user selects the same
company it would only take a couple of ms to get the result
also there is some caching in the back end but this cache is
cleared every 20 minutes.

POST IMPERSONATION

600
400
200

Q
Runl Run2 Run3 Run4 Runb Runé Run? Run8 Run9 Runld

Figure 9: Get impersonation post response time

Figure 9 shows the post-impersonation endpoint that is
used to create the user token for logging into the Volpara
Analytics Dashboard. This post request is very inconsistent
since it involves an internal server lookup for the email
of the user and forwarding of requests to get the required
information to return to the front end.

Overall I found that there was about a 50ms delay between
the request coming back from the backend and it being
displayed to the user. I assume with a dedicated server with
better hardware these times would be significantly less and
would result in a faster user experience. But as it stands right
now it’s completely usable after the initial query when the
results of those queries are cached if they are not it would
result in a slower user experience but wouldn’t diminish too
much from the user experience.

D. Future enhancements

The future enhancements are ways the solution could be
improved if there was more time in the project and optional
features that would provide extra functionality or security.

o Caching for the tenants and users in the back end with
respect to support team members permissions.

« A way for updating the cache in the back end at regular
intervals or when needed.

o Hash comparisons for the incoming impersonation packet
to make sure it hasn’t been tamped with in transit.

o Encryption of traffic between the front end and back end
with a encryption scheme like AES 256 bit.

o Integration with Volpara logging so that we could get
notified if an impersonation has happened and have all
the logs in a central system instead of being local.

o IP address range restrictions to prevent IP addresses
outside of Volpara from being able to use the API or
visit the front end web page.

o Time restrictions like limiting the access of the imper-
sonation tool to only office hours IE 9-5.

e Could limit the impersonation time to like 10 minutes
then log the user out to prevent people from leaving their
computers logged in as another user.

e HTTPS certificates to mitigate CORS errors and encrypt
traffic while in transit.

o To host the solution on the cloud or on Volpara servers
to make it accessible to all support staff members.

« If its deployed it should have a CI CD system to push
new changes automatically to the cloud in production.

V. CONCLUSION

As part of this project, a working solution was developed
for user impersonation employing Blazor and .NET to meet
the requirements of the end-user. Volpara liked the simplicity
of the solution and the functionality it brings since they can
now impersonate a user at the lowest levels in the analytics
dashboard and see exactly what that user would see without
the need for emulation.

VI. REFERENCES

[1] Divkamath, “Impersonate another user (microsoft
dataverse) - power apps,” (Microsoft Dataverse) - Power
Apps — Microsoft Learn, https://learn.microsoft.com/en-
us/power-apps/developer/data-platform/impersonate-another-
user (accessed Jun. 1, 2023).

[2] Nolan Ramsey, “Designing an
impersonate feature,” Nolan Ramsey,
https://www.nolanramsey.com/theradreport/2019/8/4/designing-
an-impersonate-feature (accessed Jun. 2, 2023).

[3] Raw Coding, “Backend for Frontend for
ASPNET Core Authentication,” YouTube. May 28,
2023. Accessed: Oct. 15, 2023. [Online]. Available:

https://www.youtube.com/watch?v=VWTdOAi6Yic



