
ENGR 489 (ENGINEERING PROJECT) 2023 1

Front-End for a Semi-Automated Grading Tool
Harper Doak

Abstract—Motivated by the shift towards online teaching,
an application which semi-automates the grading of long-form
questions would not only save time but could be more accurate.
The education sector frequently grapples with the challenge
of efficiently grading a large volume of student submissions.
Addressing this challenge, this project aims to develop the front-
end interface of a semi-automated grading tool that promises to
streamline the grading process, thereby enhancing efficiency and
reducing potential biases. The foundation of this tool’s evaluation
mechanism is built upon the utilization of four distinct distance
metrics, each meticulously selected to calculate the disparity
between student submissions. Questions and submissions can
be imported directly into the application, and once the grading
has been completed, they can be downloaded and exported. To
cater to a dynamic and interactive user experience, the project
leverages the capabilities of Next.js, a robust React framework
known for its performance and scalability. This framework was
selected not only for its rich set of features but also for its
server-rendering capabilities, which will facilitate the real-time
processing of data, critical for instantaneous feedback during the
grading process. This application provides an education tool that
can be used by lecturers to help better utilise their time, spending
less time marking and more time teaching.

Index Terms—Article submission, IEEE, IEEEtran, journal,
LATEX, paper, template, typesetting.

I. INTRODUCTION

In the world of education, lecturers, tutors, and other
academic professionals spend countless hours marking and
grading exams and tests, especially those involving long-
format questions. Marking the same questions over and over
can be a very tedious task.

In the computer science field, exams usually consist of short
written questions e.g. ” Explain this...”. For these questions
there are usually one or two answers or ways to approach
the question, resulting in many students having very similar
answers. This leaves the door open for an automation tool
that removes the monotonous task of marking the same answer
repeatably. Automation of grading is relatively straight forward
when it comes to multiple-choice questions, however, for long-
format written questions automation is a lot more challenging.

The semi-automated grading application (SAGA) utilises
distance metrics to group similar submissions together, thus
allowing the marker to give the same score and feedback for
all submissions which are similar (based on the distance metric
selected).

This SAGA will empower markers by placing control at
their fingertips. Through a dynamic slider bar, markers can
fine-tune the chosen distance metric, allowing for precise
customization of the grading process. The aim of this project
is to develop the front-end of this application utilising Next.js,
pairing this with Firebase. The result of this project will be

This project was supervised by Arman Khouzani (Primary).

a web application which offers a good user experience, semi-
automation marking of long-format answers, and supplies an
education tool which lecturers and teachers can use to better
manage their responsibilities. Following the completion of this
project, the SAGA will help in making markers across all types
of disciplines better utilise their time [1], spending less time
marking and more time teaching.

A. Problem Statement

The education landscape underwent a seismic shift during
the COVID-19 pandemic, accelerating the transition to remote
learning [2]. As a consequence, a growing number of exam-
inations and tests have migrated from traditional in-person
formats to online settings. However, this transformation has
not been accompanied by a evolution in the way these online
assessments are marked, particularly in fields like engineering,
and computer science.

In these technical disciplines, assessments often consist
of questions with well-defined answers, a characteristic that
distinguishes them from many other academic fields where
questions are inherently open-ended.

While the move to online assessments offers many ad-
vantages, it has also exacerbated a long-standing challenge:
the repetitive and time-consuming nature of manual grading.
Markers in engineering and computer science frequently find
themselves reevaluating identical or nearly identical submis-
sions repeatedly. This iterative grading process presents several
significant challenges:

• Tedious and Repetitive Work: Markers face the arduous
task of reviewing and grading a large volume of sub-
missions, each requiring the same set of criteria to be
applied repeatedly. The repetitive nature of this work can
be mentally taxing and monotonous.

• Risk of Error: As markers sift through countless re-
sponses with uniform solutions, it is easy to succumb to
lapses in concentration, leading to human errors in grad-
ing. These errors can have far-reaching consequences,
affecting the fairness and accuracy of assessments.

• Lost of Engagement: The sheer volume of similar sub-
missions can lead to marker fatigue, causing a decline in
attentiveness and engagement. This reduced focus further
compounds the risk of grading inaccuracies.

• Time-Intensive: The traditional manual grading process is
time-intensive, consuming valuable resources that could
be redirected to more impactful educational activities,
such as providing timely feedback to students, or design-
ing innovative instructional materials.

• Quality Assurance: Ensuring consistency and fairness in
grading across the multitude of submissions is a persistent
challenge. Variability in human judgment can lead to



ENGR 489 (ENGINEERING PROJECT) 2023 2

discrepancies in grading, undermining the credibility of
the assessment process.

This grading application seeks to tackle these issues head-
on by introducing automation, efficiency, and accuracy into
the grading process, providing educators in engineering and
computer science with a more effective means of evaluating
student work.

B. Solution and Deliverables

The main solution for this problem is an application which
semi-automates the grading of long-format questions. This will
result in a tool which increases the efficiency of marking
and produces potentially higher accuracy and consistency
compared to marking in person.

It will also make the process of marking more engaging
with things like visual feedback on the progress status, easier
searching capabilities, seamless registration of the marks and
feedback, and easy exporting. This application sets out to
remove the tedious tasks involved with marking, as much as
possible. It also provides an interface which facilitates better
management of submissions, as well as ensuring that students
receive their grades in a timely manner.

Some of the basic functionalities and deliverables of the
application are listed below:

• Authentication and authorization, sign up functionalities,
or login with Google.

• An admin interface, where admin users can control the
users and questions on the application.

• An interface for importing the submission and exporting
the results.

• An application designed with user experience in mind.
• Automating the opening of each submission, and the

organisation of the presentation of the answers to each
question.

• Showing progress status per question.
• Storing the feedback and score for the corresponding

submission.

The next steps include adding features to group similar sub-
missions, enabling the marker to assign the same score and
feedback to all submissions thus bypassing the generic mark-
ing process and saving time. This feature is implemented by
comparing the texts based on four different distance metrics.
The features below represent this next step in the application:

• A distance metric selection tab, where the user can switch
between the applied distance metric.

• A slider bar adjusts the aggressiveness of the selected
distance metric, thus allowing a grader to see the effect
dynamically.

C. Distance Metrics

The four different distance metrics used for this application
are Levenshtein, Bert+Cosine, TfIdf+Cosine, and Jaccard.
Each one offers a slightly different way of sorting the sub-
missions which have been uploaded to the database.

1) Levenshtein: Levenshtein distance, also known as Edit
Distance, is a metric that measures the difference between
two texts based on the minimum number of character edits
required to transform one text into another [3]. Character edits
include operations like additions, deletions, and substitutions
of numbers.

For example, if we have two words, ”kitten” and ”sitting”,
the Levenshtein distance between them is 3 because you would
need to perform three character edits (substitute ’k’ with ’s’,
insert ’i,’ and insert ’g’) to transform ”kitten” into ”sitting”.
This metric quantifies the level of similarity and dissimilarity
between two texts in terms of how different they are at the
character level.

2) BERT+Cosine: Bert+Cosine utilises the powerful BERT
(Bidirectional Encoder Representations from Transformers)
model, which is a state-of-the-art natural language processing
(NLP) model, combined with the cosine similarity metric to
determine text similarity [4]. BERT is a deep learning model
that is pre-trained on a massive amount of text data. It can
understand context and relationships between words in a text,
making it highly effective for various NPL tasks, including
similarity analysis. BERT+Cosine leverages BERT’s contex-
tual understanding of language to create vector representations
of text data and then applies cosine similarity to measure the
similarity between these vectors. It is a powerful approach for
assessing text similarity that considers semantic meaning and
context.

3) TfIdf+Cosine: TfIdf+Cosine employs Term Frequency-
Inverse Document Frequency (TfIdf) analysis and the cosine
similarity metric to evaluate the similarity between texts [5].
TF-IDF quantifies the significance of terms within a document
relative to a larger corpus, considering both term frequency and
rarity. Cosine similarity measures the similarity between text
vectors, calculated from their TF-IDF representations. Higher
cosine similarity scores indicate greater textual similarity,
while lower scores indicate dissimilarity. This approach is
widely used in text analysis and document clustering, enabling
the assessment text similarity while accounting for the impor-
tance of terms within documents and across a corpus.

4) Jaccard: Jaccard is a metric that evaluates text similarity
based on the size of the intersection of terms in two texts
divided by the size of the union of those terms [6]. This is
clearly shown in the figure below. In other words, it quantifies
how many terms two texts have in common relative to the total
number of unique terms in both texts. Jaccard is a simple but
effective metric for measuring text similarity, especially when
you want to focus on the presence or absence of terms in texts.

Fig. 1. The Jaccard Formula



ENGR 489 (ENGINEERING PROJECT) 2023 3

II. RELATED WORK

Before, undergoing the development of this application I
conducted research into preexisting solutions and applications
which are available. With the growth in the popularity of AI
over the last few years, there has been an increase in the
number of AI applications and tools used in the education
sector. This section identifies the advantages and disadvantages
of some of the existing similar tools and academic studies.

1) Gradescope: Gradescope is an online platform that
offers a comprehensive set of tools for grading exams and
assignments efficiently [7]. It combines the benefits of AI-
based grading with instructor control and flexibility.

One main feature of Gradescope is the exam and assignment
setup process. This allows lecturers and teachers to create and
set up their own exams with various question types. They can
define the point values, add rubrics, and specify any specific
grading criteria needed. This platform also employs AI-based
grading to assist with grading. It uses machine learning tech-
niques to automatically match student answers with correct
responses and assign scores accordingly; It can also identify
patterns or any common mistakes. Another advantage of
Gradescope is its feedback generation feature, which generates
detailed student feedback based on the rubrics and grading
criteria. The students can then access their graded work,
view the feedback, gaining insight into their performance.
Finally, one major advantage of this platform is its built-in
integration with learning management systems like Blackboard
and Canvas. This enables easy syncing of course rosters, grade
transfers, and single sign-on for students and instructors.

This platform has a few disadvantages compared to other
grading applications. One of those is subjectivity in grading.
Gradescope provides exam and assignment software for all
subjects and topics. This, therefore, results in AI grading
not always being accurate, as it can’t calculate the grade
of assignments or exams which have subjective analysis.
Also, assignments that involve creativity, critical thinking, or
subjective interpretation may not be effectively assessed solely
through AI algorithms, resulting in human graders having
to step in. Another disadvantage is its limited applicability.
The platform states that it can handle any subject, exam,
or assignment. However, assignments which require physical
or hands-on components, such as labs, or presentations will
struggle to utilise this platform to the fullest.

Overall, Gradescope aims to streamline the grading process,
save time for lecturers, provide consistent feedback, and
enhance the overall grading experience. It combines AI-based
grading with human control and flexibility to cater for a variety
of exam and assignment types.

2) Grademark: Grademark is an online tool which is
correlated with the popular plagiarism detector Turnitin [8].
It can facilitate paperless grading and provides feedback on
student assignments. This tool doesn’t utilise AI, however, it
has features which are designed to make grading very efficient.

The platform enables assignment submission utilising Tur-
nitin’s plagiarism detection system, allowing lecturers to ac-
cess and review the submissions online.

Grademark’s interface provides a user-friendly environment
for grading, annotating, and providing feedback directly on

digital documents. Lecturers can highlight text, add comments,
insert audio or video feedback, and assign grades.

This platform allows lecturers to create and use rubrics
to evaluate assignments. These rubrics can be customized
with specific criteria and point values, enabling consistent
and transparent grading; like some of the other platforms
I have described. Lecturers can then apply the rubrics to
assess various aspects of the assignment and assign grades
accordingly. Grademark utilises QuickMarks library which are
pre-loaded comments and feedback templates. Lecturers can
access a range of commonly used comments and easily apply
them to assignments, saving time, and ensuring consistent
feedback.

Finally, Grademark offers data and analytics on student
performance and assignment outcomes. Lecturers can access
reports that provide insights into class-wide performance,
identify trends, and compare student progress over time.

While there are a lot of advantages to this system, there
are quite a few disadvantages. First, is the reliance on text-
based assignments and the system being designed for essays,
reports, and research papers. This makes the tool more niche
compared to other platforms which can facilitate both assign-
ments and exams. Also, the tool has the potential for reliance
on automated feedback by utilising the QuickMarks library
of pre-loaded comments and templates. This is where other
systems have an edge as their feedback and comments are
written using AI algorithms and machine learning techniques.
By using QuickMarks, it means that students might not receive
feedback which is meaningful and doesn’t provide insight into
where they can improve.

Overall, GradeMark enhances the grading and feedback
process by providing lecturers with a range of tools to evaluate
student assignments digitally. It enables efficient grading and
ensures that lecturers can better manage their time.

3) Automatic short answer grading study using text mining
methods: A study in the UK by Neslihan Suzen focused on
automation of the grading process utilising similar methods to
what is proposed for this project [9]. Data mining techniques
were used to measure the similarity of students’ answers to the
model answer. The submissions were then clustered together
based on the level of similarity acquired and each cluster was
then given the same grade as well as providing useful feedback
to the answers. Their aim for the research was to design a
model of automatic short answer marking and feedback. They
conducted an analysis of how precise the text mining methods
they used were when marking submissions. They concluded
that the number of correctly used words in submission has
more influence on marks than the particular order of the words.
Their model to predict marks for submissions compared the
distance between the model answer and the student’s sub-
mission, clustering similar submissions together, and giving
similar grades to submissions in the same cluster. Overall,
their tool and model was developed to have more of a focus
on assisting human marking, not fully replacing it with an
automated system, similar to our project. This paper provided
insight into a very similar project the SAGA, however, they
focused on developing a model rather than an application.



ENGR 489 (ENGINEERING PROJECT) 2023 4

Fig. 2. The above figure shows the comparisons of the other related tools
and the application which I have built for this project.

III. REQUIREMENTS OF THE SYSTEM

This section gives an overview of the requirements of the
system. These requirements serve as a basis for designing,
developing, and evaluating the application.

1) Clustering and Pruning: A pivotal functional require-
ment of this application involves the application of the four
distance metrics in order to group submissions together. These
submissions are grouped based on the distance values which
is given to each submission based on its text. The grader
is granted the capability to finely adjust how the values are
interpreted, thus influencing the returned submissions. By in-
corporating this functionality, the application empowers semi-
automation of the marking and grading processes, enhancing
efficiency and precision.

2) User Authentication and Authorisation: User authenti-
cation and authorization represent essential functional require-
ments for this application, guaranteeing that users gain appro-
priate permissions upon login [10]. This is critical to enable
graders to access pending submissions for grading. Robust
access controls must be integrated into the system to enforce
user privileges, limiting access to resources, data, and features
according to their assigned roles. The system should offer
user registration, implementing checks for data uniqueness to
maintain data integrity. Furthermore, users should have the
capability to reset their passwords in the event of forgetfulness,
thus ensuring a seamless user experience. User roles, with
distinct access rights, should be clearly defined to manage
user permissions effectively. This comprehensive approach to
user management enhances security and ensures a tailored user
experience.

3) Searching and Filtering: Searching and filtering are
important for the usability of this application, enabling the
user to be able to search and filter through the submissions
which they have to mark in any way they see fit. There will be
functionality to filter the submissions by student id or question
number, as well as the ability to search the id number to find
submissions if grades need to be changed or the marker wants
to review submissions.

4) Data Import and Export: Data import and export is
another functional requirement which is key for the usability
of this application. The system should be able to support

importing data from various file formats including PDF and
JSON. The user of the application should be able to specify
the source of the imported data, whilst the system validates
the data to ensure that it meets the required format. Once the
data has been imported the system should have the capability
to store it in the database.

5) Capacity: Ensuring that the system has the capacity to
operate with high performance is crucial for an application
of this sort. The system should be optimised to deliver
fast response times and minimise latency. This will include
optimising the clustering algorithm as well as the database
queries for importing and exporting submissions. Performance
testing the system with multiple graders actively working on
the application will identify the system’s maximum capacity
and stress limits.

6) Usability: The system should have an intuitive user
interface that is easy to navigate and understand. It should
employ consistent design patterns, clear labelling, and logi-
cal organisation of information to enhance user experience.
The system should also be responsive and adapt to different
screen sizes and devices. It should ensure optimal display
and usability on desktop computers and tablets. The system
should provide meaningful error messages and feedback to
users when they encounter errors or perform invalid actions.

IV. DESIGN

Design choices are of paramount importance in any project
because they serve as the foundational blueprint upon which
the entire endeavour is built. Effective design choices ensure
that a project not only meets its technical requirements but also
aligns seamlessly with its intended purpose and objectives.
They determine the project’s scalability, maintainability, se-
curity, and overall success. Moreover, well-considered design
choices promote efficiency in development, reduce the risk of
errors, and save valuable time and resources by preventing
the need for major revisions down the road. In essence, the
design choices made ensure that this project keeps on course,
enabling to not only function but thrive in its intended context.

A. System Architecture

Before commencing the implementation of the application,
the system architecture of the application was meticulously
designed to prioritise scalability, maintainability, security, and
performance, while ensuring compliance with the requirements
specifications which were discussed in the preliminary report
of this project.

The architecture of this application is grounded in the client-
server model, a widely recognised and efficient approach in
web development [11]. In this model, Next.js assumes the role
of the client, directly interfacing with the server, which, for
this application, is facilitated by Firebase. Below I will break
down both parts of this model:

1) Client: The client constitutes the user-facing part of this
web application, residing and operating directly on the user’s
device. This component plays a pivotal role in delivering the
user interface (UI) and facilitating user interactions. The key
components of this model are:



ENGR 489 (ENGINEERING PROJECT) 2023 5

• User Interface (UI): The client is responsible for ren-
dering the UI, ensuring that it is visually appealing,
responsive, and intuitive for users. It encompasses the
design, layout, and presentation of all elements that users
interact with.

• User Interactions: Beyond the visual aspect, the client
also manages user interactions. It responds to user inputs,
such as clicks, keyboard inputs, and gestures, ensuring
that actions trigger appropriate responses within the ap-
plication.

• Performance Optimisation: Performance is a paramount
concern. The client optimizes resource utilisation to de-
liver swift response times and a seamless user experience,
even under varying network conditions and device capa-
bilities.

• Client-Side Validation: Certain validations and operations
are performed on the client-side to enhance user experi-
ence and reduce the load on the server. However, critical
validation and business logic are enforced server-side for
security and consistency.

2) Server: The server is the backend component of the
web application responsible for handling various tasks, such
as processing requests from clients, managing data, and per-
forming business logic. In this architecture, Firebase is used as
the backend service to provide server-side functionality. Key
aspects of the server component are:

• Request Processing: The server processes incoming re-
quests from clients, translating them into meaningful ac-
tions. It handles various client requests, such as retrieving
data, saving changes, or executing specific operations.

• Data Management: The server manages data storage,
retrieval, and manipulation. In this architecture, Firebase
serves as the backend service, offering robust capabilities
for real-time data management.

• Business Logic: The server executes critical business
logic, ensuring that application functionality aligns with
defined requirements. It performs operations like calcu-
lating grades, generating reports, and enforcing security
policies.

By adopting this client-server architecture, the SAGA capi-
talizes on the strengths of each component, delivering a user-
friendly, secure, and high-performance experience. Firebase’s
robust backend capabilities complement Next.js on the client
side, providing a robust and reliable foundation for the grading
application.

B. User Interface

The design of the user interface (UI) was an important
aspect of this project. The UI plays a pivotal role in shaping
the overall experience of the grading application. It is the
bridge between the apps features and the users who use them
such as lecturers, administrators, and markers. This subsection,
looks into the crucial significance of UI design, emphasising
its profound impact on user satisfaction, efficiency, and the
success of the platform.

At the heart of the grading application’s user interface (UI)
design philosophy lies the concept of User-Centered Design

(UCD). UCD is a fundamental approach that places the needs,
preferences, and expectations of the users at the forefront of
the design process [12].

UCD begins with gaining an understanding of the user base
and understanding their workflows and goals. There are some
important design goals which are relevant for an application
of this sort:

1) Intuitive Navigation: One of the key principles of UCD
is the creation of an intuitive and user-friendly navigation
system. One of the aims of this application is to minimize the
learning curve, ensuring that users can effortlessly find the
features they need. Information architecture is meticulously
planned to match the mental model of our users, making the
application’s structure feel natural and logical. Below are some
important aspects of having an Intuitive Navigation:

• Logical Structure: The application’s structure is designed
to feel natural and logical to users, organising content and
features in a way that mirrors how educators, administra-
tors, and markers think and work.

• Well-organised Navigation Bar: At the core of the nav-
igation system is a well-organised navigation bar. This
element serves as a central hub for accessing various
functions. It is designed to categorise functions logically,
ensuring that users can quickly locate the tools they
require.

• Clear Labels: Clear and descriptive labels accompany
each navigation item. Clarity in labelling is crucial for
users to understand the purpose of each feature without
ambiguity.

• Efficient Task Flow: The navigation flow optimises com-
mon tasks. Users can seamlessly move between related
functions, reducing the need to backtrack or navigate
through unnecessary steps. This is especially important
for an application of this nature, as the design of the task
flow has huge impact on the time it will take for marking
submissions.

2) Modern Theme: A modern theme incorporates contem-
porary design principles, such as clean and minimalistic aes-
thetics, the use of white space, and a visually appealing color
palette. Ensuring that this application has a modern theme
helps in making the application appear fresh and appealing
to users.

By having a well-designed UI it can enhance usability and
efficiency in the grading process

Fig. 3. The landing page of the web application (the first page that users see
on the application)



ENGR 489 (ENGINEERING PROJECT) 2023 6

V. IMPLEMENTATION

This section shows the transition from design theory to prac-
tical realisation. It serves as a comprehensive account of the
actual development and construction of the Grading Assistant
system, detailing its technologies, tools, and methodologies
employed to transform the design into a functional artifact.
The following section will shed light on how the vision of this
project was transformed into a tangible reality while adhering
to the project’s defined requirements and constraints.

A. Technologies and Tools

1) Next.js: The frontend of the Grading Assistant web
application was developed using Next.js, a popular React
framework for its server-side rendering (SSR) capabilities and
excellent developer experience [13]. Next.js provided several
advantages in realising the project goals:

• Server-Side rendering (SSR): I leveraged Next.js to im-
plement SSR, which enhances page load performance
and SEO optimisation, rendering pages on the server and
delivering pre-rendered content to users.

• React Component Structure: Next.js’s integration with
React allowed the creation of a modular and component-
based front-end architecture, ensuring code reusability
and maintainability.

• Routing: The built-in routing system in Next.js simplified
navigation between different parts of the application,
enhancing user experience.

• Development Environment: Next.js offers hot module
replacement and a development server, streamlining the
development process and facilitating rapid prototyping.

2) Tailwind CSS: The Grading Assistant web application’s
front-end was styled and designed using Tailwind CSS, a
utility-first CSS framework known for its streamlined devel-
opment process and highly customisable styling capabilities
[14]. Tailwind CSS brought several benefits to the project:

• Utility-First Approach: Tailwind CSS’s utility-first ap-
proach offers a unique and highly efficient way to style el-
ements. It provides a comprehensive set of utility classes
that can be applied directly to HTML elements, making
styling and design quick and accessible. This approach
eliminates the need for writing custom CSS for most
styling tasks, saving time and reducing the size of the
stylesheet.

• Customisation: Tailwind CSS is exceptionally flexible,
allowing for easy customisation to match the specific
design and branding requirements of the application. You
can create and define custom themes and utility classes,
giving you full control over the visual appearance of the
application.

• Community and Ecosystem: Tailwind CSS boasts a thriv-
ing community and ecosystem with numerous plugins and
extensions. This community support provides access to
additional functionality and design elements that can be
seamlessly integrated into the project.

• Responsive Design: Tailwind CSS includes built-in re-
sponsive design classes, simplifying the creation of re-

sponsive layouts. Enabling adaption of the UI to different
screen sizes and devices.

3) Firestore: For the backend and data storage of the
Grading Assistant application, I employed Firestore, Google’s
NoSQL cloud database [15]. Firestore was chosen for its scal-
ability, real-time data synchronisation, and ease of integration.

• NoSQL Database: Firestore’s NoSQL data model pro-
vided flexibility in handling unstructured data, which
is well-suited for managing student submissions and
grading data.

• Real-time Updates: Firestore’s real-time data synchro-
nisation capabilities allowed graders to receive instant
updates when new submissions were made or grading
adjustments were applied, enhancing collaboration and
efficiency.

• Scalability: Firestore seamlessly scales with the growth
of data and user activity, ensuring that the application
remains responsive even during peak usage periods.

• Authentication Integration: Firestore integrates seam-
lessly with Firebase Authentication, providing user au-
thentication and authorization features, aligning with our
functional requirements for user roles and access controls.

• Data Import and Export: Firestore’s capability with vari-
ous data formats, including JSON, facilitated data import
and export functionalities. This feature was essential for
enabling users to import grading data from different file
formats.

Firebase’s Firestore database is designed around a NoSQL
data model that organizes data into collections, providing a
flexible and scalable structure for storing and managing infor-
mation. Within Firestore, each collection serves as a container
for related documents, and these documents are where the
actual data resides. Firestore documents are essentially JSON-
like objects that can contain multiple fields. These fields can
store various types of data, such as strings, numbers, booleans,
arrays, or nested objects. Initialising Firebase with the Next.js
code base is very simple and done through a ’Firebase.js’ file.
This file contains the Firebase configuration, which includes
the projects API key, ID, and AuthDomain [16]. The app is
then initialised using the firebaseConfig file. Once this was
completed data could be pushed and pulled to and from the
database using some of Firebase’s helper methods which were
utilised across the implementation of this application [17].

Incorporating Next.js and Firestore into our implementation
stack allowed me to efficiently build a responsive and high-
performance web application that meets the project’s func-
tional and non-functional requirements. These technologies
played a pivotal role in shaping the Grading Assistant’s
user interface, backend functionality, and data management
processes.

B. Code Structure

Next.js leverages a file system-based routing approach,
whereby the organization of the project closely mirrors the ar-
chitecture of the application itself. Notably, each folder housed
within the ’pages’ directory corresponds directly to a distinct
page within the application [18]. This organizational strategy is



ENGR 489 (ENGINEERING PROJECT) 2023 7

highly intuitive, affording the ability to systematically arrange
code and effortlessly comprehend the application’s flow.

Furthermore, Next.js provides a means to establish a uni-
form application layout through the strategic use of compo-
nents. Typically, this layout configuration is centralized within
a file such as ’Layout.js,’ located within the ’Components’
directory. This central layout component ensures that the visual
design and user experience remain consistent throughout the
application, regardless of the chosen route.

One remarkable facet of this architectural approach is its
adaptability in addressing user roles and permissions. Tailoring
the accessibility of links and features based on a user’s role
becomes a straightforward task. Integration of role-based ac-
cess control within ’Layout.js’ or other pertinent components
permits dynamic customization of the user interface. This
empowers the application to provide a personalized and secure
experience for each user, thereby elevating the overall quality
of the user experience. Additionally, this approach streamlines
the development process, as role-specific access logic can be
managed from a centralized location, ensuring consistency and
cohesion across the entire application.

C. Core Features and Functions

In this section the core features and functionalities which
have been implemented into the application will be discussed.

1) Home / Landing Page: When user’s first navigate the
the ’Grading Assistant’ web page they will be on the landing
page. This page provides general information about what the
application is setting out to do, as well as explanations about
how it works, and the four different distance metrics used. It
also provides an interface where user’s can sign up or sign
back in.

2) Grading: The ’Grading’ page serves as the hub for
the core features and functionalities of our web application.
This page is only accessible if the user is signed-in. It plays
a central role in managing questions, submissions, and the
application’s core logic. During the development of this page,
I frequently leveraged React’s ’useEffect’ hook to define post-
render actions and responses to changing dependencies [19].
This proved invaluable when handling extensive data fetching
operations, a common task on this page [20].

The paramount functions of this page involve fetching
both questions and texts, followed by sorting the texts based
on their relevant distance metric values. To maintain code
clarity, maintainability, and readability, complex functionalities
have been modularized into separate components, such as
’ImportData’ and ’ExportData,’ which are invoked as needed
[21].

There are multiple different render methods in the file,
which all eventually get called in ’RenderContent.js’. By
breaking down the rendering logic into separate methods, you
create modular code. Each rendering method is dedicated to
specific part of UI. For example, the ’RenderTabs’ method
renders the question selection tabs on the left of the page,
as well as ’RenderSlider’ which renders the slider bar. This
simplifies the implementation process, as you can focus on
one piece of functionality at a time. By better organizing the

rendering logic, it becomes easier to reuse specific methods
in different parts of the application. I also found that by
utilising this approach to my implementation, it dramatically
helped with debugging code because it was easier to pinpoint
the specific problem, as it was generally isolated inside of a
separate function.

Once the user has logged in they will be automatically
brought to the Grading page. With the knowledge that this
page is the main page which graders will interact with on
the application, it has been implemented it in a way which is
easy to follow and understand. Tool-tips and modals have been
implemented to offer information if some user’s are struggling
to understand how to utilise the page to its fullest. An example
of this is the info icon next to the slider bar. When a user
clicks this they greeted with a popup explaining exactly how
the distance metric values are used with the slider. This ensures
that first time users don’t have to go back and forth between
the grading page and home page, in order to get information
about how the system works [22].

There is consistent error handling throughout the imple-
mentation of this page. During every key user interaction
error handling has been implemented, e.g, for importing data,
exporting data, and submitting grades and feedback. Due to
the high level of user interaction built into the implementation
of the application, we ensured that if the user imports incorrect
data it doesn’t break the application, as well as that the user is
aware of why it isn’t working [23]. This ensures a good user
experience by directly offering feedback.

This page exhibits multiple states contingent on the presence
of data in the database and user access permissions. If no
questions have been loaded, users are prompted with an ’Im-
port Questions’ button. To ensure a smooth user experience,
five questions are pre-loaded when users first access the web
application for testing purposes.

Fig. 4. The above figure shows the Grading Page

3) Admin: The ’Admin’ page serves as an exclusive inter-
face accessible only to administrators. It encompasses two pri-
mary functions: question management and user management,
seamlessly organized within separate tabs [24].

• Question Management Tab: Within this tab, administra-
tors can efficiently oversee and manipulate the question
database. They are presented with a comprehensive table
listing all existing questions, accompanied by a count of
the submissions associated with each question. Addition-
ally, administrators have the authority to remove ques-



ENGR 489 (ENGINEERING PROJECT) 2023 8

tions from the database, ensuring streamlined database
maintenance.

• User Management Tab: Similarly, the user management
tab offers administrators control over user accounts. It
provides a comprehensive list of all registered users,
enabling administrators to modify user roles or initiate
account removal as necessary. This level of control em-
powers administrators to uphold user management with
ease.

This interface was implemented by using Firebase’s ’get-
Doc’, ’deleteDoc’, and ’collection’ functionalities.

In summary, the ’Admin’ page offers administrators an
organized and secure platform to manage questions and user
accounts. It grants them the ability to oversee and manipulate
database entries efficiently while maintaining the integrity of
the application and ensuring that users’ roles and accounts are
appropriately administered.

Only users with admin privileges can access this page. Users
with regular permissions will not find a link to this page in
the navigation bar. If a non-admin user attempts to access the
page by manually typing ’/Admin’ in the URL, they will be
automatically redirected to the application’s home page. This
setup ensures that access is restricted to authorized personnel,
maintaining the security and integrity of the application.

Fig. 5. The above figure shows the Admin Page, showing the user manage-
ment

4) Authentication and Authorisation: Authentication and
authorization are fundamental aspects of any web application,
ensuring that users have secure access to specific features
and data. In this project, Firebase, a robust and versatile
cloud-based platform, was chosen to implement these critical
functionalities. Firebase offers a comprehensive set of tools
for implementing user authentication and authorization, sim-
plifying the process of integrating user management features
into the application [25]. The primary components used for
authentication and authorization are:

• Firebase Authentication: This service provides a secure
and straightforward way to allow users to sign up, sign
in, and manage their accounts. Firebase supports various
authentication methods, including email/password, social
media logins (Google, Facebook, Twitter, etc.), and single
sign-on (SSO) options.

• User Management: Through Firebase Authentication,
user accounts and profiles can be managed efficiently.

This includes features like password resets, profile up-
dates, and user role management.

When I first implemented these functionalities, I wrote
authorization rules for importing data allowing only admin
users to be able to do this. However, this was later changed
to allow all users so that the user’s who were testing my
application could test this functionality.

D. Database

In this subsection, I will describe I implemented the
database on Firebase’s Firestore NoSQL database [15], and
more importantly how the data is both stored and used on
the application. I have 3 different collections of data, one for
questions, grades, and users, respectively.

1) Questions: Within the ’Questions’ collection, each indi-
vidual question is represented by a dedicated document. These
question documents encompass three pivotal fields: ’name,’
’number,’ and ’q-text.’ Notably, the user enjoys complete
autonomy in defining the content of these fields during the data
import process. In the event that a user attempts to import a
question with a name or number matching an existing question,
an alert is promptly triggered, signifying an unsuccessful
import due to the question’s preexistence. The ’q-text’ field,
the core repository for the actual question that students respond
to, encapsulates the query itself.

Within each question document, you’ll find a nested sub-
collection known as ’submissions,’ housing all the submis-
sion data specific to that particular question. Every question
document boasts its dedicated ’submissions’ sub-collection.
Delving into the ’submissions’ collection, you’ll discover a
document for each student who has submitted an answer
to the given question. Within these documents, you’ll en-
counter nine essential fields: ’id,’ ’question-id,’ ’text,’ ’value1,’
’value2,’ ’value3,’ ’value4,’ ’marked,’ and ’active.’ The ’id’
field signifies the student’s unique ID for their submitted text,
while ’question-id’ corresponds to the ID of the question
they’ve addressed. The ’text’ field serves as the repository
for their response. The four ’value’ fields pertain to the four
distance metrics employed in this application. Both ’marked’
and ’active’ fields are Boolean, initially set to ’false’ upon data
import, and serve as markers to identify submissions yet to be
assessed.

Fig. 6. The above figure shows a diagram of how the questions and
submissions are structured

2) Grades: Within this ’Grades’ collection, we meticu-
lously store all the crucial grade and feedback data assigned
by markers to individual submissions. When a user initiates
the submission process by clicking the submit button, the
system efficiently imports and records both the grade and the
corresponding feedback in this collection. In addition to the
grade and feedback information, we also capture and store



ENGR 489 (ENGINEERING PROJECT) 2023 9

an array of ’active-Ids’ in the database. This array serves
as a key element in distinguishing each submission from the
rest. It includes both the ’question-ID’ and the ’student-ID’ of
every selected submission. This feature is particularly essen-
tial, as it allows graders to simultaneously evaluate multiple
submissions while maintaining a clear and accurate distinction
between them.

3) Users: Upon a user’s initial registration with the appli-
cation or their first sign-in via Google, their particulars are
recorded and seamlessly integrated into the Users collection
within Firestore. This process initiates the automatic genera-
tion of a document in this collection, featuring three essential
fields: ’email,’ ’role,’ and ’uid. The ’role’ field is set to grader
by default when creating an account. If at some point a user
wanted to gain admin authorization their account role would
have to be manually changed in order for that user to be able to
utilise the admin interface on the application. When an account
is first made a random ’uid’ is generated. This id is used for
authentication and data association, ensuring that each user’s
data is appropriately associated with their profile.

The firestore database which we have utilised for this
application employs real-time updates. What this means if that
if the database is updated whilst a user is on actively on the
application marking, during the next refresh the content on
the page will reflect the most up to date state of the data.
This feature of the database ensures data consistency across all
clients. When one client makes a change, the database ensures
that all other connected clients reflects the updated information
without any conflicts.

E. Calculating the Distance Values
In order to calculate the distance values for all four distance

metrics, a python script for each metric was developed. Each
python script pulled the question submissions from a JSON
file, as well as a reference answer in order to calculate a value
for comparing each submission text. These metrics provide
insights into the degree of similarity or dissimilarity between
a reference text and multiple text submissions.

1) Jaccard: The Jaccard similarity is calculated by dividing
the size of the intersection of the sets of words by the size of
their union. The resulting value ranges from 0 to 1, with 0
indicating no similarity and 1 indicating perfect similarity.

Fig. 7. The above figure shows the code to calculate the Jaccard value.)

2) Levenshtein: Levenshtein Distance, also known as Edit
Distance, quantifies the minimum number of single-character
edits (insertions, deletions, or substitutions) required to trans-
form one text into another. The script for calculating Leven-
shtein Distance is as follows: The levenshtein distance function
calculates the distance between two strings s1 and s2. This dis-
tance represents the minimum number of character operations

Fig. 8. The above figure shows the code to calculate the Levenshtein.)

(additions, deletions, substitutions) required to transform s1
into s2.

The make the similarity scores more intuitive and compa-
rable, we normalize the Levenshtein distance. Normalization
scales the distance values to a range between 0 and 1, where
0 indicates no similarity and 1 indicates perfect similarity.
This is achieved by dividing the Levenshtein distance by
the maximum length of the two strings being compared and
subtracting the result from 1.

3) BERT+Cosine: BERT + Cosine first tokenizes and en-
codes the reference text from the JSON file, then calculates
BERT embeddings for each of them. The cosine similarity be-
tween the reference text and each text in the set is determined,
providing a quantitative measure of text similarity. Below is
script used in my implementation to generate these values for
the submissions.

Fig. 9. The above figure shows the code to calculate the BERT+Cosine.)

4) TfIdf+Cosine: The process for calculating the
TfIdf+Cosine values begins by vectorizing both the reference
text and the collection of texts using the TF-IDF method,
which captures the importance of individual words within
the texts relative to their frequency across the entire dataset.
Cosine similarity is then computed between these TF-IDF
vectors, yielding a numerical measure of similarity.

Fig. 10. The above figure shows the code to calculate the TfIDF+Cosine.)



ENGR 489 (ENGINEERING PROJECT) 2023 10

VI. EVALUATION

The evaluation of this project was broken up into two differ-
ent parts. Firstly, was performance testing of the application,
followed by user testing.

A. Component Testing

Several critical components and functionalities of the appli-
cation underwent rigorous performance testing to ensure opti-
mal operation. These assessments encompassed authentication
procedures, including login and registration, as well as the
retrieval of data from Firebase.

In this evaluation, I employed Cypress, an open-source
end-to-end testing framework specifically engineered for as-
sessing web applications. End-to-end (E2E) testing consti-
tutes a software testing methodology that concentrates on
validating the seamless functioning of an application from
start to finish, simulating real user interactions to verify its
overall functionality. Cypress proves to be an ideal choice for
Next.js applications, given that its test scripts are composed
in JavaScript or TypeScript.

The initial test focused on the Grading page, which serves as
the application’s main interface. Among the pivotal aspects ex-
amined was the performance and speed of data retrieval from
the Firestore database. Upon the page’s load, all questions and
submissions stored within the database are loaded into the web
application. Impressively, it took a mere 2.8 seconds to fully
load the questions database for the initial access. It is worth
noting that the database size is relatively modest, comprising
only five questions and five submissions for each question.

Moreover, the process of submitting grades and feedback to
the Grades database occurred almost instantaneously, demon-
strating the efficiency and robustness of the application’s data
manipulation capabilities.

B. User Testing

The main goal of user testing for this application was to
test the usability and user interface of the application.

A questionnaire was developed which covered multiple dif-
ferent aspects of both the usability and functionality of the web
application. There were 8 different sections included which
were general feedback, user registration, question importing
and exporting, grading, user interface and design, performance,
and any additional comments or observations. Ensuring that
the questionnaire had clear objectives and goals, so that results
would focus directly on the usability and UI of the application.
Six different people filled out the questionnaire after spending
time using different functionalities of the application. These
people all had different disciplines, ranging from software
engineering, to non-technical backgrounds. By including indi-
viduals from different backgrounds it provides me with unique
perspectives of the user interface and how the application
functions overall.

Six individuals spent 10 minutes on the application, testing
all of the different functionalities which were developed.
After this 10 min period, the questionnaire was given to the
individuals to fill out. The results which received were varied,

which was expected due to the difference in knowledge of
UX best practices, and web development in general. However,
there were also similarities with some of the responses which
were received. Here are the results:

1) Main Results: Feedback collected from the six individu-
als who participated in testing the application revealed several
recurring themes and opportunities for enhancement. Many
users encountered challenges during the data importation pro-
cess, struggling to ensure that their data was in the correct
format. Even when they believed they had followed the right
format, the import frequently failed. Users strongly suggested
that the application provide more informative feedback on data
import issues, proposing the implementation of a more robust
validation system to assist users in identifying and resolving
specific data format errors.

Users also found the process of calculating distances using
the four Python scripts and then uploading the results into
the database to be time-consuming and complex. All users
recommended integrating the distance calculation into the
importation process, transforming the application into an end-
to-end solution for added convenience and efficiency.

On a positive note, all users praised the application’s user
interface design, noting its modern and clean aesthetics. They
specifically appreciated the application’s judicious use of white
space, which contributed to an elegantly designed layout that
was both visually pleasing and well-organized.

In summary, these valuable insights from the testers under-
score the need to improve the data importation process, stream-
line distance calculations, and maintain the positive aspects
of the user interface design. Implementing these suggestions
will undoubtedly result in a more user-friendly and efficient
application.

VII. FUTURE WORK

This section outlines the vision for further elevating the
capabilities and user experience the SAGA.

1) Further Distance Metric Implementation: The first part
of potential future work is to change the way that both the
distance metric is calculated and utilised on the application.
Currently, the distance values are calculated by running the
submissions through the 4 scripts (1 for each distance metric).
This clearly isn’t a very optimal way in order to collect
these values, as it means that if a user wants to import
more questions to the system, they have to also have the 4
python scripts on their computer. This additional requirement
introduces complexity and an extra step in the importation
process, potentially hindering the seamless integration of new
questions or submissions. Following the user testing of the
application, this was one of the main points which users
mentioned could be improved. Recognizing the need for
efficiency and user-friendliness, I envision a more integrated
and streamlined solution by changing it to be fully included
within the application. When the import button is selected
and submissions have been uploaded to the database, the
calculation of the distance values could be included in this
process. There are many different benefits to this integration,
firstly is a simplified user experience. By eliminating the



ENGR 489 (ENGINEERING PROJECT) 2023 11

need for external Python scripts simplifies the user experience.
Users can import questions and submissions without worrying
about additional software requirements, reducing potential
barriers to entry. As the grading application continues to
grow, this integrated approach ensure scalability. Users can
confidently import larger datasets and perform calculations
without concerns about any external dependencies.

2) Approved Data type: In its current state, the application
is designed to accept JSON files exclusively for data importa-
tion. While JSON is a versatile and widely used data format,
I recognize that diversifying data type support can further
enhance the application’s flexibility and usability.

The decision to accept only JSON files for importation has
been driven by its popularity and ease of use. However, this
does create some challenges:

• User Constraints: Users are required to convert their data
into JSON format before importing it into the application.
This adds an extra step and be cumbersome, particularly
for those who are accustomed to using different data
formats.

• Scalability: As the application evolves and accommodates
various educational scenarios, it may encounter diverse
data sources that benefit from different data formats.

• Data Compatibility: Some educational institutions or data
sources may store information in formats other than
JSON. This limitation restricts the application’s compat-
ibility with a broader range of data sources.

To address these challenges and provide a more versatile
experience, the future work agenda includes expanding the
range of approved data types that the application can accept
for importation. By accommodating various data formats, we
reduce the need for users to perform data format conversions
before importing. This streamlines the data importation pro-
cess and enhances user convenience. Also by expanding the
approved data type support aligns with our commitment to
user-centric design. Users can import data in a format that
suits their needs, contributing to an overall more user-friendly
experience.

VIII. CONCLUSION

In summary, the development of this innovative application
represents a significant step forward in enhancing the teaching
experience for educators and academic professionals, allowing
them to focus more on teaching and less on grading. The
application’s thoughtful design, tailored to the workflow of
its users, showcases a contemporary user interface charac-
terized by clean aesthetics, well-considered spacing, and a
consistent color scheme, all of which contribute to an out-
standing user experience. Our application follows a client-
server architecture, with Next.js as the client and Firebase
serving as the hosting platform for the server, ensuring a robust
and efficient structure. We have meticulously implemented the
core functionalities in strict adherence to predefined functional
requirements, guaranteeing that the application effectively
fulfills its intended purpose. Furthermore, we have conducted
thorough user testing to gather valuable insights from our
users, allowing us to refine and enhance the application further.

This iterative process has provided valuable feedback for both
the strengths and potential areas of improvement. Looking
ahead, this project opens the door to exciting opportunities for
future development and expansion, with the goal of continually
enhancing the educational experience and streamlining the
tasks of educators and academic professionals.

REFERENCES

[1] B. Spencer, “The Importance of Timely and Effective Feedback,”
blog.teamsatchel.com, Mar. 09, 2017. https://blog.teamsatchel.com/the-
importance-of-timely-and-effective-feedback

[2] C. Li and F. Lalani, “The COVID-19 Pandemic Has Changed
Education Forever,” World Economic Forum, Apr. 29, 2020.
https://www.weforum.org/agenda/2020/04/coronavirus-education-global-
covid19-online-digital-learning/

[3] S. Grashchenko, “Levenshtein Distance Computation — Baeldung
on Computer Science,” www.baeldung.com, Aug. 03, 2020.
https://www.baeldung.com/cs/levenshtein-distance-computation

[4] J. Briggs, “BERT For Measuring Text Similarity,” Medium, Sep. 02,
2021. https://towardsdatascience.com/bert-for-measuring-text-similarity-
eec91c6bf9e1

[5] A. Zhu, “Understanding TF-IDF and Cosine Similarity for
Recommendation Engine,” Geek Culture, Apr. 04, 2023.
https://medium.com/geekculture/understanding-tf-idf-and-cosine-
similarity-for-recommendation-engine-64d8b51aa9f9 (accessed Oct.
12, 2023).

[6] “Jaccard Similarity,” www.learndatasci.com.
https://www.learndatasci.com/glossary/jaccard-similarity/

[7] “Gradescope — Save time grading,” @gradescope, 2000.
https://www.gradescope.com/

[8] “GradeMark — Blackboard Basic,” help.turnitin.com.
https://help.turnitin.com/feedback-studio/blackboard/basic/instructor/grading/grademark.htm
(accessed May 29, 2023).

[9] N. Suzen, A. N. Gorban, J. Levesley, and E. Mirkes. ”Automatic
short answer grading and feedback using text mining methods.”
https://www.sciencedirect.com/science/article/pii/S1877050920302945
(accessed Mar. 31, 2023)

[10] “Authentication and Authorization,” CyberArk.
https://www.cyberark.com/what-is/authentication-authorization/

[11] GeeksforGeeks, “Client-Server Model,” GeeksforGeeks, Oct. 23, 2019.
https://www.geeksforgeeks.org/client-server-model/

[12] Interaction Design Foundation, “What is User Centered Design?,”
The Interaction Design Foundation, 2019. https://www.interaction-
design.org/literature/topics/user-centered-design

[13] Vercel, “Next.js by Vercel - The React Framework,” nextjs.org.
https://nextjs.org/

[14] tailwindcss, “Tailwind CSS - Rapidly build modern websites
without ever leaving your HTML.,” tailwindcss.com, 2023.
https://tailwindcss.com/

[15] Google, “Firebase,” Firebase, 2023. https://firebase.google.com/
[16] “Setting up Firebase,” Firebase, 2015.

https://firebase.google.com/docs/web/setup
[17] “Export and import data,” Firebase.

https://firebase.google.com/docs/firestore/manage-data/export-import

[18] “Building Your Application: Routing — Next.js,” nextjs.org.
https://nextjs.org/docs/pages/building-your-application/routing (accessed
Oct. 16, 2023).

[19] “Using the Effect Hook – React,” reactjs.org.
https://legacy.reactjs.org/docs/hooks-effect.html

[20] H. Doak, “Fetch Data Now works,”
Gitlab. https://gitlab.ecs.vuw.ac.nz/course-
work/project489/2023/doakharp/semi-automated-grading-project/-
/commit/8b03dfcb2158183ec5f9a8505e6be91b2d58a166

[21] H. Doak, ”Made some changes to Import-
ing Data” GitLab. https://gitlab.ecs.vuw.ac.nz/course-
work/project489/2023/doakharp/semi-automated-grading-project/-
/commit/b2af993a16b5d46f14ec4f9fb2277595892b731d (accessed
Oct. 15, 2023).

[22] “Grading Page Code” GitLab. https://gitlab.ecs.vuw.ac.nz/course-
work/project489/2023/doakharp/semi-automated-grading-project/-
/blob/Development-Part1/gradeassistantnext/src/app/Grading/page.jsx
(accessed Oct. 15, 2023).



ENGR 489 (ENGINEERING PROJECT) 2023 12

[23] “Added Error Handling to Button” Git-
Lab. https://gitlab.ecs.vuw.ac.nz/course-
work/project489/2023/doakharp/semi-automated-grading-project/-
/commit/ddb781a369dbd875c222965fd7fe91e087120219 (accessed
Oct. 15, 2023).

[24] “Admin Page” GitLab. https://gitlab.ecs.vuw.ac.nz/course-
work/project489/2023/doakharp/semi-automated-grading-
project/-/blob/Development-Part1/grade-assistant-
next/src/app/Admin/page.jsx?ref-type=heads (accessed Oct. 16, 2023).

[25] [1]“Register Page” GitLab. https://gitlab.ecs.vuw.ac.nz/course-
work/project489/2023/doakharp/semi-automated-grading-project/-
/blob/Development-Part1/grade-assistant-next/src/app/Register/page.jsx
(accessed Oct. 16, 2023).


