
ENGR 489 (ENGINEERING PROJECT) 2023 1

An Authentic Physics-Based Traction Trebuchet
Simulation in Unreal Engine 5

Amy Broeders

Abstract—History is commonly perceived as boring and irrel-
evant to modern youth due to the inaccessible and often dark
nature of literature surrounding it. Video games provide a unique
medium to retell stories of epic battles and survival against
threats that we rarely worry about today, allowing a broader
audience to engage with and learn from our rich history. Traction
trebuchets were used for centuries in medieval siege warfare, yet
the researcher didn’t know of their existence prior to starting
this project due to the lack of representation in modern media.
This project sought to use this modern medium to simulate the
machine that would have saved and destroyed many lives with
accurate physics and create a fun experience to discover history
in a comfortable and accessible setting. From working on this
project, it has become clear that the initial vision for this project
was ambitious and the game has not lived up to its full potential,
however, the physics simulation and accuracy of the trebuchet
have been continually prioritised as this will be the most useful
artifact to use in future work in this area. My initial work has
provided context on some of Unreal Engine’s current physics
capabilities, documentation of solutions to bugs created during
development that may trip up new learners to Unreal Engine,
and a prototype of a traction trebuchet simulation for users to
interact with.

Index Terms—Software Engineering, Trebuchet, Simulation
Game

I. INTRODUCTION

A. The Problem

The traction trebuchet, also known as a mangonel, is a
medieval siege weapon invented in China between the 5th
and 3rd centuries BCE, used in Europe from as early as the
late sixth century (CE), and estimated to have been in use
until at least the 12th century when it was superseded by the
counterweight trebuchet [1] [2] [3]. The traction trebuchet
was a popular anti-personnel weapon, yet it is not particularly
well-known in the 21st century, and it is often overlooked
or recreated inaccurately in modern media. As such, this
piece of history goes largely undiscovered by the public. The
construction and use of a physical traction trebuchet requires
a large area of free land as it can launch projectiles up to
120 metres (while also being able to misfire 50m backward
and 10m to either side, totalling a minimum of 3400 square
metres of space required for safety) [2]. So, for enthusiasts
to authentically recreate the traction trebuchet, they face
safety concerns, require permission to fire projectiles at
high velocities on a large empty piece of land (which will
likely damage the land), and require resources such as wood,
rope, and leather. With empty land becoming rarer due to
population growth and expansion of housing, opportunities to

This project was supervised by Simon McCallum

achieve this will also become rarer with time. These barriers
won’t stop everyone, but it does make it infeasible for many
and will hinder others, and will certainly keep anyone from
the wider public away from this niche activity.

So, how can we provide a safe and accessible alternative to
building a traction trebuchet? This project suggests that this
problem can be solved by leveraging modern technology to
create a digital equivalent for people to interact with in the
comfort of their own homes, instead allowing individuals to
explore and experiment with the tool and deepen their curiosity
by discovering more resources on this topic available through
the internet, with accurate physics and authentic structure to
contextualise the trebuchet within its era. This would include
a 3D model of a traction trebuchet with a structure that is
similar to historic diagrams or pictures of traction trebuchets
(although there were several variations on the structure, the
core ideas remain the same), which would have moving parts
that could throw a projectile, a hook that could be altered
separately to change the angle at which the sling is released,
functional ropes and a stiff sling to imitate leather. With this
digital tool, history like the traction trebuchet can be easily
brought to a broader range of people, as well as serving to
entertain enthusiasts who may already understand the function
of the trebuchet, or even being used in an academic setting
such as classrooms.

B. The Solution

This project developed a digital physics simulation of a
traction trebuchet. This simulation is made up of a low-poly
3D model with separate parts using physics abilities in
Unreal Engine 5 (UE5) to throw a projectile. The simulation
can be viewed from all around and fired by the user, and
by tweaking the hook or the code in the UE5 editor, the
behaviour of the trebuchet can be altered as it would be
with the physical version. Alongside this, other deliverables
created include a paper discussing Unreal Engine 5’s physics
capabilities and its advantages and disadvantages in the
context of the project, and documentation of the fixes to
some big issues faced in 3D modelling and physics simulation.

Due to the project’s deliverables all being in digital format,
it is an environmentally friendly solution (especially over
building trebuchets, which requires construction materials,
and more specifically cutting down trees, which negatively
affects Goal 15 from the Global Goals). Low poly art styles
also offer lower computational requirements due to the

ENGR 489 (ENGINEERING PROJECT) 2023 2

computational cost associated with rendering each polygonal
face on the screen (the computer has to calculate what is
seen/obscured and where each face is displayed on the screen)
which reduces the impact the project has on climate change
and thus improves its effect on Goal 13 [4]. However, it is
worth noting that the physics calculations for some parts of
the project, while minimized, are computationally intensive
themselves. Unfortunately, this is a natural requirement for
a physics-based project. Future iterations of the project will
also be sustainably aligned unless the scope broadens (e.g.
physical components being added). The tool’s educative
nature also relates to Goal 4 from the Global Goals, as it can
be used to educate people in history.

Due to the change in outcome from the original goal
presented in the preliminary report, the original user evaluation
metrics are no longer applicable to this project. Instead, three
metrics are presented: the throwing distance of the projectile,
which can be converted to metric measurements and checked
against maximum distances in the existing literature; the
number of bugs/misfires out of a total number of throws; and
the framerate at which the application runs. The projectile was
thrown 89.61 metres on average, though there were multiple
instances of it going over the possible maximum suggested by
Hjesvold et al. [2]. 35% of trebuchet firings had a misfire
or bug occur, and the frames per second remain at 120
consistently during the simulation.

II. RELATED WORK

A. Existing Solutions

There are very few existing traction trebuchet simulations
currently available, and existing solutions are less accurate and
comprehensive than the proposed solution. Age of Empires IV
is a game that offers gameplay including a traction trebuchet
as a unit unique to the Mongols. Age of Empires is a strategy
game series where you play as a civilization and compete
against AI or other players to be the first to reach one of
several win conditions, such as including destroying all other
civilizations’ units and buildings. The model of the trebuchet
is decent, although its structural integrity is questionable (see
Fig. 1), with the main axle attached on either side to separate
pieces of wood which means great stress will be put on
the connection to these side pieces as opposed to the axle
sitting directly on top of tall vertical struts as in Hjesvold and
McCallum’s paper [2].

The traction trebuchet in Age of Empires 4 belongs
exclusively to the Mongols, even though it originated in
China, was instrumental in the expansion of the Islamic
empire, was brought to Greece by the Avars, and became
widespread in the eastern Mediterranean [1] [2]. In the
scope of the game where having units unique to different
civilizations provides variety to the gameplay, it makes sense
to limit access to the weapon to one civilization, however,
it does misconstrue the history of the weapon. It is listed as
being weak against melee units, however, in reality, traction
trebuchets were primarily excellent anti-personnel weapons
as well as being used as siege weapons [5]. Finally, as there

Fig. 1. A traction trebuchet simulation from the game Age of Empires IV.
It has thin sticks holding up the axle on either side, which is most likely for
aesthetics as it is not practical from an engineering perspective. Source: [5]

are no consistent units of scale in the game, it cannot be
said to accurately depict the physics of a real-life traction
trebuchet as the distance it can fling projectiles is unknown
(though estimates would say the in-game throwing distances
are inaccurate).

Another strategy game with very similar gameplay to
Age of Empires called Empire Earth III also has a traction
trebuchet unit that suffers from the same problems with the
structure of the trebuchet and the lack of known distance
units, if not worse (see Fig. 2) [6]. Empire Earth III has
three civilizations in contrast to Age of Empires, and the
traction trebuchet is a unit available for the ”Far Eastern”
civilization, which is based on East and Southeast Asia,
again partially incorrect in its limitation of the unit, with
the counterweight trebuchet instead being attributed to the
”Western” civilization. This project fills this gap in the market
by providing an accurate depiction of a structurally sound
trebuchet structure and the physics involved and also avoids
misconstruing the history of the weapon.

B. Theory

Aside from simulations, there is plenty of research
surrounding traction trebuchets in both a historical and
practical engineering context. There are several components
to the traction trebuchet to consider: the arm, the axle, the
sling, the ropes connecting the sling to the arm, the pulling
ropes, the hook, and the base. Each has unique or varying
attributes to consider in the functionality of the trebuchet.

The ropes attaching the sling to the trebuchet attached
to the trebuchet in different ways - one “attached firmly”
perhaps tied on or nailed into the arm, and the other “looped
over a metal prong” (the hook), the idea being that the loop
would come loose at a certain angle, and thus the kinetic
force pulling the projectile with the arm of the trebuchet

ENGR 489 (ENGINEERING PROJECT) 2023 3

Fig. 2. An existing traction trebuchet simulation from the game Empire Earth
III. Again, the strut does not look very secure. Source: [6]

would be released and it would travel forwards at its existing
velocity [1]. The adjustment of the prong and the length of
the ropes attaching the sling thus causes variance in how far
and high the projectile flies (the longer the rope the later the
release point) [2].

More ropes were used by the crews manning the traction
trebuchet, as they produce the kinetic force that has to be
greater than the force of gravity acting on the arm and
projectile to cause the forces to be unbalanced and pull the
heavier end of the arm into the air with the sling [1].

To accommodate the unbalanced pulling force generated
by the crew standing at the back and sides of the trebuchet,
Hjesvold et al. reinforced the bracing behind the ”uprights”
to ensure stability during the arm’s forward swing (see Fig.
3) [2]. The base is not expected to move significantly, with
these bracings absorbing the forces that aren’t transferred to
the projectile.

The arm of the trebuchet is generally slightly bendy, as it is
ideally constructed from green wood which is less stiff than
dried wood due to its additional moisture, and this provides
protection from breaking and some spring forces to absorb
any uneven forces from the strength and timing of the crew
to allow a smoother movement of the projectile [2]. It is also
worth noting that there are two main styles of bracing on the
arm itself: an axe style like in Fig. 3, or a rake style, where the
ropes come from a horizontal piece of wood attached at the
end of the arm more akin to the style of the Age of Empires
traction trebuchet in Fig 1. [2]. Due to the 2-dimensionality of
the pictures from the era of the traction trebuchet’s usage, it is
difficult to tell which was used in many pictures, however, the

Fig. 3. A diagram of the traction trebuchet. Source: [2]

Maciejowski Bible depictions seem to show vertical bracing
[7]. The axle as suggested by Hjesvold et al. sits between the
arm and one of its bracings and rotates with the arm as needed.

C. Tools and Methodology

The main tool used in this project that needed to be chosen
was the game engine. This was important to the project since
the features available in a game engine will determine the
way that the game is developed, and potentially influence
the quality of the resulting product. There are many options
nowadays, such as Unreal Engine, Unity, Lumberyard, and
CryEngine, all of which are solid options for 3D graphics. Of
these options, the researcher has existing academic practice
with Unreal Engine and some experience with Unity as well,
so they were naturally the top choices for this project. Due
to the wide variety of engines available and the researcher’s
existing experience, Unreal Engine was placed as a primary
candidate for the project and investigated for potential
drawbacks, rather than ruling out all other options. Given
that multiple engines could likely support the requirements of
the project, factors such as cost and experience significantly
influenced the decision-making process.

The latest version of Unreal Engine, Unreal Engine 5,
appears to boast superior physics simulation (along with a
few other advantages such as superior animation) with its
new Chaos Physics engine, although some suggest it is less
reliable and complete than the previous engine used, Nvidia’s
PhysX, due to less rigorous testing [8] [9]. It is also well
known for its flashy graphics, which aren’t necessary for a
low-poly game but may nonetheless enhance the experience.
Unreal Engine is also free to use for projects of this nature,
with royalties owing only after earning over $1 million
USD, which makes it advantageous for a project like this. It
has reasonable documentation, although due to its overlaps
with the previous version, Unreal Engine 4, many tasks
can be figured out by reviewing the older documentation
instead, which makes the documentation a lot more rigorous

ENGR 489 (ENGINEERING PROJECT) 2023 4

holistically.

Physics simulation projects have been implemented within
versions of Unreal Engine before, with conversions of
distance in Unreal’s units to real-life units being calculated to
help with measuring and improving their accuracy [10]. This
further proves that Unreal Engine is a strong candidate for
creating the simulation project with.

The most complex part of the trebuchet system identified
and researched for this project was the rope. As opposed to
solid objects, rope has tension forces and flexibility, so it
behaves very differently. Unreal Engine 5 offers a “cable”
component, which is a series of connected particles where
only the end particles may be attached to something, and the
particles between the two ends dangle freely, using the Verlet
Integration technique [11].

Fig. 4. A diagram illustrating the components of a rope in Unreal Engine 5
Source: [11]

There are alternatives such as the VICO Dynamics plugin
which offers its version of cables as well as other soft-bodies
such as cloth, or a more custom way to achieve the effect
would be to model rope with a cylindrical model and apply
bones and physics constraints to create the required behaviour
[11] [12]. Unfortunately, the VICO Dynamics plugin is a paid
service, and the cost is not warranted in comparison with the
features offered by the existing cable component.

The major flaw with the cable component that UE5 offers
is that ropes will not collide with one another. This may
cause a visual issue in that ropes will most likely swing into
(aka through) each other when the trebuchet is fired, however,
it is not anticipated that this will make a major impact on the
realism of the trebuchet. The Cable component also has great
added computational cost from enabling collision with rigid
bodies and stiffness, and collisions are still in development
and are prone to bugs.

Unreal Engine features two ways to program custom
behaviour for objects - blueprints, an Unreal Engine native
visual coding system where developers mostly drag and
drop nodes to build behaviour from available functions, or
C++, a scripting language first released in 1985. C++ offers
greater complexity and customisation to control what happens
in-game, however, it is also more complex to program in than
the visual, dropdown menu style of blueprints where you can
search for functionality you may want to use. The researcher

has experience with blueprints and minimal experience with
C++, so this was chosen as the standard for development
on this project, with C++ only being added to supplement
blueprints if the required behaviour could not be implemented
with blueprints.

GitHub Co-Pilot is a recently released AI tool that can be
used to aid programming, for example with C++. GitHub
Co-Pilot can generate correct and optimal solutions for
certain fundamental problems, however, the quality of its
responses varies, and it may produce flawed or suboptimal
results that require a fairly skilled developer to identify [13].
However, with minimal C++ knowledge, having an AI pair
programmer assist with some syntax and basic functions will
likely accelerate development over working alone as less
time would be spent researching implementation and bugs for
simple features.

For modelling the trebuchet itself, I also needed to find a
3D modelling software to use. Again, there are many, such
as Blender, Maya, SketchUp, and ZBrush, and the decision
process here was much the same as for the game engine - the
researcher has prior experience with Blender, it has strong
documentation due to being an open-source project, and it is
also free to use.

III. DESIGN

The initial design for this project was multi-faceted. There
was the physics accuracy of the trebuchet, the historical
context worked into the game through dialogue or menus,
and the entertainment value of the gameplay itself. With the
scope being scaled back to focus on the trebuchet tool being
of higher quality, the requirements have changed to focus
more in-depth on the traction trebuchet physics and structural
design. The non-functional requirements generally stayed the
same, with performance such as high frame rate and minimal
bugs encountered being particularly important, but simple UI,
inputs, and loading of the game being key for a friendly user
experience.

To accurately represent these various facets and the way
physics acts on each of them, we wanted to present them
in 3 dimensions. Alternative game designs were discussed
in early planning, such as a 2D game akin to Angry Birds,
however, the researcher believed that a 3D representation
would provide a more authentic and holistic experience of
the trebuchet.

The trebuchet consists of a 3D model split into several
independent components - the base, the arm and the axle,
the sling, the hook, and the projectile. The arm and the axle
were kept together as a single mesh as a simplification where
separating them wouldn’t have been likely to change much of
the physics operations but would have opened the project up
to more bugs/mistakes and increased complexity. However,
the hook could have been kept in the same mesh to further

ENGR 489 (ENGINEERING PROJECT) 2023 5

reduce complexity and still would have been functional, but
this would take away from the customizability of the trebuchet
in the simulation (changing the hook angle), so this had
significant relevance to the physics capabilities of the project
and was kept separate. The base can be reasoned to be one
mesh as in reality each piece of wood would be constrained
together to act as one object with rope and/or nails, so its
behaviour as a single object is appropriate in the given context.

A low-poly art style was selected due to its lower
computational requirements and associated reduced energy
costs for environmental well-being. This means that there
are fewer faces than on a highly detailed model, and is a
significantly friendlier art style - for the planned game to
be entertaining, the researcher did not want the style of the
game to be too serious to appeal to a wider audience. There
is no strict definition for what is considered ”low poly”, but
an estimate suggests between 1 and 10k polygons would
fall into this category. Generally, it is recognised by simple
shapes, simplifying what an object would be expected to look
like. High-poly meshes and high-resolution textures were
discarded because of their computational expense, higher
artistic skill ceiling if additions or editing were required, and
the more serious tone communicated by the detail.

For applying physics to the trebuchet, an animation
could have been created to create the perfectly customised
movement of the trebuchet. This would have likely been
a faster process to implement, as the model would not be
relying on the physics settings in Unreal Engine being correct,
and instead, more time could be spent setting up the ropes and
sling, which would still need to be accomplished separately.
However, part of the proposal for this project suggested that
modern technology had advanced capabilities to compute
complex physics simulations, so utilising the full suite of
physics features and settings available within an advanced
engine offers better insight into whether this is viable for
future projects. This would also open up opportunities
for users to experiment with customizing the trebuchet’s
movement. For example, a UI could be designed to let users
adjust the hook angle, rope length, and/or pulling force
applied to the front ropes, thereby allowing for greater control
over the projectile’s velocity. This level of customization goes
beyond the simple adjustments possible for a fixed animation
such as rotating the trebuchet or changing the size or weight
of the projectile, making for a more interactive and engaging
experience.

Most of the modelled components of the trebuchet (i.e.
the non-rope parts) are static meshes that do not change
their shape in any capacity (the base, the arm and axle, the
hook) due to their real counterparts being made from solid
materials (wood, metal of the hook), however, the sling is
modelled after leather, which is a thick but bendy material. It
could have also been made as a static mesh and just held the
curved shape it starts in the whole time, however, this limits
the realism of the material as it would typically open up to a
more flat shape, so instead an articulated model needs to be

created where it can change shape (from a curved U shape
to an open shape). Given the possible bend in the green
wood used for the arm, it could be argued that there needs to
be some kind of articulation in this mesh as well, however,
as a starting point for this project it was kept static as this
would also function in real life, and the simulation is not at
risk of breaking, so it would only slightly alter the physics
by absorbing some of the forces applied, and it would add
another layer of complexity to implement this.

The player’s perspective in the simulation (and in the
originally proposed game) was decided to be first-person
rather than third-person, as there was not intended to be any
emphasis on the character being played by the user, and
first-person was chosen as it would be more immersive for
the player and provide a better view of the trebuchet.

Other planned deliverables for this project include a
paper discussing Unreal Engine 5’s physics capabilities,
and documentation of the fixes to some big issues faced
in the creation process. Another way that was considered
for displaying the fixes to issues was to create short video
tutorials showing the problem and how it was rectified,
however, with the provided time constraints and the primary
goals of the project being focused on the trebuchet outcome
itself, this ended up being beyond the scope of this project.
The paper discussed could have also been written instead as
a case study of the project as it was developed, documenting
the way that the physics features were used in the project
and how it helped or hindered progress. This was ruled
out as research was needed before beginning the project to
understand existing solutions and features available in UE5,
which would not be covered in a paper structured this way.

The use of Unreal Engine 5 provides economic and
technical benefits to the project in the long term. As Unreal
Engine 5’s payment model only charges for high-earning
projects, there are no foreseeable economic requirements of
the design, and if it were to be used in a monetized way in the
future then it would most likely be economically beneficial
for everyone involved. It would need to be hosted on a
website such as itch.io or Steam to be monetized effectively,
which may incur some costs, whether or not it makes a
profit, but that would be for a future project based on this to
consider. The technical benefits are that the engine is owned
by a very large and successful company, Epic Games, and so
will continue to receive support for the foreseeable future,
meaning that if future projects wish to update this it will be
simple to do so, although the packaged version of the current
project should continue to work no matter what happens to
the original engine as it creates all of the binaries required to
run the application.

IV. IMPLEMENTATION

The trebuchet was made from an existing mesh asset
provided by Synty Studios, imported into Blender by

ENGR 489 (ENGINEERING PROJECT) 2023 6

exporting it from Unreal Engine as an .FBX file, and edited
to fit the axe style of a traction trebuchet as discussed
previously. The original mesh (see Fig. 5) was also one
solid piece, so here it was also separated into the different
components that would move in the simulation - the base,
the arm and axle, and the hook. The original mesh had static
”ropes” and a bucket for the projectile. Naturally, the ropes
were not going to function as intended, so they were removed,
and the bucket was also not the intended representation to
align with the suggested leather sling from Hjesvold et al.
so this was removed as well. The hook also needed to be
altered from the initial design of a complete ring to a sharp
pointed spike, and the arm and axle were moved up to above
the crossing beams to take advantage of the structural support
those beams provide, and further supports were added and
removed in appropriate places. The shapes of the wooden
pieces were also rounded in Blender to look more akin to
round tree trunks would be used without too much shaping
in traditional traction trebuchet building. All of the meshes
were exported from Blender as .FBX files to be imported
back into Unreal Engine 5. The use of the low-poly models
provided by Synty Studios has allowed the trebuchet to be
more computationally efficient without compromising on
the aesthetic quality or historical accuracy of the trebuchet
structure.

Fig. 5. A screenshot of the original model provided by Synty Studios.

In this design process a few new model faces were created
and no longer had the UV mapping that Synty Studios had
set on the original model. Their material was one large
material with many different types of material on it (e.g.
wood, stone, signage, colours) to minimise storage space
and computational power for an asset pack with low-fidelity
artwork, meaning that a whole variety of conflicting colours
displayed on the faces without proper UV mapping. This
required some investigation but by going back into Blender
and altering the UV maps of the affected faces, it was able
to be brought into Unreal looking smooth (see Fig. 9). This
means that a second material exclusively for these parts
didn’t need to be created, saving some storage space and
computational power to optimize the application and reduce

the carbon footprint of this project.

Upon importing these meshes into Unreal Engine, they
originally behaved very strangely. This is because Unreal
Engine attempted to create simple collision shapes to represent
each part, but when running the simulation, they were already
colliding from where the arm was placed on the base. Each
mesh needed to have collision shapes created manually, as the
automatic tools were not advanced enough to handle the many
open spaces in each mesh (see Fig. 6).

Fig. 6. A screenshot of the collision boxes on the Arm and Axle mesh.

Another model was created at this point to replace the
original sling, this time with a low poly U-shaped sling with
segments attached to bones in Blender to allow the mesh
to be altered in the desired fashion (opening out to a flat
sheet). Unfortunately, this mesh hasn’t been implemented
correctly in Unreal Engine just yet, and still maintains its U
shape throughout the motion of the arm, though some buggy
movements have shown it can ”open up” in Unreal Engine,
so it is presumed to be some settings that haven’t been
fixed yet. When brought into Unreal Engine, an ”armature”
from Blender is split into three assets - the Skeletal Mesh,
the Skeleton, and the Physics Asset, each of which has
different physics settings/components that need fixing, like
the collision components on the Physics Asset, which needed
to be created manually as the defaults were not useful for the
model.

The main hurdle in implementing the design was utilising
the cable component. It behaves unexpectedly frequently, and
the settings can be unintuitive. The collisions on the rope
are still in development, so do not work consistently, and the
component is designed to only connect to one socket, with
the other end being set based on the origin of the component,
so it has to be a child of the component it attaches to to
move with it. For the rope that connects to a specific place
on the arm, a Scene object was created as a child of the arm
and placed in the desired spot, and the rope was then made
to be a child of that object so that it moved with that part of
the trebuchet.

The cable itself is essentially visual only, as it does not
constrain the two objects it is connected to. It also cannot

ENGR 489 (ENGINEERING PROJECT) 2023 7

Fig. 7. A screenshot of the the sling in Blender.

Fig. 8. A screenshot of the sling in Blender’s Pose Mode flattened out.

create a loop around connecting to itself, so another mesh
was created to hook over the spike and create the effect of
coming free and flying backwards with the sudden change in
force. This rope loop was a simple adaptation of the torus
default mesh provided by Blender. The cable component also
could not have specific UV mapping applied to it as it is an
Unreal component rather than a mesh, so another material
needed to be created to make these ropes look appropriate
with the style of the rest of the trebuchet.

For connecting the sling’s movement appropriately to the
arm and the rope, physics constraints were added to the
trebuchet blueprint. A physics constraint was created for each
rope connecting the sling, so that when the trebuchet fires,
the rope loop coming off of the hook allows the sling to
open up and let the projectile go. Another physics constraint
keeps the arm movement restricted to forward rotation,
and one was also required to attach the hook to the arm
properly (as they are separate components, both with physics

Fig. 9. A screenshot of the final model based on the model provided by Synty
Studios.

applied to them, they need to be constrained together or they
act independently). Finally, 3 more ropes were created to
represent the pulling ropes at the front of the trebuchet. As
these ropes cannot be used in the simulation to apply a force
to the trebuchet, minimal settings were used here to cut back
on computational power to retain performance and reduce
environmental impacts.

Fig. 10. A screenshot of the components used to make up the trebuchet
blueprint.

V. EVALUATION

As the project has changed in scope significantly from its
original plan, the means of evaluating it have also changed
somewhat. With the game as the main outcome, the project

ENGR 489 (ENGINEERING PROJECT) 2023 8

was going to be evaluated primarily with user testing. Instead,
the following metrics are used.

Fig. 11. A graph depicting the number of bugs encountered when firing the
trebuchet.

A. Percentage of Misfires/Bugs

To get an idea of how consistently the trebuchet fires
correctly, 20 trials were run with each type of bug recorded
as it came up. Two main bugs are occurring as of the moment
- the projectile sometimes clips through the ground instead of
bouncing, and it sometimes misfires and hits the arm when it
releases. Including the bug of the projectile clipping through
the ground (which is otherwise a successful throw), 7 out of
20 throws had some misfire or bug, or 35% (See Fig. 11).
This is unreasonably high for something to release, but the
majority of throws are still successful.

B. Throwing Distance

Based on the units provided by Herrlich et al., the 20 trials
used in the previous section were also measured to gain an
average of how far the projectile flew in metres on average
[10]. This was measured by pausing the simulation when the
projectile hit the ground and viewing the movement of the
projectile in the Y direction (corresponding with the direction
the trebuchet is facing). This was instead of waiting for the
projectile to stop, as the projectile currently has very low
friction it rolls for a long time, thus making the results less
accurate. It threw the trebuchet a mean average of 89.61
metres with a median of 79, which is within the possible
range indicated by Hjesvold et al., however, the maximum
throw was 173.7m which is beyond the maximum of 120m
suggested [2]. This also includes the misfired shots from the
previous section, excluding those that put the mean average
up to 102.7 and the median to 86.6. These are reasonable
values, excluding the exceptionally far throws, but there is
a large variation between the maximum (173.7m) and the

minimum (53.98) even after excluding the misfires, so it
suggests that further testing may be necessary. It is not yet
clear why there is so much randomness to these throws as
the conditions should be the same each time.

Fig. 12. A screenshot of the components used to make up the trebuchet
blueprint.

C. Frame Rate

When simulating the Unreal Editor, it very comfortably
maintains approximately 120 FPS on my PC, with a slight
dip sometimes when the projectile hits the ground. This
will likely vary for users on other devices, however, the
consistency suggests that there is no one part of the simulation
that is particularly computationally expensive.

VI. CONCLUSIONS AND FUTURE WORK

As of the present moment, the project is functional but
inadequately polished, and lacking a lot of the original
functionality proposed. However, the physics capabilities
have been explored deeply here, and there is plenty of room
for future work, both on refining the project and building
from it. Naturally, there is the possibility of integrating this
tool into a game with the originally proposed gameplay
mechanics to enhance the understanding and entertainment
value of the trebuchet.

Alternatively, a physical rig could be created with a pulley
that could measure the velocity of someone pulling on a rope
in real life and convert that to how the trebuchet would react,
to create a unique Human-Computer Interaction experience
and offer a fun challenge to heighten the realism of interacting
with the trebuchet.

It would also be possible to amplify the educational aspect
of this project, and instead create an interface around the
viewport that allows you to view statistics such as distance
travelled and current velocity, and provide functionality to
alter the angle of the hook, projectile type/weight, and rope
length. This project in particular would require further fine-
tuning of the physics as it would be working in a wider variety
of scenarios.

ENGR 489 (ENGINEERING PROJECT) 2023 9

ACKNOWLEDGMENTS

Thanks to Simon McCallum for supervising this project,
Synty Studios for providing the original mesh that the trac-
tion trebuchet was created from, and my partner Corban for
supporting me throughout the year.

REFERENCES

[1] P. Chevedden, “The Trebuchet,” Jan. 2013. [Online]. Available:
https://www.medievalists.net/2013/01/the-trebuchet/

[2] S. Hjesvold and S. McCallum, “Traction Trebuchet,” EXARC Journal,
no. EXARC Journal Issue 2018/3, Aug. 2018. [Online]. Available:
https://exarc.net/issue-2018-3/at/traction-trebuchet

[3] P. Purton, “After “Rome”,” in A History of the Early Medieval Siege,
c.450-1200, ned - new edition ed. Boydell & Brewer, 2009, pp. 1–36.
[Online]. Available: https://www.jstor.org/stable/10.7722/j.ctt14brvp6.9

[4] N. L. Webster, “High poly to low poly workflows for real-time
rendering,” Journal of Visual Communication in Medicine, vol. 40,
no. 1, pp. 40–47, Jan. 2017, publisher: Taylor & Francis eprint:
https://doi.org/10.1080/17453054.2017.1313682. [Online]. Available:
https://doi.org/10.1080/17453054.2017.1313682

[5] “Traction Trebuchet,” May 2023. [Online]. Available: https:
//empireearth.fandom.com/wiki/Traction Trebuchet

[6] “Traction Trebuchet,” May 2023. [Online]. Available: https:
//ageofempires.fandom.com/wiki/Traction Trebuchet

[7] “Picture Bible - Medieval & Renaissance Manuscripts Online
- The Morgan Library & Museum.” [Online]. Available: https:
//ica.themorgan.org/manuscript/thumbs/158530

[8] M. Laaksonen, “Unreal Engine 5 Compared to Unreal Engine
4,” Nov. 2022. [Online]. Available: https://www.linkedin.com/pulse/
unreal-engine-5-compared-4-mika-mike-laaksonen

[9] M. Lentine, “Chaos Scene Queries and Rigid Body Engine in UE5,”
May 2022. [Online]. Available: https://www.unrealengine.com/en-US/
tech-blog/chaos-scene-queries-and-rigid-body-engine-in-ue5

[10] M. Herrlich, R. Meyer, R. Malaka, and H. Heck, “Development of a
Virtual Electric Wheelchair – Simulation and Assessment of Physical
Fidelity Using the Unreal Engine 3,” in Entertainment Computing -
ICEC 2010, ser. Lecture Notes in Computer Science, H. S. Yang,
R. Malaka, J. Hoshino, and J. H. Han, Eds. Berlin, Heidelberg: Springer,
2010, pp. 286–293.

[11] “Cable Components.” [Online]. Available: https://docs.unrealengine.
com/5.0/en-US/cable-components-in-unreal-engine/

[12] “VICODynamics: Rope/Cloth/Soft-Body Simulation Plugin
in Code Plugins - UE Marketplace.” [Online].
Available: https://www.unrealengine.com/marketplace/en-US/product/
vico-dynamics-plugin/questions

[13] A. Moradi Dakhel, V. Majdinasab, A. Nikanjam, F. Khomh,
M. C. Desmarais, and Z. M. J. Jiang, “GitHub Copilot AI
pair programmer: Asset or Liability?” Journal of Systems and
Software, vol. 203, p. 111734, Sep. 2023. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0164121223001292

