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Surveying the .NZ Top Level Domain: Business
Sector Categorisation

Tomas Borsje

Abstract—There is a vast amount of information present across
“.NZ” domains, but no publicly accessible or viable tools or
resources exist to categorise them. All currently existing solutions
are either heavily rate-limited or require expensive monthly
subscriptions, leaving no affordable option to categorise our
dataset of 210,000 “.NZ” domains.

Combining this new business category dimension of data with
other datasets such as the Transport Layer Security (TLS)
information or cookie usage of “.NZ” domains would provide
us greater insight into the landscape of New Zealand’s digital
presence. With such a rich dataset, we can explore aspects like
which of New Zealand business sectors are the most or least
secure, which sectors have the greatest online presence, and more
- providing a solid foundation for further research into how New
Zealand’s online presence impacts our economy, cyber-security,
and more.

This project surveyed publicly available options for domain
business categorisation, and developed a system capable of
rapidly extracting website information and classifying it into
one of 27 business categories. The trained classifier uses the
‘transformers’ Python library and categorises a test dataset
with 70% accuracy, using only a website’s title, description, and
keyword meta-tags.

A command-line interface was also developed using the ‘click’
Python library to allow for information extraction and classifica-
tion via a scripting interface, enabling automation and integration
with other systems. Thirdly, an SQLite database was designed
and populated with both the list of domains and website data
extracted from these domains.

Index Terms—Business sectors, classification, web scraping,
multi-processing, natural language processing.

I. INTRODUCTION

There exists a wealth of information across to be gathered
across the ∼750,000 .NZ top-level domains (TLD) that exist
on the world-wide-web [1]. To know the business category of
each of these domains is invaluable for the purposes of digital
marketing, cyber-security research, and more. With insight into
the proportion of these categories across .NZ websites, we
can develop a solid foundation for the comparison of websites
in different business sectors through the cross-referencing of
auxiliary datasets such as website traffic, website security,
cookie usage, and more. The ability to compare websites in
this manner will provide us with a lens to understand how
businesses in New Zealand handle their online presence in an
increasingly online world. As this project is done in tandem
with other projects aimed at extracting other facets of informa-
tion from the same dataset (website TLS details, cookie usage),
this presents an exciting opportunity to collaborate and enrich
our insights through the combination of our datasets. Through
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the use of these supportive datasets, we would be able to
investigate industry-sector specific information, allowing us to
investigate questions such as which business sectors have the
least secure websites, or which business sectors use the most
tracking cookies. Such information would indeed be valuable
for purposes such as cyber-security research, as the ability
to identify widespread problems with New Zealand’s digital
presence would allow for the implementation of preventative
measures and raising of public awareness, improving our
country’s online security.

Machine learning and natural language processing (NLP)
approaches have proven to be an increasingly powerful way
to classify text, with website content and metadata being no
exception. Through feature design based on web page content
and machine learning models tailored to our classification task,
machine learning can be an effective way to classify websites
into business categories with high accuracy [2]. Through this,
we see that machine learning may present an avenue for
implementing our own domain categorisation system.

Although the environmental impact of this project is negli-
gible, the sustainability goals set out by the United Nations [3]
were kept in mind during development. The processing time
and computational power required of this project could prove
to be non-negligible if efficient design was not kept in mind, so
as to keep our environmental impact to a minimum we aimed
to maximise efficiency and reduce the project’s processing
time so that our project does not violate the sustainable
consumption goal through excess electricity consumption and
strain on computer hardware.

A. Motivation
Despite the clear benefits of having the ability to survey a

country’s digital landscape, no free or non-commercial solu-
tions exist that provide this functionality. Existing commercial
solutions such as SimilarWeb [4] or Inovvo’s Web Categori-
sation API [5] require expensive monthly subscriptions and
enforce strict rate-limits, making such solutions unfeasible for
the widespread surveying required to survey our known list
of 210,000 “.NZ” domains. Crowd sourcing websites such as
Amazon Mechanical Turk [6] allow for human classification of
websites, but these solutions are also costly and slow, render-
ing them unfit for our purpose. Finally, manual classification
is not feasible due to the sheer volume of websites that would
need to be investigated. Additionally, malicious websites pose
a threat as connecting to a website containing malware puts
the user’s security and personal device at risk.

Therefore, the motivation for this project is to develop
and implement our own solution capable of scraping bulk
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website data, classifying website data, and interfacing with the
command-line to allow for scripting-based automation. With a
system developed that is capable of these tasks, we are able to
build the foundational dataset for use in further industry-sector
related cyber-security research. When our produced dataset
would be combined with those of the projects being executed
in tandem, our insight into the state of New Zealand’s web
presence would be exceptional - setting out the motivation
for our project. Additionally, the system would be able to be
executed on datasets of not just “.NZ” domains, but also those
of any country, allowing for the surveying of any country’s
websites (and possibly the entire globe’s).

B. Final Product

Our final implementation consists of three subsystems that
interact to provide, in full, the functionality set out previously
by the project requirements outlined in the preliminary report.
These subsystems are the following:

1) Website Data Extraction Subsystem: We developed a
Python-based system capable of bulk-processing batches of
website URLs from a local database. This subsystem utilises
multi-processing to process a configurable number of websites
at a time, sending a single web-request to each website to
query its content that is then sanitised, extracted, and stored
back in the local database.

During project execution, this system was able to extract
website data for a total of 1.1 million .NZ and .AU domains in
1.5 days, resulting in a total processing speed of ∼8.5 websites
per second - surpassing the previously set project requirement
of 5 websites per second.

2) Website Data Classifier: We developed a Python-based
system capable of classifying previously extracted website
information into a business category. After investigation of
multiple other classification models (Naive Bayes, XGBoost,
SVM), we chose the HuggingFace transformers library’s Dis-
tilBERT model [7] as it surpassed the performance of the
previously tested models, creating a wrapper class that allows
for the other subsystems to call on the classification model.

3) Command-Line Coordinator: We developed a
command-line interface for the project using the Click
[8] Python library. With this implementation, the system
can be controlled via the command-line or other scripting
interfaces through a selection of command-line flags,
invoking the other subsystems. Using the developed flags,
this subsystem is capable of the following:

• Creating the local database and auxiliary configuration
files, along with populating the database using a provided
input file of URLs.

• Using the Google Safe Browsing API [9] to detect any
malicious websites in the database.

• Calling on the other subsystems to scrape and classify
websites in the database, storing this information.

• Interfacing with the command-line, allowing users to
classify websites through scripting.

Through this command-line interface, we met the project
requirements of providing support for scripting-based automa-
tion.

II. BACKGROUND

This section aims to compare the website classification
solutions implemented by other groups, illustrating the un-
feasibility of using such approaches. Additionally, a variety
of artificial intelligence-based approaches for website classifi-
cation are compared and evaluated. Finally, all the tools and
methodologies used in our system are described in detail.

A. Related Works

1) Similarweb: Similarweb [4] is a commercial website
categorisation and digital research platform. They provide
an API capable of classifying website URLs into business
categories in bulk, but this requires a monthly subscription.
Additionally, the API only serves at a maximum rate of 10
requests / second with their ’Team’ plan - the lowest plan that
provides API access. The pricing for their ’Team’ package
is not public as a demo must be requested, but the next
lowest price plan is $333/user/month. Their methodology for
website classification is also not public, rendering the use of
Similarweb an untenable approach to our problem.

2) Inovvo: Industry-Leading Website Categorization API
[5]: Innovo, LLC provide a website categorisation API
through Amazon’s AWS Marketplace [5]. Their API provides
support for classification of URLs into Interactive Advertising
Bureau (IAB) categories, of which there are over 200. How-
ever, much like Similarweb’s API, Inovvo’s API is also not
free, costing $750/month along with a flat fee of $0.00015 per
website categorised - rendering Inovvo’s API also unfeasible
for use in our system.

3) Amazon Mechanical Turk: Amazon Mechanical Turk is
a crowdsourcing platform that allows users to enlist workers to
complete Human Intelligence Tasks (HITs) for a configurable
price and fee [6]. Through this website, one can enlist workers
to manually classify websites, ensuring a high standard of ac-
curacy. However, Amazon Mechanical Turk is very expensive,
with each separate website costing a minimum of $0.02 to list
- being a reward of $0.01 to the worker and a minimum fee
of $0.01 to Amazon. With a total of 210,000 “.NZ” websites,
this would cost over $4000! Additionally, enlisting workers
to complete classification tasks for an incredibly small reward
is exploitative and unethical, rendering the use of Amazon
Mechanical Turk unacceptable.

Hence, the use of commercial solutions was not feasible for
this project, so we researched into the feasibility of developing
our own artificial intelligence classification model.

B. Literature Review

In this section, three closely related works are discussed and
compared with our approach of

1) Classifying websites by industry sector: a study in
feature design [2]: Berardi et al. describe a methodology
for categorising website data into business sector categories
through a tree of one-vs-all (OVA) Support Vector Machine
(SVM) learners for hierarchical classification. They use the
Interactive Advertising Bureau (IAB)’s three-level content
taxonomy standard as category labels, allowing for a 2-depth
labelling system of 216 total labels.
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Through the use of a one-vs-all tree of Support Vector Ma-
chines, each SVM is trained to differentiate between instances
of its assigned category label versus the rest. At each depth of
the tree, the branch with the highest confidence classification is
selected. This process is repeated until a leaf node is selected
and the instance is classified.

The study engineers input features through website content
including the number of outgoing URLs on a page, the number
of paragraphs on a page, the number of headings on a page,
and other page content attributes. Raw website data such as
the website’s title, URL, meta description and meta keyword
tags are also used as input features to the classifiers.

Through the use of this technique, Berardi et al. achieve a
true-class accuracy upwards of 80%. Despite this high level
of accuracy, this approach was not viable for our system as
it required a dataset that contained a high enough count of
instances per deepest-level label, which we did not possess.
Additionally, hierarchical classification was outside of the
scope of this project.

2) Content-based and link-based methods for categorical
web-page classification [10]: Choudhury et al. evaluate a
selection of methods for web-page categorisation by web-page
content including SVM, Multinomial Naive Bayes, decision
trees, and Word2Vec embeddings. The study also investigates
methods to augment content-based website classification, in-
cluding the traversal of hyperlinks to gather related web-page
data and the construction of a graph for use in graphical
classification methods.

This study preprocesses website data by tokenizing the
raw HTML file of the web-page and removing any tokens
with non-alphanumeric characters. Afterwards, the approach
extracts a vector of token lemma counts, lemmatising tokens
like sit, sat, sitting into the singular headword sit.

Choudhury et al. report a Support Vector Machine model
having the highest accuracy in comparison to the other eval-
uated models at an accuracy of 90.26%, although this was
only across 4 categories. In comparison, the Multinomial
Naive Bayes model was reported as having an accuracy of
84.07%, the decision tree model as having an accuracy of
83.19%, and the Word2Vec model as having an accuracy of
84.6%. This implementation is inferior to Giacomo et al.’s
implementation as the accuracies presented are lower despite
only 4 classes existing. However, Choudhury et al. additionally
investigated a novel method that additionally scraped web
pages connected via hyperlink. This method experienced a
reduction in overall accuracy but corrected misclassifications
present in the singular page only approach.

3) An evaluation of machine learning methods for domain
name classification: [11] Garg et al. present numerous natural
language processing (NLP) methods and their classification
accuracy on domain names through the use of fine-tuning pre-
trained models. Accuracies across multiple pre-trained models
including BERT, DistilBERT, and roBERTa are all reported to
be above 95% over 13 categories. Differing combinations of
input features (url, title, description) are also evaluated.

We see that with only website URLs, titles, and descriptions,
Garg et al. achieve an exceptional accuracy even with light-
weight models like DistilBERT. Although the implementations

presented in this paper are more computationally expensive
than Giacomo et al. and Choudhury et al.’s approaches due
to the architectures of specialized natural language processing
models, Garg et al. achieve exceptional performance without
lemmatisation, hyper-link scraping, or use of the entire HTML
web page. Additionally, the pre-trained models used in this
study are available in the popular Python machine learning
library HuggingFace [12], whereas the implementations in
the previous articles are closed-source requiring us to re-
implement them ourselves.

C. Tools and Methodology

This section outlines and describes the tools, libraries, and
methodologies used in our system.

1) Website Scraping - requests: requests is a core Python
library that provides the ability to send web-requests to URLs,
allowing for configurable options like time-outs and custom
request headers [13]. As our system needed a way to contact
website URLs to extract their website homepage information,
requests was chosen to fulfill this requirement for a number of
reasons. Firstly, requests is very light-weight library. Sending
only a single web-request to a website and getting a response
is very fast. Additionally, as there is no browser interface for
a web-request, no rendering is done client-side. This greatly
speeds up processing as rendering is slow, so avoiding it allows
for much faster processing speeds.

The requests library was therefore our choice for this system
as it provided the required functionality at a high level of
efficiency and performance.

Selenium [14], a browser-automation based web scraping
solution, was also evaluated. Selenium is a software driver
that allows users to control a browser, visiting websites and ex-
tracting the fully-rendered web-pages displayed in the browser.
A Python selenium library also exists [15], allowing control
of the Selenium web driver through Python code. Although
Selenium allows for proper rendering of web pages unlike
requests, the overhead of loading and rendering a website
is high. We investigated a Selenium-based website scraping
approach and found it performed far below the performance
threshold required of the system, with little gain compared to
the web-request and raw HTML based approach of requests.
Additionally, parallelization is much harsher on the system as
multiple web-browser processes must be created. Overall, the
benefits of the requests library were clear, as outlined in Table
I.

Table I
WEBSITE SCRAPING IMPLEMENTATION COMPARISON

Name Method Speed Overhead Native
Selenium Browser automation Slow High No
requests Web requests Very Fast None Yes

2) Database - SQLite: As our system aimed to classify a
very large dataset of websites, we required a way to store
and process this data efficiently. SQLite is a Python-supported
Database Management System (DBMS), with a core Python
module sqlite3 developed to allow easy interfacing with in-
memory or file-based databases. In contrast to traditional
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Table II
DATABASE IMPLEMENTATION COMPARISON

Name Paradigm Speed Overhead Native Support
MySQL Server-based Very Fast High No
SQLite File-based Fast None sqlite3

database systems that require a live server running, SQLite
allowed us to use local file-based databases. These databases
do not need to be running 24/7 and can instead be read and
connected to through the aforementioned sqlite3 module as
required. In a sustainability regard, this reduced our carbon
footprint and electricity usage as we did not require a dedicated
database server to be online at all times, instead being able
to read from local files with SQLite’s SQL-based interfaces
directly.

We used SQLite to store three different tables in our
database:

1) urls: This table contains all the URLs imported through
the --csv flag of the command-line interface, and
whether or not these websites are malicious.

2) website features: This table contains all the website
data (’features’) extracted by the website data extraction
subsystem. The url, title, description, keywords, and
error type (if an error was encountered during scraping)
for each website.

3) website category: This table contains only web-
site URLs and their accompanying category, popu-
lated by the classification model invoked with the
--classifyall flag.

With the sqlite3 module included with Python, we were
able to have the system create and initialise this database
when the --setup flag was invoked. Using a chain of SQL
commands, the tables are created and the urls table populated
- removing the need for the user to set up and integrate their
own database with the system. As SQLite is still an SQL-
based implementation, users can write their own scripts to
invoke SQL statements on the system’s database, providing
extra functionality to the user and providing yet another avenue
for further automation of the system.

We also investigated MySQL, an open-source relational
database management system (RDBMS) [16]. MySQL is a
database service, meaning that a database server must be
running and accessible from any machine that wishes to in-
terface with the database. This is a considerable sustainability
overhead as an additional server must be running at all times to
provide database access, consuming electricity and increasing
the carbon footprint of the system. As SQLite does not require
a database server, we chose to use SQLite over MySQL as the
overhead of running an additional database was unnecessary.
The benefits of SQLite are shown in Table II. Additionally,
the differences in paradigm between SQLite and MySQL are
detailed in Fig. 1.

3) AI Model - transformers: transformers is a Python
library developed by HuggingFace that provides pre-trained
models for numerous natural language processing tasks, in-
cluding text classification and sentiment classification [17].
transformers provides Python interfaces for the BERT-based

Figure 1. Paradigm comparison between SQLite and MySQL.

Table III
CLASSIFICATION MODEL IMPLEMENTATION COMPARISON

Library Model Accuracy Initialisation Classification
Scikit-learn Naive Bayes 42.15% Slow Fast
Scikit-learn SVM 44.45% Slow Fast
Scikit-learn XGBoost 46.40% Slow Fast
transformers DistilBERT 69.70% Fast Slow

models evaluated in [11], which allowed us to utilise one of
these models in our system. We used the DistilBERT model, a
lightweight natural language processing model from the BERT
family of models. By fine-tuning the DistilBERT model using
labeled website data collected from Kaggle [19], an online ma-
chine learning community, we were able to train DistilBERT
on website titles, descriptions, and metadata to output business
categories. However, fine-tuning DistilBERT with consumer
hardware took upwards of three days, so to avoid this problem
we used Google Colab’s free TPU machines accessible online
[20]. With this hardware specialised for machine learning, we
were able to fine-tune our DistilBERT model in under 12
minutes, resulting in the final classification model used in our
system. With this implementation, we were able to store the
model’s weights and biases as a “.pth” file, allowing us to
quickly load the model into memory at a later time.

scikit-learn, a Python machine learning library, was also
investigated. Scikit-learn is a library that provides implementa-
tions for a variety of classical AI models, such as Naive Bayes,
support vector machine (SVM), and XGBoost classifiers [18].
As the models provided by scikit-learn are less specialized
towards text processing, their performance and test accuracy
was lower than that of the DistilBERT model. However, these
models are also much more lightweight than the bulkier NLP
models so their classification speed is faster, but due to the
nature of the architectures, they are not able to take advantage
of TPUs. Ultimately, considering the benefits shown in Table
III, we chose to use the DistilBERT classification model.

As the lower classification speed of DistilBERT was not
a major restriction due to this project being intended to run
only once rather than live, we chose the DistilBERT model as
our website classification model. This provided the highest
accuracy overall, along with a faster initialisation speed -
meaning our --classify flag that classified only a single
website had less delay than if we were to use a classifical
model. The confusion matrix of the DistilBERT model also
displayed a significant decrease in confusion compared to the
scikit-learn models, shown in Fig. 1 and Fig. 2.
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(a) (b)
Figure 2. Confusion matrices of the (a) SVM and (b) DistilBERT classification models on the test data.

III. DESIGN AND IMPLEMENTATION

This section outlines both the conceptual design of the
system and its final implementation.

A. Conceptual Design

The system’s design consists of four modules that interact
with each other through specific function calls and interfaces,
the structure of which is shown in Fig. 3.

1) Database: The first module is the SQLite database
and wrapper class. This is a .db file generated through the
command-line interface using the --setup flag, storing the
list of URLs, scraped website data, and website categories.
The database is interfaced with through the sqlite3 library
included with Python, allowing for reading, writing, updating,
and deletion of rows in the database’s various tables through
SQL commands tailored to the needs of the other modules.
Our other modules do not execute their own SQL commands;
all functionality is contained within a specialised database
connection class that forms the interface for other modules
to integrate with the database and the data stored within.
This was a design choice to reduce the coupling between the
modules and increase cohesion, as only the database module
is responsible for data retrieval and storage. This module is
used by the command-line module to read website URLs, store
scraped website data, and to store website categories.

2) Website Data Scraper: The second module is the website
data scraper. This module is responsible for extracting website
data for a provided list of URLs quickly and efficiently using
a configurable number of sub-processes to achieve paralleliza-
tion. This module interacts with websites through the external
interface of web requests as a means to retrieve website
data, namely through the Python requests library. Additionally,
as this module has to manage multiple sub-processes and
progress information, its only interface is the ability to receive
a list of URLs and return the website data for each URL.

Figure 3. Project directory structure showing the SQLite database and the
four modules.

This improves cohesion with the clearly defined interface, and
reduces coupling between the modules as this is the only
module responsible for extracting website data and interfacing
with websites. Additionally, having this as a separate module
with a defined interface allowed us to swap out this module
for a Selenium-based scraping module during testing, without
having to change the code of other modules. The command-
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line interface module utilises this module’s interface to supply
URLs and extract data for the database’s stored websites.

3) AI Classification Model: The third module is the website
data classification model. This module is responsible for
receiving website data previously extracted by the website data
scraper module and classifying it into a business category; that
is, returning the website data’s business category as text to the
module calling this interface. By having the AI classification
module as a separate module with a clearly defined interface,
we were able to test multiple different classification models
by swapping them out through their interface in the command
line module - a benefit of the low coupling and high cohesion
this module split provides. This module’s interface is used by
the command-line module to dispatch scraped website data
and receive corresponding categories in return.

4) Command-Line Coordinator: The fourth and final mod-
ule is the command-line coordinator. This module is in charge
of both receiving commands from users through the command
line and coordinating other modules to achieve these requests.
This module also interfaces with the Google Safe Browsing
API through the pysafebrowsing library. This module receives
input through the command-line interface through a set of
command-line flags:

• --setup: Creates the local database file and configura-
tion files used by the other flags.

• --csv <path>: Invokes the Database module to load
the provided file path into the database as URLs.

• --scan: Invokes the Database module to retrieve
batches of URLs, invokes the Google Safe Browsing API
to detect malicious sites, and then invokes the Database
module to mark any malicious sites in the database.
Malicious sites are excluded from use by the other
modules.

• --scrapeall: Invokes the Database module to retrieve
batches of URLs, invokes the Website Data Scraper
module to scrape website data for the batches of URLs,
and then invokes the Database module to store website
data in the database.

• -classifyall: Invokes the Database module to re-
trieve batches of scraped website data, invokes the AI
Classification Model module to classify the website data
of each batch, and then invokes the Database module to
store website categories in the database.

• -classify <url>: Invokes the Website Data
Scraper module to scrape data for the provided URL,
then invokes the AI Classification Model module to
classify the scraped data. Afterwards, the category is
printed to the standard output.

B. Implementation

1) Database Connection: The database connection used to
read and write data by the other modules is implemented as a
single Python class, DatabaseConnection.py in the db folder.
This class has a number of functions used by other modules.
The implementation is as follows:

• Initialisation: The class can be instantiated with an op-
tional database connection string, being the path to the

website .db file. Upon initialisation, the sqlite3 library is
used to create a connection to the provided websites file,
using ’websites.db’ in the current folder if not provided,
stored in the ’self.connection’ field. The connection’s
cursor is also stored in the ’self.cursor’ field. A number
of SQL statements are also stored as local fields in the
class, used by the other functions to read and write data.

• storeWebsiteFeatures(self, features: WebsiteFeatures):
This function receives a WebsiteFeatures instance (a
wrapper object that stores only scraped website data for
a website). The fields of the website data are sanitised
to remove any invalid data, being encoded to UTF-8
and having any apostrophes escaped for use in SQL
statements. Finally, an SQL statement that stores the
website’s information in the website features table is
called, replacing any existing website data if applicable.

• uploadCSV(self, path: str): This function receives a path
to a CSV file, calling on the pandas library to read it
into a DataFrame which is then stored in the database
using the DataFrame’s to sql(table name, connection)
function, storing the list of website URLs in the urls table
of the database.

• storeWebsiteCategory(self, url: str, category: str): This is
a simple function, receiving a URL and a category to
associate with it. The function executes an SQL statement
that adds or replaces any data in the website category
table for the given URL, storing the URL and its asso-
ciated category. This function is used by the command-
line coordinator to store categorised websites during the
--classifyall command.

• storeWebsiteMaliciousness(self, url: str, malicious: bool):
This is a simple function, receiving a URL and a boolean
indicating if the website is malicious. The function exe-
cutes an SQL statement that adds or replaces any data in
the urls table for the given URL, storing the URL and its
malicious status. This function is used by the command-
line coordinator to store malicious websites during the
--scan command.

• getWebsiteBatch(self, size: int, skip: int): This function
receives a batch size and skip count. The function calls
an SQL statement on the database cursor that returns a
list of URLs of the provided size from the urls table,
skipping the first skip websites (sorted alphabetically).
Through this function, the command line coordinator is
able to paginate through the database’s URLs, processing
them in batches to reduce the chance of an error undoing
vast progress.

• getFeatureBatch(self, size: int, skip: int): This function
works the same as the getWebsiteBatch() function, in-
stead getting data from the website features table and
creating a new list of WebsiteFeatures instances to store
all the returned features. The size parameter determines
how many website features are returned, and the skip
parameter determines how many websites are skipped
(sorted alphabetically by URL) to allow for pagination
by the command-line coordinator module.

• getNumberOfWebsites(self): This is a simple function,
calling an SQL statement to retrieve and return the
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number of records in the urls table. This is used by the
command-line coordinator to know how many websites
and thus batches must be processed.

2) Website Data Scraper: The website data scraper is
implemented as a single Python class, ParallelRequestWeb-
Scraper.py in the scraping folder. The implementation is as
follows:

• Initialisation: The class can be instantiated with a config-
urable number of processes and a verbosity flag, storing
these parameters. However, no work is done until the
get features(self, URLs: [str]) function is called (in this
case, by the command line coordinator).

• get features(self, URLs: [str]): This function begins the
scraping process for the given batch of URLs provided
through the URLs parameter. First, two multiprocessing
queues are created for the URL input and website data
output. multiprocessing queues must be used so that the
data is available across the multiple sub-processes instan-
tiated later. If the verbosity flag is true, a tqdm progress
bar is initialised and displayed. Then, each provided URL
is added to the input queue and a new subprocess running
the runProcess(self, inputQueue: Queue, outputQueue:
Queue) function is created and started, repeated to match
the number of processes requested through the class
constructor. This function then waits until the input
data queue is empty, signifying completion of the sub-
processes’ website data scraping. If the verbosity flag is
set, the progress bar is constantly refreshed to display
the current status to the user. Finally, all sub-processes
are terminated, the progress bar is closed (if verbose),
and the output queue, now populated with website data,
is returned as the return value of the function.

• runProcess(self, inputQueue: Queue, outputQueue:
Queue): This function is what each sub-process created
by the previous function runs, taking in an input queue
and an output queue. This function loops infinitely,
grabbing a new URL from the input queue. With this
URL, a new WebsiteFeatures instance is created with
the provided URL (WebsiteFeatures is a simple wrapper
class designed to hold scraped website data and nothing
else). Then, the requests library is invoked to send a
single web request to the URL. If the website responds,
the BeautifulSoup library is used to extract the title,
description, and keyword metadata HTML tags of the
website if they exist. These values are then stored in
the previously created WebsiteFeatures instance. If an
error occurs during the web-request or during scraping,
parsing of the data is aborted and the error type and
message are instead stored on the WebsiteFeatures
instance. Finally, this website data is placed into the
output queue and the process is repeated. If there are no
URLs left in the input queue, the sub-process breaks the
loop and stops execution.

With this implementation, the website data scraper module is
responsible only for the gathering and parsing of website data,
and nothing else. Other modules can thus call on this module
to extract website data for a list of URLs for them.

3) AI Classification Model: The AI classification module
is implemented as a single Python class, BERTWebsiteClassi-
fier.py in the ml folder. The model is able to classify website
data into one of the following categories: Adult, Arts &
Entertainment, Autos & Vehicles, Beauty & Fitness, Books &
Literature, Business & Industrial, Computers & Electronics,
Finance, Food & Drink, Games, Health, Hobbies & Leisure,
Home & Garden, Internet & Telecom, Jobs & Education, Law
& Government, News, Online Communities, People & Society,
Pets & Animals, Real Estate, Reference, Science, Sensitive
Subjects, Shopping, Sports, or Travel.

The implementation of the classification model is as fol-
lows:

• Initialisation: The class can be instantiated with a
variety of parameters: model_path, input_data,
eval_data, epochs, target_col, output_dir,
and verbose. The model is then initialised as follows:
If input data, a pandas DataFrame, is not provided, the
model loads the ’training data clean.csv’ in the same
directory into the DataFrame as replacement. Then, the
model builds a mapping of each class label to a corre-
sponding integer id and vice versa. This is used during
inference to map the model’s numerical output to the
corresponding business category text, as the DistilBERT
model only outputs ids and not the class labels them-
selves. Then, if the model path is provided, the model is
loaded from the given folder. This parameter is used in the
command-line coordinator to load the pre-trained model
so that the model does not need to be fine-tuned again.
Otherwise, if the model_path is not provided, the
model is trained using the transformers library’s Trainer
class, training and evaluating the model on the input
training and evaluation data over the provided number of
epochs. This takes upwards of 3 days on consumer hard-
ware and was thus done on Google Colab’s free online
TPU machines. Finally, the model is finished and ready
for classification through the other classify website(self,
features: WebsiteFeatures) function.

• classify website(self, features: WebsiteFeatures): This
function is responsible for providing a classification in-
terface for the other modules, given a provided instance
of WebsiteFeatures. This function concatenates the url,
title, description, and keywords of the website features
and then tokenizes them using the model’s tokenizer. This
tokenized data is a conversion of textual data into data
the model can parse, e.g. “Hello World” becoming “193,
102”. The model then predicts on this tokenized input
and outputs a set of logits, where each logit is a float
value that indicates the model’s confidence that the input
is of the respective business category.
The highest value logit’s index is the index of the model’s
predicted id. Using this information, the index of the logit
is translated to the final business category predicted by
the model using the id to label mapping dictionary created
during initialisation, and the class label is returned to the
caller of this function. This is the only other function
used by the other modules.
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4) Command-Line Coordinator: The command-line coor-
dinator is the module that interfaces with the user through the
command-line, additionally allowing for automation through
scripting. This module is implemented in Main.py, in the root
directory of the project. This module handles a lot of general
functionality, split through multiple command-line flags. If
any of the provided flags require database access, a new
DatabaseConnection is created using the Database module.
The flags, and their implementations, are as follows:

• --setup: This command-line flag creates the web-
sites.db file used as the SQLite database, as well as
creating the .env config file. First, user is asked to confirm
that they wish to create and overwrite any existing files.
Then, the .env file is created using a template that
contains the number of processes to run at once, and
stores the user’s Google SafeBrowsing API key. After
creating this .env config file, the module uses the sqlite3
library to create a new websites.db file and connects to
it, executing a number of SQL statements on the connec-
tion to create the required tables (urls, website features,
and website category). Finally, the nz domains.csv and
au domains.csv are loaded as DataFrames and input into
the database using the pandas to sql() function, if they
are present. At this point, the database is ready to be
populated with website data and additional URLs, if
desired. The .env config file can also be configured by
the user to provide their own API key for SafeBrowsing
scanning, or to change the number of processes used
during website scraping.

• --csv <path>: This command-line flag takes in a path
to a .csv file containing URLs split by new lines. This
file is read into a DataFrame using the pandas library and
uploaded to the database using the DatabaseConnection
instance.

• --scan: This function paginates through the list of
URLs in the database using the DatabaseConnection
instance, with a batch size of 5000 (the max the Google
SafeBrowsing API can receive per request). Then, for
each batch, the Google SafeBrowsing API is queried
using the user’s API key stored in the .env config file. Any
malicious websites are marked as such in the database us-
ing the DatabaseConnection’s storeWebsiteMaliciousness
function. Additionally, all detected malicious websites are
written to a malicious websites.csv file created in the
current directory.

• --scrapeall: This function uses the DatabaseConnec-
tion instance to paginate through all the website URLs in
the database with a batch size of 10,000. With each batch
of URLs retrieved from the database, a new instance
of the website data scraper module is instantiated and
supplied with the list of URLs. Once the URLs have been
processed and the scraped website data is returned, each
WebsiteFeatures instance is stored in the database using
the DatabaseConnection. These batches are repeated until
all the URLs in the urls table have been processed,
populating the website features table.

• --classifyall: This function uses the DatabaseC-
onnection instance to paginate through all the scraped
website data in the database with a batch size of 1,000.
First, a new instance of the AI classification model is cre-
ated. Then, the database is paginated through in batches,
creating a new tqdm progress bar for each batch. Each
instance of website features is provided to the website
classifier, returning a business category. This returned
business category is stored in the database using the
DatabaseConnection’s storeWebsiteCategory() function.
This batch process is repeated until all the websites in the
website features table have been processed and classified,
populating the website category table.

• --classify <url>: This function does not use the
database connection, instead creating a single process
instance of the website data scraper. This scraper is
provided the given url, scraping and returning the website
data for it. Then, this website data is fed into a new
instance of the website classification model, returning the
website’s business category as text. Finally, this business
category is printed to the standard output. Note that the
verbosity of each other module is turned off in this
function, so that the only text printed to the standard
output is the business category of the URL. This allows
for automation-based scripting through the command line,
providing an interface for other languages or applications
to use this system.

C. Sustainability Considerations

This project does not pertain very strongly to the sustain-
ability rules set out by the United Nations, but the electricity
consumption and hardware strain caused by the long run-
time of this system are still considerable. To mitigate high
electricity consumption and strain on hardware used, the
following steps were taken:

• Firstly, the choice was made to use the file-based SQLite
implementation as our database instead of the MySQL
implementation. This allowed us to bypass the need for a
perpetually running database server, reducing electricity
consumption and e-waste generation significantly.

• Secondly, we designed our system to be efficient through
the use of singular web-requests and multi-processing
to reduce the processing time taken to execute the web
scraping and website classification of our dataset. Had
we used a Selenium-based approach for web-scraping
and not employed multi-processing, the run-time of the
program would have been greatly extended, consuming
more electricity and increasing the environmental impact
of the system.

• Thirdly, by using singular web-requests instead of
browser automation, we reduce the amount of web traffic
the system emits. As loading a web page through a
browser queries a variety of scripts, embedded images,
etc. utilising only a singular web request in place of
browser automation greatly reduced the bandwidth used
by the system, ensuring no impact was had on other users
of the same internet network.
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IV. EVALUATION

This section details the performance metrics used to evaluate
the solution, the results under these performance metrics,
and the limitations of the solution - along with possible
improvements through future work.

A. Performance Metrics

The performance metrics used to evaluate this system are
the following:

1) Websites Scraped Per Second: As our system will be
scraping website data for a vast list of websites, it is imperative
that the website scraping is efficient so as to reduce the amount
of time the project executes. A higher rate of websites scraped
per second results in a reduction of the time needed to run the
project, in turn reducing the amount of electricity consumed
by the system’s machine. Additionally, the faster websites can
be re-scraped, the more often we can update our dataset with
any changes to the websites. With these points, it is clear that
the system must be able to scrape website data at an acceptable
rate. As set out by the project requirements, we expect a rate of
at least 5 websites per second - allowing a dataset of 210,000
domains to be scraped in approximately half a day.

2) Classification Accuracy: As our system will be classi-
fying scraped website data into business categories, we aim to
achieve as high a classification accuracy as possible, defined
by the model’s performance on a test set of data after model
training is complete. However, we are not able to gather the
accuracy of the model on the entire list of 210,000 “.NZ”
domains as these domains are not labeled. Thus, we measure
the accuracy of the model such that we can extrapolate the
data to the rest of the unlabelled data.

3) Classification Confusion Matrices: We will also measure
our AI model’s classification accuracy through the use of
confusion matrices. Confusion matrices display the predicted
category and ground truth category of data points. This allows
us to see how often the model ’confuses’ different categories
with others. An adequate confusion matrix will have a brightly
colour line down the diagonal, indicating that the model is
predicting websites to be their true category.

B. Performance Results

1) Websites Scraped Per Second: Over the course of the
project, the system was executed a total of three times on
datasets of differing sizes using a count of 16 sub-processes.
This project was executed using a 3.6GHz processor with 12
CPU cores and 16GB of RAM. The website scraping speeds
from these runs are presented in Table IV.

Table IV
WEBSITE SCRAPING SPEEDS

Dataset Website Count Time Taken Websites/second
.nz 210,000 7 hours ∼8.33
.au 900,000 30 hours ∼8.42

.nz + .au 1,110,000 35 hours ∼8.48

We see that all the project executions resulted in a process-
ing speed of above at least 8 websites per second. This shows

Figure 4. Classification model accuracies on test data.

the system has exceeded the project requirement of a website
scraping speed of at least 5 websites per second, achieving
its goal of efficient website scraping. If the Selenium-based
approach was to be used, it is likely the system would not
have met the requirement. Additionally, if multi-processing
was not employed, the website scraping speeds would have
been roughly 16x lower, resulting in a scraping speed of
approximately 0.5 websites/second, falling far short of the rate
set out in the project requirements.

2) Classification Accuracy: As mentioned in previous sec-
tions, our final DistilBERT-based model achieved a classifi-
cation accuracy of 69.70% on the training data. This implies
that the classifier classifies 7/10 websites into their correct
categories, which is impressive given only the website title,
description, and keywords - combined with the fact that there
are 27 categories. The previously investigated classical models
did not perform as well, achieving 42.15% accuracy with
Naive Bayes, 44.45% accuracy with Support Vector Machines,
and 46.40% with an XGBoost classifier, as shown in Table V
and Fig. 4.

However, considering that approximately 40% of websites
do not have a description tag, there is room for improvement
through the use of other website features, as discussed in the
next section.

Table V
CLASSIFICATION MODEL PERFORMANCE

Name Test Accuracy
Naive Bayes 42.15%

Support Vector Machine 44.45%
XGBoost 46.40%

DistilBERT 69.70%

3) Classification Confusion Matrices: Presented in Figures
5, 6, and 7 are the confusion matrices of the models investi-
gated.

We see that the Naive Bayes and SVM models have
distinct noise around the non-diagonal values, indicating a
significant level of ’confusion’ between the ground truth labels
and predicted website labels. We see a distinct difference
in the confused categories between the SVM and XGBoost
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Figure 5. Confusion matrix of the Naive Bayes
classification model on test data.

Figure 6. Confusion matrix of the SVM clas-
sification model on test data.

Figure 7. Confusion matrix of the DistilBERT
classification model on test data.

classifiers. However, looking at the confusion matrix of the
DilstilBERT model, we see a notable improvement. There
are no distinct vertical or horizontal lines on the confusion
matrix, indicating that the DistilBERT model does not often
confuse one category for another. Instead, it performs well on
the classification task regardless of the true business category
of the website data. It is likely that with further feature
engineering and more specialized website data extraction, an
even higher level of accuracy could be achieved.

C. Project Results

As outlined in Table IV, this project was executed multiple
times. The final run of the project was executed with the
“.NZ” and “.AU” datasets combined, resulting in a total of
approximately 1,110,000 URLs processed. The results of the
website scraping and classification are presented below.

1) Malicious Website Results: As the websites in each
dataset were checked for maliciousness using the Google Safe
Browsing API before scraping, a number of websites were
detected as malicious. In total, 930 websites were detected as
malicious, with 716 of these websites being “.AU” websites
and 214 being “.NZ” websites. Interestingly, a majority of
these websites appear to be legitimate websites, often owned
by small businesses that are now marked as malicious and
deceptive by Google’s Safe Browsing API. This could indicate
that smaller websites are more likely to be targets for attack
by bad faith actors, but investigating this is outside the scope
of the project and could be an interesting avenue for future
work.

2) Scraping Results: During website scraping, multiple
errors were encountered and handled. The errors and their
counts are presented in tables VI and VII, split between “.NZ”
and “.AU” websites.

We see that the ConnectionError error was the most
common error type. This error signifies a website no longer
exists and can be used as an indicator of how many websites
are no longer online across the datasets. Using this metric,
we see that 50,302 of the websites in the “.NZ” dataset no
longer exist, a percentage of approximately 24%. Additionally,
235,722 of the websites in the “.AU” dataset were also no
longer online, a percentage of approximately 21%. This is

Table VI
.NZ DATASET SCRAPING ERRORS

Error Type Count
AttributeError 3718

ChunkedEncodingError 2
ConnectTimeout 3506
ConnectionError 50302

ContentDecodingError 2
Exception 23

InvalidURL 3
ReadTimeout 1419

SSLError 1429
TooManyRedirects 82

Table VII
.AU DATASET SCRAPING ERRORS

Error Type Count
AttributeError 23895

ChunkedEncodingError 12
ConnectTimeout 13200
ConnectionError 235722

ContentDecodingError 18
Exception 102

InvalidSchema 3
InvalidURL 15

LocationParseError 1
MemoryError 1
ReadTimeout 9664

SSLError 6453
TooManyRedirects 557

understandable as the dataset of URLs used is a few years
old as of 2023; this is discussed more in the Limitations and
Possible Improvements section. Additionally, these somewhat
high values suggest ∼20% of websites cease to exist after a
few years. This is quite a high turnover rate and could be an
interesting point to investigate in future.

Alongside the ConnectionError errors are many more
less common errors. An AttributeError indicates that
the website does not have a title, caused by the website
scraping program expecting one (however, this error is still
handled), being encountered 27,613 across the two datasets.
An SSLError indicates that the website’s SSL certificate
configuration is invalid and thus it is not safe to connect to the
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website, being encountered 7,882 times. The ReadTimeout
and ConnectTimeout errors were encountered a combined
total of 27,789 times during scraping. These errors indicate
a website that is online but taking too long to respond; this
could be caused by either heavy server load or an improperly
configured web server. The TooManyRedirects error oc-
curs when the web server attempts to redirect the connection
too many times; this was encountered a total of 639 times
during scraping and can often indicate a malicious website.
The remaining error types were encountered only very rarely,
the majority of which indicate either an invalid response by
the web server or invalid formatting of the response.

Additionally, not every scraped website contained title,
description, or keyword meta tags. Of the websites scraped,
only ∼62% contained a title tag. Every website scraped that
was missing a title tag also did not have any other tags. For
a classification model that expects at least a title, 38% of
websites not having any form of title can result in decreased
classification accuracy, as the model has only the URL to use
in classification.

3) Classification Results: Presented in Tables VIII and IX
are the category counts predicted for all the websites in each
dataset.

Table VIII
.NZ DATASET WEBSITE CATEGORIES

Category Count Percentage
Adult 113 0.05%
Arts & Entertainment 30,882 14.52%
Autos & Vehicles 2,541 1.19%
Beauty & Fitness 1,446 0.68%
Books & Literature 253 0.12%
Business & Industrial 40,977 19.26%
Computers & Electronics 84,568 39.76%
Finance 704 0.33%
Food & Drink 2,039 0.96%
Games 373 0.18%
Health 3,234 1.52%
Hobbies & Leisure 2,779 1.31%
Home & Garden 8,826 4.15%
Internet & Telecom 9,844 4.63%
Jobs & Education 3,357 1.58%
Law & Government 1,012 0.48%
News 389 0.18%
Online Communities 8,203 3.86%
People & Society 3,242 1.52%
Real Estate 1,004 0.47%
Reference 31 0.01%
Science 45 0.02%
Sensitive Subjects 22 0.01%
Shopping 4,253 2.0%
Sports 1,059 0.5%
Travel 1,514 0.71%

We see that the distributions of each category across the two
datasets are mostly similar, with minor variations per category.
We note that the Computers & Electronics, Business & Indus-
trial, and Arts & Entertainment make up the majority of the
website categories. This is likely due to the nature of these
websites being much more general than the other websites.
For example, Business & Industrial, in the original training
dataset, is used as a generic catch-all for most businesses and
companies that do not fall into the other categories. It is likely

Table IX
.AU DATASET WEBSITE CATEGORIES

Category Count Percentage
Adult 518 0.06%
Arts & Entertainment 126,648 14.3%
Autos & Vehicles 9,030 1.02%
Beauty & Fitness 5,653 0.64%
Books & Literature 953 0.11%
Business & Industrial 165,715 18.71%
Computers & Electronics 375,836 42.43%
Finance 3,626 0.41%
Food & Drink 7,560 0.85%
Games 631 0.07%
Health 16,109 1.82%
Hobbies & Leisure 10,221 1.15%
Home & Garden 36,134 4.08%
Internet & Telecom 37,357 4.22%
Jobs & Education 9,980 1.13%
Law & Government 4,622 0.52%
News 1,154 0.13%
Online Communities 29,724 3.36%
People & Society 11,953 1.35%
Real Estate 6,142 0.69%
Reference 169 0.02%
Science 144 0.02%
Sensitive Subjects 81 0.01%
Shopping 16,008 1.81%
Sports 4,835 0.55%
Travel 4,886 0.55%

Figure 8. Website category distributions across the .NZ and .AU datasets.

that with either more specialized categories & labels a less
weighted distribution would be seen.

However, there are some interesting points we can draw
from this data. For example, we see that NZ has a 10.4%
higher proportion of Shopping websites - possibly caused by
our isolation from other countries, driving an increased online
shopping market. The same is seen with Travel websites,
with New Zealand having a 30% higher proportion of Travel
websites than Australia (0.71% vs 0.55%) - likely caused by
tourism being one of our largest exports, especially compared
to Australia’s comparatively empty regions.

With an improved training set, label set, and features the
accuracy of this data could be improved as discussed in the
following section.
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D. Limitations and Possible Improvements

Although this system achieves its purpose, there is definite
room for improvements and additional functionality.

1) Outdated URL Lists: Although the lists of URLs used
with this system contains a vast number of websites, the list
itself is outdated - resulting in a lot of URLs and their websites
no longer existing online. With a more up-to-date version of
this dataset we would be able to retrieve more accurate data
and thus have a more accurate view of the web presence of
the countries we survey, as the roughly 200,000 URLs in the
“.NZ” dataset account for only 26% of the registered “.NZ”
domains as of 2022 [21].

2) Generalised Training Data: As the training data of the
classification model is very generalised with the Computers &
Electronics, Business & Industrial, and Arts & Entertainment
categories making up the vast majority of the labelled data, a
more specific dataset would allow for more specific classifi-
cation of websites. This would remove the heavily weighted
distribution that currently exists in both the predicted and
training datasets and would provide the classification models
more data to train with, especially in the categories that have
very few websites (Sensitive Subjects, Science, etc.).

3) Unreliable Website Data: As the classification model
relies on a website’s title, description, or keyword tags to
classify a website, not each website can be classified accu-
rately as many are missing these tags. Designing a system
that can dynamically extract important or specialised website
information in lieu of these tags could improve classification
accuracy along with increasing the range of websites that can
be classified.

4) Web Server and API: In its current state, the project is
contained entirely to the machine it is installed on. It cannot be
accessed from other machines through any means such as an
Application Programming Interface (API), or an online GUI
interface in the form of a website. A major improvement to
the system would be to make it available both online and to
other machines through both an API and website interface.
The API could be rate-limited or unlimited, requiring an API
key and allowing users to send website classification requests
over the internet. The system could then invoke the command-
line interface, or interface directly with the Python code, to
scrape and classify the provided URL, returning the business
category back through the API - or returning the cached
website category if it exists in the database. Additionally, a
website interface could be provided to showcase the API’s
functionality to users in a more user-friendly way. This could
be done through the Flask library, as Flask is a Python
library designed to allow for the creation of web-apps and
web APIs [22]. Finally, this extension could open the door to
commercialisation, as the API could provide batch processing
or unlimited access to users who pay a one-off or monthly
subscription fee.

5) International Website Dataset Classification: As this
project has access to a dataset of not only “.NZ” websites
but also other top-level domains (TLDs), the project could be
extended to classify all the websites available in this dataset.
This would require the setup of proper cloud infrastructure, as

executing the project on the entire dataset would require mul-
tiple machines working in tandem. As the full dataset contains
a list of approximately 247 million URLs across varying top-
level domains, new approaches would need to be taken, either
in scalability or delegation of work across multiple machines
hosted in the cloud. Additionally, sustainability would become
very important. It would be ethical to utilise a cloud hosting
provider who uses renewable energy, like Oracle Cloud whose
European datacenters are powered fully by renewable energy
[23].
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