
ENGR 489 (ENGINEERING PROJECT) 2023 1

A PSO-based Approach to IoT Workflow
Scheduling in Cloud and Edge

Logan Blokland

Abstract—IoT devices are becoming more and more common
every day and play a huge part of our everyday lives and with
these devices often having low processing power and availability
to resources they also make use of edge and cloud servers. With
all this information needed to be processed from different devices,
it must be decided on what and when they are processed. From
this, the IoT workflow scheduling problem is where we must
organize through the workflows that are generated from various
IoT devices and decide how they should be executed. To solve this
problem this project proposes a Particle Swarm Optimization
(PSO) based algorithm that can find a near-optimal solution
to IoT workflow scheduling in cloud and edge. This solution is
developed to focus on reducing both the energy and the makespan
of executing a set of workflows. With this proposed solution we
thoroughly evaluate and compare its performance showing its
advantages over standard techniques, alongside how it compares
the current state-of-the-art techniques using benchmark work-
flows which show the algorithm’s ability to efficiently find a near
optimal solution.

I. INTRODUCTION

The IoT workflow scheduling problem in cloud and edge
is where we must organize through the workflows that are
generated from various IoT devices and decide how they
should be scheduled in available resources in cloud and edge.
There are multiple options to execute the workflow, these being
locally on the IoT devices, they could also be run on edge
servers or they can be processed externally through cloud
servers. This can be a complex problem as there are many
factors that need to be taken into account for optimizing
different objectives such as energy consumption, response
time, or other aspects on a large scale.

IoT workflow scheduling is an important problem with
the increasingly large amount of IoT devices producing in-
formation that needs to be processed optimally. As many
devices have limited processing power, memory or even lim-
ited power consumption, having effective workflow scheduling
can optimise these resources including cost making it an
important aspect study. To process all of this information
the applications can rely on cloud servers, edge servers or
even the devices themselves for computing resources. This
workflow scheduling problem is a combinatorial problem as
we aim to find the optimal assignment of tasks into a set
of resources in the optimal order which in turn has a large
number of possible combinations. There are current solutions
available, but the aim of this project is to develop an algorithm
that can effectively find near-optimal solution of distribution
plans to optimally process the incoming data in real-time from
outputting IoT devices.

This project was supervised by Hui Ma, and Aaron Chen.

The proposed algorithm will be a swarm intelligence algo-
rithm which are well known to handle combinatorial problems
efficiently by being able to explore the large set of solutions
quickly and converge on an optimal solution. The aim of this
project is to propose and evaluate an PSO-based algorithm that
can find a near optimal solution to IoT workflow scheduling
in cloud and edge.

A way this project could affect the environment is through
potentially minimising the energy consumption used by run-
ning these IoT devices, this likely will not have any major
impact but may improve energy consumption slightly even if
it does not affect the big picture. By optimising the scheduling
using our objective function this project will have tangible
effects on energy consumption by minimising the overhead
introduced dy inefficient data processing. This consideration
of energy efficiency is a step towards the goals of environ-
mental sustainability as well as encouraging more sustainable
technology usage. Apart from this energy consideration, this
project not have any other major effects on the environment
or sustainability.

II. RELATED WORK AND BACKGROUND

The main methods used to solve scheduling problems are
generally heuristic solutions [1], mathematical optimization
approaches, or AI/Evolutionary approaches [2]. Heuristic ap-
proaches are commonly used due to them being relatively
simple, efficient, and able to produce satisfactory results in a
reasonable amount of time. These generally work by utilizing
simple rule-based techniques to make decisions on how to
allocate tasks. Heuristic solutions although they are generally
easy to implement compared to other methods as well as being
efficient, they are generally unable to handle more complex
scenarios or may be unable to find globally optimal solu-
tions. Evolutionary approaches instead generally provide more
complete solutions with a more comprehensive exploration of
the search space, and as such this project will be focused of
evolutionary approaches. Swarm intelligence [3] is a key idea
that contains PSO, swarm intelligence relies on many different
beings of a swarm communicating with each other allowing
them to quickly and effectively explore the search space, this
allows them to work efficiently on combinatorial problems like
task allocation [3].

A recent paper was published where a method is proposed
in which a memetic genetic algorithm can be used to solve
the workflow scheduling problem [4]. This technique proposes
a representation in which the solution is represented by a
chromosome. Within this chromosome, each gene corresponds



ENGR 489 (ENGINEERING PROJECT) 2023 2

to a unique task in a workflow. The value of each gene in
this chromosome represents the device that each task will be
assigned to by using the device’s type and index number. This
sequential list representation is similar to what is being used
in the proposed PSO algorithm as it is a clear and efficient
way of representing the task allocation. Instead in our solution
rather than using a tuple to reference the devices, we will
be using a single index pointing to a device. This method
also utilized a local search algorithm which in turn reduced
the communication time and the cost required for execution.
The results of this paper are going to be used to compare
the performance of the developed PSO algorithm, comparing
the same outputs shown in the paper, such as makespan and
energy consumption. Using this we will be able to verify if our
algorithm is able to reach our goal of achieving near-optimal
results and to see how it compares to the GA algorithms
shown in the paper. While these GA solutions perform well at
finding optimal solutions, without the aid of local search, GA
generally requires a larger population size, as well as requiring
more generations to converge than PSO would and being a
slower algorithm computation-wise in general [5] [6]. This
is important as with scheduling in real time PSOs ability to
quickly converge on an optimal solution makes it a promising
solution to this problem.

III. IOT WORKFLOW SCHEDULING

Fig. 1. Overview of scheduling problem

The workflow scheduling problem is where we must or-
ganize through the workflows that are generated from various
IoT devices and decide how they should be executed. There are
multiple options to execute the workflow, these being locally
on the IoT devices, they could also be run on edge servers
or they can be processed externally through cloud servers.
This can be a complex problem as there are many factors
that need to be taken into account for optimizing different
objectives such as energy consumption, response time, or other
aspects on a large scale. This workflow scheduling problem
is a combinatorial problem as we aim to find the optimal
assignment of tasks into a set of resources in the optimal order
which in turn has a large number of possible combinations

Within this problem, we define a workflow WF which
contains the IoT device that generated the workflow, and
a directed acyclic graph that contains the information of
each task t as a node and its dependencies represented by

an edge on the graph (t, t’). Alongside this, we also have
the generated solution Y which contains the information of
allocation configurations according to each task in each given
workflow to a device. These devices are chosen from a set of
either IoT devices, fog servers, or cloud servers. Each of these
devices can have varying attributes including the computing
capacity, power consumption, and number of devices.

Oenergy(Y ) =

K∑
i=1

Energy(WFi, Y ) (1)

Omakespan(Y ) = max
i∈{1,...,K}

CT (WFi, Y ) (2)

Ocombined(Y ) = wÕmakespan(Y ) + (1− w)Õenergy(Y ) (3)

The fitness evaluation that needs to be minimised is calcu-
lated using the equation defined in 3. The objective function
we are using allows for the balance of importance of either
makespan or energy. This can be done by modifying the weight
w, which is a value with 0 and 1 that will control the ratio of
importance to consider between the two values. Through this
we can analise the particles fitness in multiple different ways
including makespan, energy consumption, or both. Both these
energy and makespan calculations can be found in IotGA [4].

The energy calculated in 1 is done by finding the energy
taken by each task and an in-depth equation can be found in
[4]. But in a brief overview the energy is found by considering
the energy consumption by any IoT device and the energy
consumed from data communication between any device. So
in the case of a task being executed on a device that is
not the source IoT device it came from (e.g. could or edge
devices), the energy will be calculated by considering both
the idle power consumption of the IoT device and the power
consumption from the data communication.

As for the makespan calculation, it can simply be found
by going through each task in a workflow and finding the
completion time of each task, then returning the max. This
completion time must consider the communication delay be-
tween devices, as well as the dependencies that the current
task has. These dependencies can be of two types, the first is
a workflow dependency where one task depends on another in
a given workflow. The other is a allocation dependency, where
if both tasks are allocated to the same device as they must be
executed sequentially.



ENGR 489 (ENGINEERING PROJECT) 2023 3

IV. PSO-BASED IOT WORKFLOW SCHEDULING

A. Representation of solution

Fig. 2. Representation of PSO particle

Each solution is represented by a particle as shown in Fig
2. Permutation encoding is used to represent each particle as
a list of numbers. Each index in the particle will correspond
to a single task and will be ordered in the logical order that
tasks are stored, e.g., index 1 = wf1 task 1, index 2= wf1 task
2, index 3 = wf2 task 1 etc...

The value that is stored in each of these task indexes will
correspond to a unique device that the task will be assigned
to. This is represented by a number that when rounded to the
nearest integer can be used to index a unique device.

Each of the devices used will be assigned a unique number
that is used to index them from the particles representation.
The way in which the devices are ordered is something to
consider, as the way in which are aligned may have an effect
on how efficiently the algorithm may perform, as they likely
can be grouped in some way that improves efficiency. In our
solution the devices are being grouped in the order they were
created, which are the three types of devices, first IoT devices
second edge/fog servers then the cloud servers. This orders
them in a way in that ranks them using processing speed
so that the lowest speeds are first (e.g., IoT devices) then it
moves to faster computation speed the further down the list
you go (Fog/Edge to cloud servers). Although in our case it is
not necessary to take this into account, but if various devices
within the same group have varying speeds or capacities, it
would be a good idea to logically arrange them within their
group in an order that might be used to sort the groups, e.g.,
from slowest to fastest.

The population is created by randomly creating N particles.
Each particle will be assigned a randomly selected number
within the bounds of the number of devices onto each of the
given tasks. For example a simple particle of (4, 2, 1, 6) would
assign task 1 to device 4, task 2 two to device two, task 3 to
device one, etc...

B. Fitness Evaluation

The fitness evaluation of each particle will be calculated
using the equation 3. Through this we can analise the particle’s
fitness in multiple different ways including makespan, energy

consumption, or both, depending on the weight set. For the
majority of our testing and all of the results shown in this
paper, a weight of 0.5 was set so that we could obtain an
equal balance of both makespan and energy. But If need be,
this can be changed so that either aspect could have priority
over another.

V. EXPERIMENT EVALUATION

For the evaluation, I will be comparing this PSO method
against other various methods by using the same datasets and
running each method 30 times using the same random seeds
for each of the runs. I will be comparing the results of each
method’s total makespan and other relevant values such as
the convergence speed of each algorithm. When running these
algorithms we need to run each one at least 30 times so that we
can make sure the results produced are valid and of statistical
significance. When running these tests we will be using the
same set of random seeds (for each 30+ tests) on each of the
algorithms that we will be comparing to make sure the results
are fair.

On each of the problems that will be tested on, the results
can be collected analising both the total makespan of the
final schedule and the total Energy consumption. Along side
this evaluation can also be done on each of the algorithms’
convergence curves in order to see which of the options
converge on an optimal solution the most efficiently.

A. Datasets

The main datasets that will be used to analyse the perfor-
mance of the proposed algorithm are the problem instances
that were used in the IoTGA paper [4].

The main source of data for evaluating the performance
of the algorithm are the problem instances that were used
in the paper [4]. These problem instances will be used as
a benchmark for assessing the algorithm’s ability to produce
near-optimal solutions. The datasets used are that of real-
world workflows, allowing for an accurate insight of how this
algorithm would perform in real-world scenarios.

B. Development Tools and Methods

The main tool used in this project was the use of python, as
this language has a lot of support for artificial intelligence tech-
niques and algorithms and has many different statistic tools
which were extremely useful during the evaluation process. In
python the DEAP framework was used which provided key
tools and structure streamlining the process of developing the
PSO algorithm.

There was also access to Labs and computers through the
university were used to aid the development of this project. An
extremely useful tool that was used to aid in the evaluation of
the performance of the solution was the ECS computing grid.
This allowed for me to send out jobs to be run that can use
superior processing power as well as being able to schedule
multiple jobs at once. This makes the process of analysis much
more efficient as I was able to schedule mainly 30 or any
number or runs of an algorithm at once and allow the job



ENGR 489 (ENGINEERING PROJECT) 2023 4

to process overnight leaving the results to be compared and
analysed without worrying about running the program on my
machine.

C. Parameter Settings

The setting parameter settings used while evaluating the
performance of the different algorithms it is important to keep
all of the parameter setting the same as to be sure the results
are fair to one another. As such, in order to compare results
with IoTGA [4] the population size and maximum number
of generations were adopted as 50 and 300 respectively. As
for PSO-specific parameters such as the inertia weight, max
velocity, and accelerate constants c1 and c2, these parameters
are currently set to be as generally recommended values [7]
such that c1 = c2 and are in a range of 1-3.

Parameter Value
Number of IoT devices 4
Number of Fog/Edge servers 6
Number of Cloud servers 3
Bandwidth of LAN 2000 KB/s
Bandwidth of WAN 500 KB/s
Delay between IoT and Fog 0.5 ms
Delay between IoT and Cloud 30 ms
Computing capacity of IoT devices 500 MIPS
Computing capacity of fog servers 3000 MIPS
Computing capacity of cloud servers 4000 MIPS
Idle Power Consumption of IoT device 0.3 W
CPU Power Consumption of IoT device 0.9 W
Transmission Power of IoT devices 1.3 W

TABLE I
SYSTEM PARAMETERS

In table I above are the parameters specific to the IoT
workflow scheduling problem. These parameters are defined
in [8] and will be used across all competing algorithms and
workflow problems. From [8] these parameters for things such
as bandwidth, computing capacity and communication delay
are commonly used settings that are used in both real-world
applications and in other literature such as in [4].

D. Results

Makespan Energy Combined fitness
GA 17.94 ± 3.03 11.53 ± 7.12 0.115 ± 0.029

IoTGA 15.80 ± 2.10 7.08 ± 3.19 0.092 ± 0.014
PSO 13.32 ± 4.50 8.32 ± 5.66 0.084 ± 0.027

TABLE II
COMBINED ENERGY AND MAKESPAN COMPARISON

Above we can see table II which shows the average total
makespan, energy, and the combined weighted fitness of
each algorithm being compared. After performing a Wilcoxon
ranked test with a significance level of 0.05 on the obtained
results, it shows that on the compared populations both IoTGA
and PSO reject the null hypothesis when comparing its energy
against standard GA. From this analysis we can conclude that
there is statistical evidence to support that the distribution
between the compared data has shifted away from zero to
a significant degree validating its significance.

When performing a Wilcoxon ranked test on makespan and
the fitness, it shows that it fails to reject the null hypothe-
sis. We can conclude from this that the overall fitness and
makespan PSO does not have statistical evidence to support
that the distribution between has shifted away from zero to
any significant degree.

Although through the wilcoxon ranked test no statistical
difference can be found, we can still draw conclusions on
the date based on their performance. Even though some did
fail the wilcoxon test, their p-vales were close such as 0.07,
alongside this we may need more sample data to fully conclude
its significance, but overall with these results we do not have
enough evidence to confidently assert a difference. Although
as can be seen in the table, the worst performing algorithm
across all aspects was standard GA, with both IoTGA and PSO
being able to outperform it in obtaining lower fitness values.

Fig. 3. Boxplot showing distribution of minimum energy obtained by
competing algorythims

As seen in Table II the energy consumption of both GA and
PSO have relatively high standard deviations when compared
to IoTGA. We can explore the reason for this by using the
box plot above in Figure 3. As seen clearly in the plot, the
median value of all three algorithms are very similar but both
PSO and GA have much higher upper whiskers and outliers.
As IoTGA is much more efficient with its upper ranges, it
has a much smaller standard deviation compared to the others.
This is due to its local search that is implemented allowing for
more rapid improvements of solutions. While this is true it can
still be seen that PSO does outperform GA with is much lower
inter-quartile range, on average providing better solutions than
GA.



ENGR 489 (ENGINEERING PROJECT) 2023 5

E. Further Analysis

Fig. 4. Convergance of PSO

The convergence curves shown in the graphs above show
the performance of the three competing algorithms averaged
over 30 runs on a test set of workflow data.

After analyzing the minimum energy obtained in this graph
4 it is clear that the algorithm is able to quickly converge
towards a minimum value showing that it can achieve a high-
quality solution to the given problem dataset. It can be seen
that again GA is the worst performing of the three algorythims,
both in the case of its relatively slow convergence speed, as
well as its final overall value. On the other hand our proposed
algorithm is able outperform standard GA (sGA), as can be
observed in the Fig 4, it is able to converge much faster as it
reaches its final range of values around 50 generations, while
standard GA needs 100 generations to converge to its final
value. While it does perform well compared to sGA, it does
not perform as well as IoTGA in both convergence and the
final obtained value, this is due to IoTGAs utilization of local
search techniques which allows for faster convergence and a
better obtained solution.

Fig. 5. Effect of different weights on energy

The above graph shows the different convergence curves of
the total energy obtained by our PSO algorithm using a number
of different weights for the computed fitness values. Each line
on the graph represents a different ratio of makespan to energy,
for example, 2080 represents a weight of 0.2 makespan and 0.8
energy. As seen in the graph once the ratio reaches 0.7:0.3 the
results begin to become much more fluctuates, as the energy
has less and less influence on the value of the fitness. And
on the other end a ratio of 0.6:0.4, there is little improvement
to be seen amongst the differing values. From these results
we can conclude that it is optimal to use a value that roughly
balances the influences of both characteristics in order for the
optimal value to be found. We can also see that the 50:50 ratio
that has been used in all of the main evaluations is an optimal
way to run this algorithm.

VI. CONCLUSIONS

A. Future work

Some future work that could be done would be to utilise
this representation of the problem to further improve on the
results obtained, some ways could include to have a better
particle initialization or introducing a local search technique
to further improve on solutions.

One possible local search technique that could be imple-
mented that we discussed was where you are to look at
the longest edge on the graph or the task with the largest
communication time. When this edge is found you can then
assign either task to a random new group of devices or
allocate both tasks onto the same device group in order to
minimise communication time. A similar technique could be
implemented when looking at the initialization of the particles
as well such as putting an importance on communication time
between tasks on different machines or the processing time of
each task such as the technique implemented in [9].

B. Conclusion

In conclusion, this project tackles the key problem of IoT
workflow scheduling, a challenging issue brought on by the
large number of IoT devices in our daily lives. Effective
workflow scheduling becomes necessary because these devices
frequently have low processing power and few resources,
dictating when and how certain tasks are done. As workflows
can be done locally on IoT devices, remotely through cloud
servers, or locally on edge servers, the complexity increases,
needing careful consideration of issues like energy usage and
makespan.

To address this complex issue, we put forth a Parti-
cle Swarm Optimization PSO-based method that finds near-
optimal scheduling for IoT workflows in cloud and edge
contexts. Our algorithm showed its ability in obtaining near-
optimal solutions through performing comparisons against
other approaches utilizing benchmark workflows. In conclu-
sion, our algorithm presents a potential approach to solving the
problems associated with IoT workflow scheduling and pro-
poses points where further research can be performed looking
into the effectiveness of PSO on the IoT workflow scheduling
problem. The significance of effective and sustainable resource



ENGR 489 (ENGINEERING PROJECT) 2023 6

utilization cannot be emphasized, and this initiative is a step in
that direction as we continue to see the extensive integration
of IoT devices into our lives.

REFERENCES

[1] J. Wang and D. Li, “Task scheduling based on a hybrid heuristic algorithm
for smart production line with fog computing,” Sensors, vol. 19, no. 5,
2019. [Online]. Available: https://www.mdpi.com/1424-8220/19/5/1023

[2] B. M. Nguyen, H. Thi Thanh Binh, T. The Anh, and D. Bao Son,
“Evolutionary algorithms to optimize task scheduling problem for
the iot based bag-of-tasks application in cloud–fog computing
environment,” Applied Sciences, vol. 9, no. 9, 2019. [Online].
Available: https://www.mdpi.com/2076-3417/9/9/1730

[3] J. Odili, M. N. M. Kahar, A. Noraziah, and S. F. Kamarulzaman, “A
comparative evaluation of swarm intelligence techniques for solving
combinatorial optimization problems,” International Journal of Advanced
Robotic Systems, vol. 14, no. 3, p. 1729881417705969, 2017.

[4] A. Saeed, G. Chen, H. Ma, and Q. Fu, “A memetic genetic algorithm
for optimal iot workflow scheduling,” in Applications of Evolutionary
Computation: 26th European Conference, EvoApplications 2023, Held
as Part of EvoStar 2023, Brno, Czech Republic, April 12–14, 2023,
Proceedings. Springer, 2023, pp. 556–572.

[5] C. A. S. Lima Jr, C. M. F. Lapa, C. M. do NA Pereira, J. J. da Cunha,
and A. C. M. Alvim, “Comparison of computational performance of ga
and pso optimization techniques when designing similar systems–typical
pwr core case,” Annals of Nuclear Energy, vol. 38, no. 6, pp. 1339–1346,
2011.

[6] S. Panda and N. P. Padhy, “Comparison of particle swarm optimization
and genetic algorithm for facts-based controller design,” Applied soft
computing, vol. 8, no. 4, pp. 1418–1427, 2008.

[7] Y. He, W. J. Ma, and J. P. Zhang, “The parameters selection of pso
algorithm influencing on performance of fault diagnosis,” in MATEC Web
of conferences, vol. 63. EDP Sciences, 2016.

[8] M. Goudarzi, H. Wu, M. Palaniswami, and R. Buyya, “An application
placement technique for concurrent iot applications in edge and fog
computing environments,” IEEE Transactions on Mobile Computing,
vol. 20, no. 4, pp. 1298–1311, 2020.

[9] B. Jarboui, S. Ibrahim, P. Siarry, and A. Rebai, “A combinatorial
particle swarm optimisation for solving permutation flowshop problems,”
Computers & Industrial Engineering, vol. 54, no. 3, pp. 526–538, 2008.


