
1

ENGR 489 (ENGINEERING PROJECT) 2023

Mobile Automation Testing Framework and QA

Dashboard

Isaac Troy Robles Atienza

Abstract— This project has two parts. The first is on the

evaluation and implementation of an automation testing

framework for a mobile application, Onsite, and the second is on

the design and creation of a dashboard for the Quality Assurance

(QA) team at Valocity. Onsite is a mobile application for property

valuations in India with a focus on alleviating its complex,

inaccurate, or missing property addressing. The introduction of

the automation testing framework for Onsite minimizes potential

erroneous code leaks to production and reduces the time and cost

of pushing to production. The final solution has proven to be

sufficient as it can produce the functionalities of the application in

the testing scripts efficiently while giving complete control over the

scripts to the programmer. However, divergence occurred from

the original goal after Onsite faced major User Interface (UI)

changes that would invalidate the efforts of automation, resulting

in a shift of focus. As for the second part of the project, the QA

Dashboard was implemented to provide an overview of the

automation status of the different projects and squads within

Valocity. The final solution for the dashboard proves to be more

than satisfactory as per stakeholder and end-user feedback.

Specifically, the managers can utilize the dashboard during

stakeholder sessions to show the overall automation status, while

the QA team can determine priorities for the upcoming sprints

based on areas lacking manual or automated testing.

Index Terms—Automation, Data Visualization, Database System,

Design, Mobile Application, Restful API, Software Development.

I. INTRODUCTION

NDIA has been facing house-addressing issues that make it

difficult to distinguish and recognize properties [1, 2, 3, 4].

These house-addressing issues are costly and prohibit

inhabitants of households without a legitimate address from

accessing bank accounts and receiving mail at home. Without

actual addresses, households are forced to be distinguished by

their surrounding landmarks and the description of the

households’ occupants. This makes it difficult to locate and

determine the target destination if the weather is suboptimal or

if the finder is not previously acquainted with the household

occupants. Additionally, this house-addressing issue persists

and affects the property valuation process because the valuers

are highly unlikely to be acquainted with the owners or previous

owners of the property. Therefore, to minimize this issue,

Valocity has developed Onsite, a mobile application that adds

verbose visualizations and detailing for property valuations.

Onsite is a Flutter-based mobile application that is designed

to be utilized in situ. Here, valuers can take snapshots and make

This project was supervised by Philip Hu (industry) and Simon McCallum

(academic).

detailed descriptions during their valuations to avoid any

potential addressing confusion. However, although Onsite has

been released for about two years, there has been 0%

automation coverage prior to this project. This lack of test

automation can exponentially slow down both developers and

manual testers with every release and it can introduce potential

regression in the application. Therefore, to overcome the

uncertainty in releases and streamline the application’s

development, Onsite’s test automation framework project was

established, where common frameworks and tools were

evaluated, and then implemented.

Goal 10, Reduce Inequality Within and Among Countries

[5], is directly tied to Onsite’s development and quality

assurance. This is because Onsite enables countries that have a

lack of house addresses, like India, to perform property

valuations similar to other countries without the need for proper

addressing to distinguish properties. Furthermore, inequality

within the country of India is also minimized as OnSite’s

valuation process enables property valuations of slum-like

properties and that of the higher-end alike, with or without

addresses.

The final solution for Onsite’s automation testing framework

includes the utilization of WebdriverIO, Appium, Android

Studio, and BrowserStack. Here, Appium provides a range of

device-like functions like shake, rotate, etc, and enables the

execution of the test scripts written in the WebdriverIO on a

locally emulated device. On the other hand, BrowserStack

enables the execution of the test scripts on a multitude of real or

simulated devices on the cloud. The frameworks and tools were

chosen based on an extensive list of available solutions and were

scored based on a list of requirements provided by the industry

supervisor. The highlights of the comprehensive comparison

where I compared over 100 different frameworks and their

results, are discussed in the later Design section. The reliance on

an existing testing framework was expected in this project since

the creation of a new framework from scratch was out of scope.

The evaluation and comparison of the many different testing

frameworks was one of the key deliverables for Onsite. A

presentation of the key findings was held to the industry

supervisor, where feasibility and adherence to the provided

requirements were tested. Therefore, approval of the proposed

potential designs was the first metric for the project. Another

key deliverable for the automation framework is the setup and

implementation of the final testing framework for both

simulated and emulated devices from BrowserStack and

I

2

ENGR 489 (ENGINEERING PROJECT) 2023

Appium + Android Studio respectively. The main goal for this

deliverable was on future code maintainability and flexibility

and it concluded with a presentation to the QA team at Valocity.

Lastly, the final and original goal of 40-50% code coverage has

changed, and the focus was instead shifted to the code

architecture. This was due to a shift in business priority that

would invalidate test scripts written for Onsite had they been

written. Therefore, the metrics on code readability,

maintainability, and correctness were emphasized, and code

architecture had to reach a high likeness with the automation

team’s web testing frameworks for extensibility purposes.

The previously mentioned shift in business priority not only

resulted in the change of goals for the first half of the project,

but it also resulted in major changes for the second half of the

project. Specifically, the second portion migrated from the

continuation of web automation to the complete redesign of the

QA dashboard. Although this change was unprecedented, it

proved to be manageable given the existing code infrastructure

and suggested shortcuts from the previous owner and industry

supervisor.

The QA dashboard is a visualization tool for the QA team

and its manager. It shows the current automation status of the

different projects within the different squads in Valocity.

Specifically, this dashboard provides the QA team with a tool

to manage their upcoming priorities, and the manager with a

quick overview of the overall automation for stakeholder

sessions and meetings. It was written using the React

framework and it utilizes the Material UI and Chart.js libraries.

The dashboard’s redesign was proposed since the previous

implementation proved to be under-utilized and missing a

couple of features that would make it an effective visualizer.

The implementation of this dashboard is important as it is

becoming increasingly complex to distinguish between features

with ample automation versus features that are strictly manual

as the company grows. Additionally, the information on

regression testing time, pipeline status, and Azure DevOps test

plan structure, could further streamline processes within the QA

team at Valocity, while also improving transparency within the

different squads and projects. The goals for the QA dashboard

include successful integration into the QA team, approval from

the manager, and numerous performance and correctness

metrics. Strategies like caching, efficient database querying,

and User Interface (UI) interactivity were implemented to

overcome these challenges. The implementation and decisions

of these strategies can be seen in the later sections.

II. RELATED WORK

A. Onsite Testing Framework

Due to the nature of this portion of the project befitting a

unique use case, background research is limited and oftentimes

not applicable. Specifically, throughout this half of the project,

there was significant difficulty finding references or other

projects with a similar goal online, apart from general

suggestions of frameworks from varying websites trying to sell

their product. Therefore, the focus for this section is on the

adherence to general good practice, and to personal and shared

experience relevant to the topic.

Firstly, mobile automated testing has significant friction.

Some companies glorifying it, and many others condemning it,

especially UI automation. One of the latter’s main points is that

mobile automation brings unnecessary overhead and work since

testing scripts are very fragile when paired with a volatile

mobile application. This is especially the case for hybrid mobile

applications since it generally means that the application is

lightweight and of small scale. In fact, the aforementioned

business shift resulted in many of the finalized features of

Onsite to change, causing the halt of the code coverage metric

for the project, and reinforcing the idea that automated testing

should be avoided for lightweight mobile applications.

However, as the application and its users get larger, the cost

of automated versus manual testing is justified, and this is

reflected in [6]. Moreover, Heusser states that the introduction

of automated testing reduces human error from tedious and

complicated tasks, therefore explaining Valocity’s push for

automated testing with their plans to expand Onsite. However,

I believe that Onsite is still in its early stages and the shift to

avoid extensive automation scripting is more than justified,

given the current volatility of the application. The project with

its shifted focus on creating the backbone for future testers

should therefore be sufficient, and future work on the project

could be on the extension of the basic scripts written after

Onsite has been further finalized.

Other gripes and potential challenges for mobile automation

testing can be seen in [6] and [7], and these should be

considered in the future when extending the testing framework.

Of these challenges, the most problematic for Onsite would

most likely be simulating real-life scenarios since the current

solution is purely using emulated and simulated devices. This

could be resolved by implementing localized end-user testing

in India; however, this is far out of scope for the project.

Instead, the solution’s inclusion of BrowserStack minimizes

this issue, along with many other common challenges listed in

[7], since it enables the quick simulation of a multitude of

devices with varying types, generations, and operating systems.

B. QA Dashboard

Unlike the first half of the project, this portion of the project

allows for significantly more background research and related

work. There are many templates, common good practices,

frameworks, and libraries that are freely available to avoid

having to reinvent the wheel. This significantly eased the

implementation of this portion of the project on the QA

dashboard and provided a wider pool of possibilities. However,

as discussed in the upcoming Design section, several

constraints have been placed to avoid additional costs.

Some of the templates used for influence can be found in [8],

and the previous and now current iteration of the QA Dashboard

utilizes one of these templates as the foundation. This was one

of the strict requirements of the QA Dashboard to avoid having

to worry about the frontend to focus on the backend. Had the

project been made with Bootstrap or something similar instead

of Material UI, I believe that the project would still have turned

3

ENGR 489 (ENGINEERING PROJECT) 2023

out with a similar result since these front-end frameworks are

very extensive and more than sufficient for a lightweight and

quick web application, like the QA Dashboard.

The old version of the QA Dashboard was the main point of

reference throughout this project, and it acted as the launching

pad. Its extension and redesign were fueled by the feedback of

the QA team and the original owner, after realizing that it failed

to meet its expectations and display the needed information.

Therefore, a new side project was created with new

requirements and constraints.

There is a stark difference between the old and the new

iterations in both the functionality and the UI side. Firstly, the

company’s colors and fonts were applied to improve likeness

and promote familiarity with its users. Secondly, navigation

was extended, and information hiding was introduced to

minimize the initial clutter and potentially overwhelming for

new users. Lastly, additional functionalities were added,

including new information on code and branch coverage,

dynamic and interactable charts, and a homepage to allow for

easy comparison of the different squads at Valocity. These

additional features centralize and visualize the information that

a member of the QA team might need. However, although

minimized by the use of in-memory caching, these additional

features add significantly more strain on the backend when a

full update is triggered, which could take almost 25 minutes.

This is one of the main shortcomings of the QA Dashboard, and

it will continue to worsen as the company grows and writes

more test cases. The poor performance may be caused by a lack

of knowledge on efficient database querying and management

since the current solution manually checks whether any record

is inconsistent with the data pulled from Azure DevOps in every

update.

III. DESIGN

A. Onsite Testing Framework

The evaluation of the potential mobile automation

frameworks followed an extensive stepwise approach, and high

priority was placed on the evaluation to minimize future costs.

The evaluation consisted of three pruning stages and a final

applicability test to Onsite itself. These stages had an increasing

strictness and an overarching goal to turn the initial findings of

over a hundred to a final two. This stepwise pruning method

was used to improve presentability and to ensure that

granularity is not lost for most prospective candidates. The

framework candidates were filtered according to the set of

requirements provided by the industry supervisor, and these

requirements are listed below and split as original and

additional requirements. The additional requirements were

proposed after unknown unknowns were encountered

throughout the evaluation.

Original Requirements:

● Code language is based on TypeScript, JavaScript, or

C#.

● Supports Page Object Models (POM).

● Supports parallel test runs.

● Capable of testing devices of different Operating

Systems (OS), brands, and versions.

● Supports asynchronous steps.

● Capable of performance and penetration testing.

● Includes network log tracking.

Additional Requirements:

● Supports visual testing (snapshots or

recordings).

● Supports integration/End-to-End (E2E) testing.

● Avoid Behaviour-Driven Development (BDD)

and Test-Driven Development (TDD).

● Parallel tests run from regression-level

considerations.

● Avoid codeless frameworks.

● Ignore BrowserStack alternatives.

● Avoid frameworks where scripting and device

emulation are merged - might result in loss of

control and tight coupling.

● Avoid frameworks defining their Domain-

Specific Language (DSL). This may result in the

loss of all scripts or costly migration/translation

to another scripting language.

● Avoid iOS-specific and Android-specific

frameworks like Espresso and XCUITest.

Overhead for learning Java/Kotlin and

Swift/Objective-C far outweighs the performance

improvements that they provide.

i. Evaluation Stages Overview

Firstly, the results were filtered according to the requirements

listed above and to any outstanding shortcomings of the

framework. Secondly, the remaining candidates were compared

relative to each other and scored until four to five candidates

remained. This second stage is based on the pricing, code and

framework maintainability, relevancy/modernity, and

community size. Lastly, the third pruning stage further cuts

down the candidates to the final two based on their applicability

to Onsite and the project industry supervisor’s personal

preference. Thereafter, the final two were applied to Onsite, to

simulate a basic login on an emulated device to find any

compatibility or performance issues.

ii. First Stage

The tables for the first stage have been omitted as they proved

to be too large and of little relevance. Instead, see the ‘Second

Stage’ for the results of the first stage of pruning. In summary,

many of the discovered frameworks were removed for being

codeless, not befitting mobile applications, or failing to meet

the code language requirement.

To see the extensive table where over a hundred different

frameworks are evaluated, refer to the provided document in the

4

ENGR 489 (ENGINEERING PROJECT) 2023

appendix.

iii. Second Stage

This stage explored the remaining frameworks that met the

requirements. The basis of the second stage of pruning was on

pricing, code and framework maintainability, relevancy,

modernity, and community size/popularity. Below are the

removed frameworks and some of the reasons for removal.

1) Calabash

a) Originally owned by Xamarin, who was later

purchased by Microsoft and Calabash was left behind.

Currently open-sourced and looking for a maintainer.

b) Infrequent updates.

c) Splits iOS and Android.

d) Many issues dating back to 2015.

2) TestComplete

a) Specific IDE required for tests. However, an unofficial

extension exists in VSCode.

b) Heavily leans towards the use of BitBar (an alternative

to BrowserStack).

3) Eggplant Functional

a) Requires and uses gateway connections.

b) Weird documentation and oftentimes not English.

c) Requires specific IDE.

4) Gauge

a) Primarily BDD.

b) The last update was in January last year with a

declining trend in frequency.

5) Sahi

a) Uses Sahi Script, a DSL.

b) Pricey.

6) OpenTest

a) Infrequent updates with two-year gaps.

b) Primarily in YAML.

iv. Third Stage

This final stage aims to reduce the candidates to the final two

candidates by looking into each framework through a finer lens.

The major factors that heavily influenced the final decision are

listed below.

1) WebdriverIO

a) 8.1k stars on GitHub.

b) Almost weekly releases.

c) Supports many integrations.

d) Can get BDD-style tests with Cucumber in addition to

normal scripting.

e) Many options for reporting/logging.

f) Used by many major companies like Google, Netflix,

Microsoft, Mozilla, etc.

g) Designed for web testing so there are limitations to its

mobile capabilities.

h) Lacks support for some features provided by Appium.

i) Auto-waiting.

j) Requires separate files for iOS and Android.

2) NightwatchJS

a) 11.4k stars on GitHub.

b) Weekly releases.

c) Less control in comparison to WebdriverIO, but easier

for beginners.

d) Automatically retries tests after three fails to account

for flaky tests.

e) Requires separate files for iOS and Android.

3) CodeceptJS

a) 3.9k stars on GitHub.

b) Monthly releases.

c) Well documented.

d) Auto-retry.

e) One file for both iOS and Android scripts.

f) Build asynchronously automatically (no need to call

“awaits” or “async” unless grabbing from the page.

4) SerenityJS

a) 458 stars on GitHub.

b) Weekly updates.

c) Utilizes a Screenplay Pattern [9].

d) Missing mobile documentation.

e) Large potential in reporting and able to create living

documents for reporting.

f) Uses WebdriverIO under the hood.

v. Conclusion

WebdriverIO and NightwatchJS are the obvious choices

with 8.1k stars and 11.4k stars respectively. CodeceptJS is the

third choice with its very simple approach to scripting. Its

capability for single script testing on both iOS and Android is

also very desirable to the industry supervisor. However,

CodeceptJS falls short in comparison to Webdriverio and

NightwatchJS as it is a much newer framework with

significantly less support, a smaller community, and very

infrequent releases. These infrequent releases infer that it

might not be a good long-term solution for OnSite, placing it

third. Lastly, SerenityJS is in last place, with 468 stars and its

non-existent mobile documentation. SerenityJS’ only

redeeming feature is in its reporting, but with WebdriverIO's

large plethora of available reporters, this redeeming quality

becomes negligible. Therefore, after careful consideration, the

test automation frameworks that progressed to the

development phase were WebdriverIO and CodeceptJS.

CodeceptJS was chosen instead of NightwatchJS since

WebdriverIO and NightwatchJS are seen to have slim

differences as discussed in [10]. CodeceptJS may also provide

novel solutions through its capability of utilizing one file for

both iOS and Android.

vi. Practical Compatibility Test

A practical test against an emulated Android device was

designed to further determine the final candidate. The goal is to

produce a basic testing script on the login for Onsite to reveal

any outstanding issues. Additionally, usability, ease of use,

future code maintainability, and performance were evaluated.

As a result, a simple login script was written through

CodeceptJS and WebdriverIO with paling results. The

evaluation of the frameworks’ feasibility to BrowserStack’s

real simulated devices was out of scope for this stage of the

project and will only occur when the solution is finalized.

As previously hinted, the results from the two frameworks

pale in comparison. CodeceptJS was unexpectedly quickly

rejected after its failure to comply with the new and upcoming

5

ENGR 489 (ENGINEERING PROJECT) 2023

release of Appium 2.0.0, while WebdriverIO produced smooth

results. To summarize the found issue, the release of Appium

2.0.0 changed and invalidated many of the required

configurations for emulated device connection with the

framework. This simulated a major concern with CodeceptJS’

less frequent updates where windows of incompatibility may

cause significant downtime for the regression tests. Regardless

of its potential to reduce work by 50% through its ability to use

one file for both iOS and Android, CodeceptJS was quickly

disapproved, making WebdriverIO the final and best solution

for Onsite. The mitigations or results of the problem were not

extensively researched since the issue is likely to persist and

repeat in the future. This is implied in CodeceptJS’ relatively

slow releases and small community in comparison to

WebdriverIO. To see the extensive description and issue

reproducibility, refer to the section ‘CodeceptJS Results’ in the

attached appendix.

B. QA Dashboard

The design choices for the QA Dashboard were limited in

comparison to Onsite’s testing framework. This was due to the

company having strict preferences for their technology stack.

Specifically, moving away from MySQL and the backend

language were non-negotiable as they have already been

initialized, and a good case was required to justify the extra,

repeated work. However, leniency was given to the front-end

framework where Angular, as opposed to the React backing of

the old implementation, was explored. Migration to D3.js, a

similar data visualization library to Chart.js, was also

considered, but the latter library proved to be less hands-on

making it the better choice and allowing for the required large

focus on the backend.

In the end, the decision was to stay with React and this was

heavily influenced by personal expertise since learning a new

front-end framework was out of scope. Had the project been

written on Angular, there would be significantly more work and

inferior performance since Angular cannot reuse components

and because there is additional overhead with Angular’s

bidirectional data binding [11, 12]. Additionally, the reuse of

components is vital for the dashboard’s multi-squad use case

where the detailed squad-view holds the same charts as

illustrated in [Fig. 1, Fig. 2], making React the obvious choice

over Angular regardless of personal expertise.

Fig. 1. Detailed NZ squad-view.

Fig. 2. Detailed AU squad-view.

Fig. 3. Unit Test Coverage chart from Nexus squad.

The charts used for this project were influenced and justified

by [13]. Moreover, each major iteration of the QA Dashboard

included a mock-up and design approval by the main

stakeholder. For example, the Test Suite Coverage chart seen in

[Fig. 1, Fig. 2] was requested by the QA manager, while the

Unit Test Coverage table from [Fig. 3] by the head of

technology. These special requests pertained to separate

requirements and constraints and are listed below alongside the

original requirements for the QA Dashboard. Additionally,

these requirements were not provided explicitly, unlike the

requirements for the Onsite framework, but were gathered

through meetings and informal discussions.

See the diagram on [Fig. 4] for reference on what is meant

when referring to test plan, test suite, nested test suite, and test

case in the Azure DevOps Test Plans page.

Fig. 4. Azure DevOps Test Plan diagram.

Requirements

6

ENGR 489 (ENGINEERING PROJECT) 2023

● Display total regression time.

● Display automation timeline. i.e., how many

automated test cases are made per year.

● Repositories of each squad should be linked to their

specific squad-view page.

● Documentation on steps taken and others.

● UI and API testing should be highlighted.

● Updates should not be triggered with every visit to the

page.

● Updates should only occur after a set number of hours.

● Display the automation status of each test suite.

● Display overall automation coverage.

● Display the language used to write the automated tests.

● Display Jenkins pipeline status.

● Display the performance of the automation scripts.

● Ensure each squad has their own page.

These were the initial requirements set for the project and were

quick to change as the project ensued. Notable changes are

discussed in later sections, but the two main additions’

requirements are listed below.

Test Suite Coverage Requirements

● Reflects the folder structure in the Azure DevOps Test

Plans.

● Dynamic and interactable, where the user can expand

and shrink the folders with children.

● Parent folders with no test cases should not be omitted,

but instead provide a way to signify that there are no

test cases.

The Test Suite Coverage chart is a remodel of the bottom-left

chart seen in [Fig. 5], which is the first page in the initial high-

fidelity mock-up. The complete mock-up is included in the

appendix. The main stakeholder for this chart, the QA manager,

predicted that the reflection of the folder structure and its

hierarchy from the Azure DevOps Test Plans will provide more

value. Additionally, the lack of folder structure could

misconstrue the user, especially if subfolders had the same

name or if the test plan’s hierarchy is heavily extensive. Thus,

bringing the remodel to [Fig. 1]. The expandable table proved

to be the best choice for this problem since it allowed the user

to focus on certain folders by expanding and shrinking others.

Additionally, the user’s mental model of how to use the chart is

improved by mimicking common folder functionality. A major

improvement to this chart would be to include totals of each

column to the appropriate parent test suite.

Fig. 5. First high-fidelity mock-up of a squad-view.

Unit Test Coverage Requirements

● Create Unit Test Coverage sub-page within the

squads.

● Display coverage %, total lines of code, total number

of tests, and test run duration.

● Include the journey of coverage, like the Test

Automation Journey chart seen in [Fig. 1].

● Ensure that it fits on one page.

● Update once every month.

● Add new squads, specifically, add Data and Platform

since they also have unit testing.

The requirements listed above were the initial requirements

gathered with the Head of Technology at Valocity. However,

some of these requirements were found to be suboptimal and

were edited post hoc. Specifically, the addition of Data and

Platform were out of scope and invalid since they lacked

automated testing. Moreover, displaying the journey of unit

testing within each dedicated subpage provided little value and

alternatives, like its migration to the homepage, were proposed.

Lastly, the difference in update time for unit tests and

automated tests would invalidate the tooltip “Updated X Hours

Ago” as can be seen under each title in [Fig. 1]. With these

changes in mind, a mock-up is made [Fig. 6], and the proposed

unit test journey by the Head of Tech was migrated to the

homepage instead as can be seen in [Fig. 7]. These holes within

the requirements were quick to be acknowledged and the mock-

ups quick to be finalized and approved by the Head of Tech.

Fig. 6. Unit Test Coverage table.

These changes aim to minimize scope creep and improve

comparability between the different squads. The ability to select

7

ENGR 489 (ENGINEERING PROJECT) 2023

and disable certain data sets in the line graph meets the coverage

journey requirement. Moreover, the proposed model ensures

that the user’s mental model remains consistent since the charts

seen in the subpages were designed to be a detailed view for

anyone looking for more information.

Alternatives to this design include the addition of empty

parent pages for the Data and Application squad, the

duplication of the aforementioned tooltip, and the creation of a

dedicated page for the Unit Test Coverage at the bottom of the

side navigation bar which would include everything. However,

these ideas were quickly dismissed as they would introduce

inconsistencies to the dashboard and could cause significant

scope creep in the future as more dedicated separate pages are

requested.

IV. IMPLEMENTATION

A. Onsite Testing Framework

As discussed in the previous section, WebdriverIO proved to

be the best solution through the extensive pruning and filtering

of many mobile testing frameworks. In addition to this, Appium

and BrowserStack were also finalized for this project. The

respective tool and framework were chosen as they were

already being utilized within the company and because there is

no other competitor.

As outlined in the previous section, correct code architecture

and future maintainability are paramount for a successful

implementation. Otherwise, the other automation testers

picking up the project may find it difficult and confusing since

the other automation repositories pertain to a similar structure.

To overcome this, large care was taken to learn and understand

the automation team’s other repositories. This was a major

hurdle for this half of the project since previous experience

unknowingly gestured towards code reformat regardless of

compliance to the expected structure. This was shortly met with

a meeting with the industry supervisor heavily advising for a

training module designed to reinvigorate and understand the

expected structure.

The training module lasted for two weeks, and it consisted of

direct involvement with one of the other automation

repositories on a different Valocity product. Thereafter,

numerous reformats were made to the Onsite testing framework

to better match the expected code architecture. Moreover, a

better understanding of the reasoning behind the code

architecture was contrived and knowledge behind why

compliance with the company structure is preferred was gained.

The key takeaway for this half of the project is that consistency

and readability tend to trump performance and shorter lines of

code.

In addition to the previous requirement on code architecture,

common general practices for clean, efficient, and performant

code were applied to the project. Specifically, [14, 15, 16] were

closely followed. These articles applied to the entire setup of

the project but were most utilized in the test script written for

the login process of Onsite. The language utilized for the testing

framework was TypeScript instead of JavaScript for type-

safety. The scripting process utilized Appium Inspector to

locate elements and Android Studio for an emulated device.

With the test cases on the login process passing for the emulated

device, the project ensued to the final portion of simulating the

scripts on real, cloud devices from BrowserStack. Here, the

written login script proved to be working with numerous

devices with varying operating systems, versions, and brands.

For example, the script was able to run on a Google Pixel 7, a

10th gen iPad, and an iPhone 12.

As part of the requirements, proper documentation from the

evaluation to the implementation was written for the project.

These documents are written on Valocity’s Azure DevOps wiki

and include information on the extensive evaluation and

research, the Appium emulation steps, and the common

onboarding tips for Onsite automation. Additionally, edge cases

and minute details about the scripting process were added to the

repository’s ReadMe.

The implementation of the finalized best solution proved to

be minimal in comparison to the evaluation stage of the project.

This was especially the case after the code coverage goal was

deemed out of scope for the project. However, with the best

framework for the use case implemented, and the basic process

heavily documented, the next automation tester can easily and

confidently pick up the project.

As a final note, the advantages of CodeceptJS over

WebdriverIO proved to be negligible after implementing

WebdriverIO. This is because WebdriverIO was also able to use

one locator for both iOS and Android, given that the “name

and “content-desc” keys contained the same value respectively.

However, a missing key and value pair would result in having

to split the selector for that element. Additionally, this feature

seemed to be less valuable than initially considered since a

mobile application written natively, rather than hybrid, could

result in very different naming conventions and heavy

divergence. Therefore, further reinforcing WebdriverIO as the

best mobile automation framework for Onsite.

B. QA Dashboard

Unlike the first half of this project, this half of the project

consisted of a more extensive implementation than its design

and evaluation counterpart. Specifically, major strain was

experienced for the backend where caching, database updating,

and database querying were required. The backend of the QA

Dashboard is written on C# and alternatives to the backend

were non-negotiable due to the previous infrastructure. This is

similar to the MySQL database used.

The first steps in implementing the dashboard were to pull,

parse, and process several Azure DevOps REST APIs. The data

received consisted of test plan, test suite, test case, and later unit

test data, which was later processed and submitted to the

appropriate table in the relational database on MySQL. The

creation and design of the database schema was also part of the

project and information on the necessary data was gathered

during the design and evaluation phase. This updating process

is the bottleneck in the program since the database update could

take close to 25 minutes initially. This process was later

optimized to hit close to 18 minutes but is only subject to

8

ENGR 489 (ENGINEERING PROJECT) 2023

increase as the company grows. This was an unavoidable

bottleneck as the test data was very large. However, future work

could be on the optimization of the database querying and

management.

To minimize the updates, a caching mechanism was

introduced and set to update when a user opens the dashboard

and if it has been three hours since the last update. The caching

type is in memory caching from ASP.NET Core and it not only

minimizes updates but also greatly improves application

performance. It can cut down chart load times from the initial

hundreds of milliseconds to tens and even ones of milliseconds

after repeated browsing. In-memory caching was used because

the dashboard is strictly read-only, meaning that the loss of

cached memory in the case of a crash is negligible.

Additionally, in memory caching from ASP.NET Core was

used since it was the simplest and most documented caching

type for C#.

In terms of the frontend, significant effort was placed on the

backend to minimize application-layer processing. Specifically,

the exposed API endpoints from the backend process the data

received from the database prior to sending it to the front-end.

Additionally, an endpoint was designed for each chart seen in

the dashboard to further minimize processing on the application

layer.

The frontend utilizes React, MaterialUI, and ChartJS to avoid

the unnecessary reinvention of the wheel. These frameworks

and libraries provide interactable charts and common layouts

and templates for the dashboard. In fact, the dashboard’s

frontend is derived from a template from [8], as advised by the

industry supervisor to minimize frontend involvement. As

explained in the design section, alternatives to both MaterialUI

and ChartJS were explored but were soon found to be inferior

to the current solution. Additionally, the usage of Angular

instead of React was explored, but the final decision came down

to personal experience since the self-teaching of a new

framework proved to be out of scope for the project. React’s

component reusability was one of the main features utilized in

the project since each squad-view is identical besides a few

minor differences between squads. For example, the charts and

layouts are identical, but the data, title, caching time, and links

associated varied. These minor variations utilized component

parameters and were implemented to ensure that the user’s

mental model stays consistent throughout the different squads.

Many of the unnecessary charts and functionalities from the

template were removed, while many additional custom charts

were implemented. Specifically, the multi-line and stacked

horizontal bar chart from [Fig. 7] were designed and added to

meet several of the information display requirements.

Moreover, the nested side navigation, horizontal bar chart,

vertical bar chart (old Test Suite Coverage chart [Fig. 5]), and

interactable table (new Test Suite Coverage chart) from [Fig. 1]

were also added. The interactivity of the charts was derived

from ChartJS and they utilize numerous React hooks. User

interaction was prioritized in the frontend to improve user

experience and information retainability. Additionally, the

interactive nature of these charts allows the users to modify the

information provided by clicking the legends.

In conclusion, the requirements for the QA Dashboard were

sufficiently achieved as it displays all the required information,

is performant, and provides a quick overview of the automation

status within the different squads with a glance. Moreover, the

effort placed in minimizing application-layer processing opens

avenues for extendibility and scalability in the future. On the

other hand, the prioritization of the user’s mental model through

the application of traits like interactivity and consistency makes

the dashboard user-friendly.

Fig. 7. QA Dashboard homepage.

V. EVALUATION

As briefly mentioned in the previous section, the goals and

requirements for this project were sufficiently met. This is even

more evident with the QA Dashboard since minor hiccups and

derailing like the proposed training module for the testing

framework did not happen. Although specific metrics were not

defined for the project, I believe that the solutions and designs

implemented are sufficient through the feedback received from

end-user testing and presentations.

As jested by the industry supervisor, the implementation of a

test harness for a test harness is ludicrous and the main metrics

for Onsite’s testing framework should simply be on the

framework’s ability to perform basic UI tasks. Therefore, to

evaluate this, basic scripts were written to check WebdriverIO’s

ability to navigate, submit input, press buttons, scroll, and

perform under varying network conditions with Appium.

Specifically, a script that looks for a specific property valuation

and a script that switches between Wi-Fi, data, and airplane

mode was written. The successful execution of these scripts was

sufficient proof to mark this project as a success, but care should

be taken for future work on more complicated tasks like

zooming, and image validation. Additionally, the positive

feedback from the presentation to the QA team showcasing the

basic login script running on numerous devices provided further

affirmation of the project’s successful implementation.

The QA Dashboard is similar to the first half of the project in

terms of evaluation as specific metrics were also not provided

apart from the list of requirements. However, since adherence

to the requirements has been discussed in the previous sections,

this section will instead focus on the feedback from the end-

users themselves. Firstly, a presentation to the entire QA team

of the first iteration of the QA Dashboard netted positive

feedback and a lack of questions. The lack of outstanding

9

ENGR 489 (ENGINEERING PROJECT) 2023

questions can be taken to mean that the QA Dashboard has

proven to be as straightforward as initially intended. Secondly,

the second major iteration of the QA Dashboard, with the

modification of the Test Suite Coverage chart to a table, proved

to also satisfy the expectations and requirements. Specifically,

the QA manager can be seen to actively use the new dashboard

to present to some of her higher-ups to outline the overall

automation status. Moreover, positive feedback was also

received on the result regarding the graph and the overall

dashboard from the QA Manager. Lastly, the Head of

Technology seemed to also be thoroughly impressed with the

proposed mock-ups for his unit test coverage module. However,

sufficient feedback was not received to guarantee his

satisfaction due to his busy schedule. Therefore, future work for

the QA Dashboard could be on the assurance that the unit

testing additions were satisfactory.

All in all, it seems that the project’s implementation was a

success, and that the final solution was able to meet the criteria

proposed by the numerous stakeholders involved in the project.

This seems to especially be the case for the QA Dashboard, but

the results could be misconstrued from the fact that only a

subset of the QA team, the automation team, reviewed the final

Onsite testing framework. Moreover, the senior automation

lead and industry supervisor could be the only member within

the automation team with high regard for future code

maintainability and compliance with the expected code

architecture, potentially making the implementation’s

satisfaction levels higher than the actual level. Future work on

this portion of the project could therefore be to define

quantifiable metrics and standards that can be measured to

better test the testing framework’s compatibility with Onsite.

VI. CONCLUSION AND FUTURE WORK

In this report, the importance of automation testing and data

visualization was discussed. Moreover, the process of

determining the best possible automation testing framework for

a certain use case and set of requirements was discussed. This

process can be used to determine the ideal framework for many

different use cases. For Onsite, the optimal testing framework

proved to be WebdriverIO, and several other tools and

frameworks like Appium, Appium Inspector, Android Studio,

and BrowserStack were also utilized in the project. Here, the

emulation and simulation of devices were explored with

automated scripts executed onto them. The results for this

portion of the project proved to be satisfactory and many key

learnings were gained from this project. However, the growth

of Onsite and its users could result in WebdriverIO’s inability

to test complicated and lengthy test paths.

Future work on this half of the project could therefore be on

the stress testing and edge case testing of Onsite to find

WebdriverIO’s limitations. The addition of more test scripts to

improve code coverage could also be an option for future work

that may reveal WebdriverIO’s true performance. Moreover, as

the application and its users grow, Onsite’s developers may

choose to opt in for native development rather than hybrid, to

access all the device’s functionality. Given this case, replication

of the study could be another avenue for future work as major

divergence in elements and overall application functionality

could result in poor performance and doubled work. The native

test framework alternatives like XCUITest for iOS and

Espresso for Android are found to have better performance

since they are “closer to the metal” [17], making a replication

study given this situation extremely relevant. Lastly, with

CodeceptJS being a close second had it been able to catch up to

updates, its re-exploration could prove to be worthwhile with

fruitful returns if it offers a different and more efficient way to

use one locator for an element.

On the other hand, the design and implementation process for

the development of the QA Dashboard was also discussed in

this report. The QA Dashboard is the second half of the project,

and it aims to visualize automation and testing status. It was

brought forward after the old iteration failed to meet its

expectations and the QA Dashboard served to replace the

original second portion of the project on the continuation of a

web testing framework after a large shift in business priority.

Thereafter, requirements, constraints, and expectations were

quickly gathered, and mock-ups of potential designs shortly

followed suit. The volatile and agile nature of this part of the

project meant that features should be easily customizable, and

this was made possible with libraries like Material UI and

ChartJS. Additionally, the dashboard was written using the

React framework to allow for components, which the dashboard

used heavily. The dashboard proved to be more than

satisfactory from the positive feedback received informally or

through presentations. However, the QA Dashboard has one

major pitfall, and that’s the performance of a full update.

Therefore, the future work for the QA Dashboard could be

on the large optimization of the discussed bottleneck on

database updates. This is a highly relevant avenue of future

work as any improvements made away from the bottleneck are

illusory. The cause of this bottleneck could simply be from lack

of background knowledge on database management and its

good practices. Additionally, there could be better Azure

DevOps REST APIs that may avoid redundant querying of

unedited test suites or test plans. Several Azure DevOps

features may have also been overlooked which may allow for

the attachment of listeners or a publish-subscribe model that

listens to test suite and test case creations and modifications.

ACKNOWLEDGEMENTS

I would like to thank Allen Zhou for implementing some of

the features of the QA Dashboard. These features were the

subpages seen in many of the provided figures. Specifically,

they are the Jenkins, Performance Matrix, and Flood IO

subpages.

I would also like to thank Valocity for allowing me to take

on some of their projects as my final university project. It was

a great opportunity with invaluable experience.

REFERENCES

10

ENGR 489 (ENGINEERING PROJECT) 2023

[

1

]

R. Chandran, "A simple address unlocks new life for

Indian slum dwellers," 8 March 2017. [Online]. Available:

https://www.reuters.com/article/us-india-landrights-

address-idUSKBN16E1SE. [Accessed 13 October 2023].

[

2

]

S. Bhattacharya, S. S. Sathya, K. Rustogi and R. Raskar,

"How much do inaccurate addresses cost India? $10 billion

to $14 billion a year!," 3 December 2018. [Online].

Available: https://archive.factordaily.com/india-14-bn-

problem-with-addresses/. [Accessed 13 October 2023].

[

3

]

S. Bhattacharya, "Automated Systems to Solve India's

$10B+ Addressing Problem," 20 January 2019. [Online].

Available: https://santanub.medium.com/automated-

systems-to-solve-indias-10b-addressing-problem-

9063190921ef. [Accessed 13 October 2023].

[

4

]

S. Chakraborty, "This startup has a simple code to solve

India's complex address problem," 14 October 2014.

[Online]. Available: https://qz.com/india/280494/this-

startup-has-a-simple-code-to-solve-indias-complex-

address-problem. [Accessed 13 October 2023].

[

5

]

"United Nations," Department of Economic and Social

Affairs, 2015. [Online]. Available:

https://sdgs.un.org/goals. [Accessed 30 May 2023].

[

6

]

M. Heusser, "Manual vs. Automated Testing For Mobile

Apps: Which Do You Need?," 14 August 2023. [Online].

Available: https://saucelabs.com/resources/blog/mobile-

testing-basics-manual-vs-automated-testing. [Accessed 13

October 2023].

[

7

]

BrowserStack, "Challenges in Mobile Testing (with

Solutions)," 3 December 2022. [Online]. Available:

https://www.browserstack.com/guide/mobile-testing-

challenges. [Accessed 13 October 2023].

[

8

]

"Fully built Material UI templates," Material UI, 2023.

[Online]. Available: https://mui.com/templates/. [Accessed

14 October 2023].

[

9

]

SerenityJS, "Screenplay Pattern," SerenityJS, 2021.

[Online]. Available: https://serenity-

js.org/handbook/design/screenplay-pattern/. [Accessed 15

October 2023].

[

1

0

]

Presidenten, "What is the difference between

NightwatchJS and WebdriverIO?," 14 Mar 2016. [Online].

Available:

https://stackoverflow.com/questions/35981605/what-is-

the-difference-between-nightwatchjs-and-webdriverio.

[Accessed 30 May 2023].

[

1

1

]

H. Dhaduk, "Angular vs React: Which to Choose for Your

Front End in 2023?," 28 June 2023. [Online]. Available:

https://www.simform.com/blog/angular-vs-

react/#:~:text=React%20is%20a%20JavaScript%20library

%2C%20whereas%20Angular%20is%20a%20TypeScript,

has%20a%20smaller%20bundle%20size.. [Accessed 14

October 2023].

[

1

2

]

N. Raval, "React vs Angular: Which JS Framework to pick

for Front-end Development?," 3 July 2023. [Online].

Available: https://radixweb.com/blog/react-vs-

angular#ARDifference. [Accessed 13 October 2023].

[

1

3

]

A. Ladipo, "Chart Suggestions Guide," salesforce, 28

August 2022. [Online]. Available:

https://public.tableau.com/app/profile/adedamola8122/viz/

ChartSelectionGuide2/Dashboard. [Accessed 14 October

2023].

[

1

4

]

labs42io, "clean-code-typescript," GitHub, 8 July 2023.

[Online]. Available: https://github.com/labs42io/clean-

code-typescript. [Accessed 15 October 2023].

[

1

5

]

H. Roberts, "Writing efficient CSS selectors," CSS, 17

September 2011. [Online]. Available:

https://csswizardry.com/2011/09/writing-efficient-css-

selectors/. [Accessed 15 October 2023].

[

1

6

]

T. Li, "How to Write Clean TypeScript Code," Medium,

19 March 2022. [Online]. Available:

https://betterprogramming.pub/how-to-write-clean-

typescript-code-eda1716eead1. [Accessed 15 October

2023].

[

1

7

]

SauceLabs, "Getting Started with XCUITest," SauceLabs,

7 October 2022. [Online]. Available:

https://saucelabs.com/resources/blog/getting-started-with-

xcuitest. [Accessed 15 October 2023].

