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Web Application
For Pollution-Aware Route Planning

Joud Asfari

Abstract—Air pollution is linked to adverse effects on respi-
ratory health, cardiovascular health, and other chronic diseases.
One way to reduce exposure is by planning better travel routes
for individuals at risk. To address this, a web application for
route planning using air pollution data has been developed. The
web application has three main components; a database server,
a service logic server that contains the search algorithm and
pre-processing scripts, and a user interface that communicates
with the service logic server. Air pollution readings were taken in
the Greater Wellington region and the resulting spatiotemporal
data mapped onto real geographic locations. User experience
testing was conducted on participants studying engineering and
computer science at Victoria University of Wellington. The paths
found by the application are consistent and reproducible and
allow users the ability to fine-tune searches to fit their needs and
gain insights about air pollution in Wellington roads.

Index Terms—Air pollution, Route-planning tools, Web appli-
cations, Lung health & wellness

I. INTRODUCTION

A IR pollution has been linked to detrimental long-term
impacts on respiratory health, cardiovascular health,

and other chronic diseases, particularly in heavily polluted
regions. For instance, in China, long-term exposure to PM2.5

was predicted to account for 30.8 million deaths over 17
years [1]. Emission control technologies in China reduced
air pollution-related mortality by 71%, avoiding 870,000
deaths [2]. In contrast, air quality in New Zealand is among
the best internationally and is below dangerous levels,
consistently being categorised as having “good” air quality
daily in several international air indexes [3]. Despite air
quality in New Zealand being significantly better than more
polluted countries, 13,155 hospitalisations and an estimated
3,317 premature deaths in 2016 were linked to exposure
to air pollutants [4]. The importance of reducing exposure
to air pollution is growing as more reports demonstrate
that atmospheric measurements of air are increasingly more
polluted [5]. Awareness of air pollution is increasing, and
researchers are discovering that there may be no safe threshold
[6]. Improving the air quality of urban areas is essential to
improving population health.

Urban areas are susceptible to pollution from construction,
busy traffic, and other sources. People biking or walking
in those areas would be exposed to air pollution at close
proximity. People that are sensitive to air pollution might
want to avoid areas where they may breathe in more irritants
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such as PM2.5. Existing air pollution route planning tools
are constrained, e.g., by regional limitations or limited data
views [7] [8]. Due to the limited usage of existing route
planning tools (with or without air pollution metrics), there is
a gap between user needs and application functions. People
with health issues are more restricted with the routes they
can or cannot take, but that is not accounted for in most route
planning applications. Air pollution data can be used to plan
better paths for cycling, walking, and driving. Air pollution
measurements can be effectively integrated into least-cost
graph problems, as demonstrated by studies developing route
planning methods to reduce car carbon footprints, and a few
air pollution-based route planning tools developed in recent
years that will be discussed later in this report.

This project builds upon work accomplished in 2022,
which involved the development of a device for crowd-
sourced air quality monitoring, enabling more precise air
pollution measurements [9]. This technology was put to use
during a summer research project, where pollution data was
projected onto real roads in New Zealand, facilitating route
planning based on air quality readings [10]. The present
endeavour extends and enhances these previous projects. By
introducing customisable search options, we are increasing
individual-level route planning capabilities, ultimately
fostering the well-being choices of individuals. Additionally,
this extension addresses the system’s requirements for storing
and accessing spatiotemporal information, contributing to
improved overall system performance and efficiency. This
project works towards the good health and well-being
sustainable development goal, specifically target 3.9 which
is focused on reducing mortality and illness rates caused
by air pollution among others [11]. The development of
this application will help communities with making better
decisions for their health. It gives people in the public
access to information about air quality which affects them
in their daily lives and may indirectly help make cities
more sustainable by raising awareness of air pollution near
populated areas [12].

The outcome of this project is a scalable web application
titled “Air Pollution Path-finding Application” (APPA), which
allows users to search for customised routes using reliable air
pollution data and visualising this information in an easily
digestible way. Users of the application will be able to reduce
their daily exposure to air pollution, thereby improving
their long-term health. Deliverables include a user-friendly
web interface, a spatiotemporal database, and an improved
path-finding algorithm. The comprehensive evaluation of
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the application has demonstrated the effectiveness of the
air pollution algorithm and its ability to provide valuable
insights. The System Usability Scale (SUS) assessment, with
a median score of 82.5, reflects the application’s high level
of user-friendliness. The project’s choice of technology stack,
comprising Node.js, OpenStreetMap, Leaflet, Nominatim
API, PostgreSQL, PostGIS, and QGIS, played a pivotal
role in facilitating development. The decision to leverage
open-source technologies brought a multitude of benefits to
the project. Notably, the abundance of learning resources
and a thriving developer community provided a rich and
dynamic environment for skill development and problem-
solving. Furthermore, the inclusion of specialized software
and tools for Geographic Information Systems (GIS) proved
instrumental in handling geographical data efficiently. These
resources streamlined the management and analysis of
complex geospatial information, reinforcing the project’s
ability to process and present data accurately.

A. Terminology

• Geocoding: Providing geographical coordinates associ-
ated with a location. Similarly, reverse geocoding is
providing a location associated with geographical coor-
dinates.

• Geographical information systems: A spatial system
that creates, manages, analyzes, and maps all types of
data, as defined by Esri [13].

• Geospatial: Information that is associated with a partic-
ular geographic location.

• Raster: As opposed to vector images or data, rasters
are represented by individual pixels. We also use the
definition used by QGIS which is that rasters are made
up of a matrix of pixels containing values that represents
the conditions for the area covered by each pixel [14].

• Route: Used interchangeably with path. The way or path
that is found.

• Spatiotemporal: Data that changes over space and time.
In this context we mean geospatial and time-series data.

II. RELATED WORK

Studies have demonstrated that alternative route planning
methods can be developed using air pollution data in least-cost
graph problems. One such study was done by Helle et al. from
Helsinki University [8]. A web application was developed
that allows users to choose one of three environment
variables to use for finding an optimal path. The study uses
noise, greenery, and air pollution data from the Helsinki
Metropolitan area provided by the Finnish Meteorological
Institute and the Helsinki Region Environmental Services
Authority. A similar tool to the Helsinki web application is
the London Clean Air Routes web application, which finds
the paths with the least air pollution in London [15]. Another
study is an ArcGIS-based route planning tool made to reduce
cyclists’ exposure to NO2 in Montreal [7].

The Helsinki web app uses raster images of geospatial

Feature Green Paths
London Clean

Air Routes
Hatzopoulou

et al.
VUW summer

research
APPA

Path finding using AQI

Using raster air pollution
layers

Implemented client/server
model web app

Customisable air pollution
metrics

Algorithm edge-cost uses
distance

Utilising air pollution
measurements

Selecting walking tracks

Selecting cycling tracks

Fig. 1. Comparison between this project (APPA) and related work.

air quality data, which is a pixel grid filled with air quality
data. The air quality information uses a pre-processed
air quality index (AQI) and does not contain any raw
pollution information. The AQI covers NO2, SO2, O3,
PM2.5 and PM10. The Montreal study also uses a raster
image, but the layer contains information about average
ambient concentrations of NO2 per road segment. The NO2

concentrations were calculated from a land use regression
model (LUR) that was based on a series of data samplings in
133 locations in Montreal. Both studies use a distance-based
least-cost search and build on it to add sensitivity to air
pollution.

Ce = Ct + Ct ∗ ce ∗ s (1)

Ce = CL ∗ ce (2)

Equation 1 from the Helsinki study calculates the edge cost
using the travel time, and multiples this base cost with the
environmental cost and an arbitrary sensitivity coefficient. The
environmental cost depends on the environmental variable
that was chosen by the user for the path-finding search. As
shown in equation 2 from the Montreal study, the edge cost
is calculated as the product of the edge segment’s length
and the environmental cost. The environmental cost in the
Montreal study is the average concentration of NO2 in the
segment.

As shown in figure 1, our system aims to allow an
increased amount of customisation in the paths found- users
can view raw pollution data (not just a calculated AQI) and
choose which metrics affect them the most and prioritise
paths based on those metrics. The path-finding search is
also done based on multiple environmental variables in one
search, which is not something implemented in previous
solutions. This can be achieved by normalising pollution data
to apply the cost of environmental variables equally in the
total edge cost equation. Path customisation options and the
path-finding algorithm are further discussed in the design and
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implementation sections.

III. DESIGN

A. Requirements

The project is subject to a set of requirements encompassing
application functions in terms of capabilities, conditions, and
constraints. The capabilities of the application necessitate the
ability to find the optimal path between two specified points,
utilising metrics defined by the user, provide insights on air
pollution based on user input, and present the results in a
comprehensible format. In line with the specified conditions,
the application must rely on collected or generated air
pollution geospatial data to inform insights, and it must be
developed as a web application, ensuring accessibility and
usability across a diverse range of platforms.

It is vital to acknowledge the constraints associated with
open-source geospatial data, which is continually evolving
and may contain gaps, and the time limitations imposed on
collecting real air pollution data for comprehensive testing,
which may require the generation of data to meet the project’s
requirements. The scarcity of air pollution data was expected
to be a major issue in the development and testing of the
software. The software was thus required to handle situations
where geospatial areas are missing data and respond in a
fail-safe manner.

In addition to the application’s functional requirements
are its non-functional requirements. The application must
be scalable in terms of its performance and presentation to
larger road networks, larger sets of air pollution metrics, and
a larger number of users. It should be accessible to users
with basic digital literacy, allowing anyone in society with
technological familiarity to use the application for improved
health outcomes, even if they have no prior knowledge of air
pollution.

B. Architecture

The web application has three main components; a database
server, a service logic server that contains the search algo-
rithm and pre-processing scripts, and a user interface that
communicates with the service logic server. Figure 2 shows
the full high-level system architecture. The database stores
all pollution and road data. The system uses specialised open
source GIS (geographic information systems) software for the
pre-processing of data as well as scripts written specifically
for this web application. The system also uses map APIs at
the user interface to get map visualisation and interaction
functionalities, map information such as raster layers, and
geocoding which maps geographic coordinates to real-life
addressing systems.

C. Data storage and usage

The air pollution data collected is spatiotemporal. Collected
data are discrete, with each pollution reading representing a
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Fig. 2. System diagram for the application.

point where data was collected. The scarcity of air pollution
data was expected to be a major issue in the development
and testing of the software. The software should be able to
handle situations where geospatial areas are missing data and
respond in a fail-safe manner, or ideally, have fewer scenarios
to fail. Spatial air pollution data is not constant as areas may
have different levels of air pollution over time and external
factors may completely change the results in an area. As
such, for any use of the system after project completion, the
database will need to be maintained with new air pollution
data, whether static or real-time. To address these issues,
a pre-processing method was developed to assist with any
future database updates that uses previous database scripts
and new scripts utilising APIs made available by specialised
open source GIS software. This is discussed further in the
implementation section.

Air pollution data that has been collected is sparse and
spread out unevenly around the Wellington region. Therefore,
a spatial analysis method was required to fill in missing data
points for effective path finding. The spatial analysis method
chosen was inverse distance weighed (IDW) interpolation
due to it being an interpolation technique proven usable for
aquiring air pollution information at unsampled locations [16].
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Fig. 3. An example of a raster layer of interpolated air pollution values. This
image uses test nitrogen dioxide data.

Every air pollution metric was used individually to create
a raster layer using IDW interpolation. Every air pollution
metric was interpolated to create a raster layer, an example is
shown in figure 3. Other interpolation techniques could have
been used such as Kriging, but would have required further
in-depth spatial analysis.

One drawback of the interpolation method is that real
raw air pollution measurements are lost in processing due
to the interpolation resolution being too low to allow exact
geographical coordinates to have their own measurements.
For example, a measurement at (174.826583, -41.169559)
longitude and latitude could be 14.7 micrograms per cubic
meter, but after interpolation the value found from the raster
may be 13.7 micrograms per cubic meter. Improving the
accuracy of interpolated values requires more spread-out
measurement of air pollution and a higher interpolation
resolution. The latter is not ideal as it may negatively affect
the performance of database queries if a raster image is used.

Geospatial databases use geographic shapes and objects
embedded in the system. This approach mitigates scalability
limitations exhibited in rudimentary implementations of
geospatial databases that negatively impact both query
performance and database indexing as more entries are
added to the database. A geographic information system
(GIS) extension can simplify the DB design and also give
the DB extended geospatial operation capabilities that other
DBMSs do not have [17]. As such, the database was designed
with a GIS extension in mind. This is shown in figure 4.
The database contains a table for processed air pollution
data, and the location column is geometric. The edges table
contains road data information. Using this table we are able
to visualise the road network topology in figure 5 using GIS
software such as ArcGIS or QGIS.

D. Path-finding algorithm

A suitable algorithm for this project would consider the
distance vector as well as air quality and time. Finding the
best solution in such cases requires considering various factors
simultaneously. Multi-criteria decision-making algorithms
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Fig. 5. Road network topology extracted from the Edges table of the
geospatial database and into QGIS.

are particularly useful when a compromise solution rather
than an optimal one is sought. Figures 6 and 7 illustrate that
air pollution lacks a direct correlation. Consequently, any
solution reached would represent a compromise, known as a
Pareto-optimal solution [18]. Moreover, the inclusion of the
distance vector and timestamps further complicates the search
for an optimal solution. Various path-finding algorithms, such
as multi-criteria decision algorithms, or Dijkstra’s algorithm
with optimizations for Pareto-optimal searches, can be applied
[19] [20].

Multi-criteria algorithms have higher memory and time
complexity needs. A generalised approach to the path-finding
algorithm fits the project requirements, as long as a solution
is found that has a minimal total cost. Therefore, an extended
implementation of Dijkstra’s algorithm can be used with
air pollution coefficients and weights and a distance vector
per edge cost, similar to the path-finding algorithm in the
Helsinki application [8].

The path-finding algorithm builds on an implementation
of Dijkstra’s algorithm which uses air pollution data
calculated per route as an edge cost. The algorithm can
also be built on A*, which is an optimisation of Dijkstra’s
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Fig. 6. Air pollution measurements before normalisation across different
spatiotemporal points.

Fig. 7. Air pollution measurements after normalisation with a smaller set of
spatiotemporal points.

algorithm, however the simplicity of Dijkstra’s algorithm
is sufficient to prove the efficacy of the air pollution cost
estimation function. The search is a graph problem, where
the graph is made up of nodes and edges. Nodes on the
graph represent the intersections or ends of road segments
on the real-life road network. Edges represent the road
segments and retain information such as the road name,
connections, and pre-processed air pollution data. However,
the edge information saved on the database does not
include distance information as the original goal was to find
the least-cost path where the cost is the air pollution in an area.

The improved algorithm includes using user-defined weights
for different air pollution metrics and using the time stamps
of the data. The algorithm also uses distance in the edge
costs to find the shortest path when there is no variation in
air pollution levels, and to prevent the search from finding
paths too far away from the goal- which in a real-life scenario

might mean the software suggests a path going through a far
away rural area instead of a short 2-minute walk through a
polluted area. The calculation of air pollution for each edge
was designed to be pre-computed in the database before
the server was started to avoid unnecessary volumes of
calculations at every run of the algorithm.

This was achieved by adding weight costs to the original cost
estimation computation.

Cp =

n∑
i=1

xi ∗ wi (3)

Ce = d ∗ s1 + Cp ∗ s2 (4)

Where wi is the air pollution’s user-defined weighting at i of
the air pollution metrics. Cp is the air pollution cost for the
edge, and Ce is the total edge cost where d is the distance
vector and s is the cost’s sensitivity to distance (s1) and air
pollution (s2). Doing this ensures that in the case of the user
choosing to search for an optimal path in an area with no
variation in pollution levels, the algorithm would still find a
solution which would be based on the distance.

Air quality in New Zealand is based on NES-AQ the
2004 legislative act that specifies legally binding air pollution
limits that local councils must abide by [21]. There are also
other standards which can be followed such as Australian
standards, EPA, and WHO standards. To calculate air quality,
the air pollution measurement is divided by the national
standard and multiplied by 100. This calculation normalises
the data and allows comparison between the values of
different pollutants which may otherwise be too varied in
expected and unhealthy ranges to be used in a heuristic.
The normalisation ensures that every pollution metric affects
the cost equally if all pollution weights (wi) are equal to 1.
To determine the band of air quality for the spatiotemporal
point, several techniques can be followed depending on the
country’s approach. For example, in Australia the air metric
with the highest value is the one that decides the band of air
quality for the spatiotemporal point [22]. Different approaches
to air quality measurement worldwide would make it more
difficult down the line to scale the solution internationally.

IV. IMPLEMENTATION

A. Database

The database employed is a relational database, and
PostgreSQL was selected for our purposes over other
databases such as SQL Server. That is because PostgreSQL
is open-source and provides a variety of features at no
cost. The database uses the PostGIS extension which is
a geospatial extension for PostgreSQL that enhances its
capabilities for managing and analyzing geographic data.
PostGIS enables the database to store, query, and manipulate
geospatial information, making it a valuable asset for projects
involving geographic data. Its benefits include support for
various geographic data types, advanced geospatial functions,
and the ability to perform spatial queries and analysis. In
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our context, PostGIS is an indispensable solution as it allows
us to handle the geographic aspects of our data effectively,
particularly when dealing with air pollution and geographical
point references. It is also supported by many GIS software,
some of which are open-source, such as QGIS, and have
thus been used in the course of this project. The relationship
between the entities in the database are dependent on the
geographic information.

The “data” table shown in figure 4 within the database
encompasses the initial air pollution readings recorded at
specific geographic points, with each data point assigned
a unique identifier. To maintain data integrity and prevent
redundancy, a unique constraint is imposed upon the attributes
pertaining to location, date, and time. The “location” attribute
pertains to the geospatial point denoted by a singular set of
latitude and longitude coordinates at which the air pollution
measurement was acquired. Meanwhile, the “readdate” and
“readtime” attributes correspond to the respective date and
time of the air pollution reading. The attributes “no2” “so2”
“co” “pm2” “pm10” “temp” “humidity” and “sound” each
represent distinct measurements of air pollution measured
by the device used for data collection during this project.
The “edges” table is generated through the execution of
the generategpkg.py script, which serves the purpose of
importing geospatial data from OpenStreetMap. The script
extracts road-related information from OpenStreetMap and
packages it into a geopackage format. This format can be
easily incorporated into the geospatial database, thereby
simplifying the integration of essential road network details
within the database.

The database is populated with road network information
only once, and otherwise manually for maintaining relevance
for the network. Other than that, the database is populated

with air pollution data by database administrator users and
maintained by the persistency scripts in the service logic
server of the application.

B. Service logic server

The logic server can be accessed by the frontend client via
a Node.js API and receives geographical information as well
as user-defined search options. The options received from the
client are:

• Distance sensitivity: Refers to the coefficients that should
be used in the search algorithm’s heuristic for distance
and air pollution metrics, respectively.

• Pollution settings: Refers to the coefficients used for each
individual air pollution metric.

• Source latitude: Is the latitude of the search’s geograph-
ical starting point.

• Source longitude: Is the longitude of the search’s geo-
graphical starting point.

• Destination latitude: Is the latitude of the search’s geo-
graphical ending point.

• Destination longitude: Is the longitude of the search’s
geographical ending point.

The service logic can split into two parts: the path-finding
API, and the persistency scripts. The path-finding API is
a RESTful service that is exposed to client applications.
The persistency scripts contain logic required to keep data
up-to-date. As the air pollution data used in this project
are geographic points with air pollution metrics associated
with them, the persistency scripts run through a process of
interpolating and associating the data with the roads in the
database in order to be usable for the path-finding search.

1) Path-finding API: The path-finding algorithm is
included in the path-finding API and is called when the server
processes a client request. The API is built with Node.jS
which starts an http server. When the service receives a client
request, an asynchronous function is called. Asynchronous
functions in the Node event loop are non-blocking, so in
principle the API can accept and process multiple requests.
This level of concurrency is essential to allow the program to
continue while I/O functions (such as querying a database)
are run. It is also a stepping stone to multi-threading solutions.

The server processes the request and calls the search
algorithm with the relevant information (such as the search’s
geographical coordinates, search mode, and user-defined air
pollution constants). The search begins by finding the closest
roads from the road network to the start and end points
defined in the request. A query to the database is made for
every coordinate that is searched. After that, the program
searches for all of the “neighbours” or connected roads to the
closest road that was found to the starting point. At every
point, the air pollution for each of those roads is also queried
from the database. Due to this information being contained
in different tables in the database, SQL joins are needed
as well as other expensive operations in PostGIS such as
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st touches which finds the geometric intersection between
two geometries. Once the base information for the search
is found, a recursive function is called to run Dijkstra’s
algorithm with the path-finding heuristics we have defined.
At every run, the program will query the database to find
the “visited” (currently being searched) road’s neighbours.
This is done to avoid loading the entire road topology into
the program, which would take up large amounts of memory
especially as information required per road increases as the
number of air pollution values monitored increases.

When the search finishes, the service packages the information
of the roads, their coordinates, air pollution, calculated score,
and health category into a JSON. The JSON is then sent as a
response to the client request and the database connection is
closed until the next request.

Due to the algorithm querying the database at a high
volume and with queries that have high planning and
execution costs, alternative SQL queries had to be explored.
Two ways that we have chosen to optimise our queries
were to create materialized views in the database to pre-
compute results that are needed for a search. For example,
as seen in figure 8, we have utilised a materialized view
for joining interpolated and analysed air pollution data into
one accessible place due to the query containing 5 join
operations. The other materialized view used holds the results
of neighbouring roads and air pollution data for every road in
the network. Another optimisation is using an index on the
“geom” column of the edges table in the database. The index
used is a general index structure (GIST) which can be used
for indexing custom types of data such as geometry defined
in PostGIS [23]. The spatial index allows faster queries to
occur by avoiding sequential scans in the query tree, thereby
speeding up individual queries which adds up to a faster path
search.

2) Persistency scripts: The utilisation of raster images
in the context of air pollution analysis introduces a degree
of complexity. The selected Database Management System
(DBMS) for this project is PostgreSQL extended with
PostGIS. PostGIS is a GIS extension and one of its features
allows it to facilitate the retrieval of data values from raster
images that have been integrated into the database. It should
be noted that the same approach is not feasible when dealing
with geographical lines, such as in our road network. As a
consequence, the need arises to decide on specific coordinates
along the road network to serve as representative indicators
of air quality. It is imperative that these chosen points remain
consistent across multiple runs to ensure the reproducibility
of results, particularly when the air pollution data in the
database remains unaltered.

For this purpose, the raster images generated through
the interpolation of air pollution metrics were subjected to a
zonal statistics analysis within QGIS. Zonal statistics analysis,
in this context, refers to the process of extracting statistical
information from areas or zones defined by polygons. In this

case, the road layer was initially transformed into polygon
representations where each line representing a road was
buffered with a 100m radius to produce the polygon. Zonal
statistics analysis was performed on each air pollution raster
image using these road polygons as reference zones.

The outcome of this analysis yields a polygon layer in
which each road segment has its own mean, minimum,
and maximum air pollution values, providing the ability to
query and obtain results that are consistent across multiple
runs. It is important to acknowledge that this method does
not distinguish between short and long road segments, and
is wholly dependent on the road network topology being
reliable. Consequently, longer roads may exhibit a broader
range of air pollution values which may not entirely represent
the air quality as a mean within the surrounding area.

C. Frontend

The frontend of the application is client-facing and displays
information to allow users to interact with the software
application. A Leaflet interactive raster map was employed
to display interactive maps on the web interface, and the
raster layers were retrieved from OpenStreetMap [24]. The
user interface was made using React MUI, which is a React
library containing user-friendly reactive components using
the Material-UI which are Google’s user interface design
guidelines. Actions in the program are event-based, meaning
if a user clicks something on the UI then an event is called
and information updates are made. Leaflet itself has user
events which were utilised in this project for a seamless
user experience. When a user clicks on the interactive map,
a latitude and longitude are retrieved. The geographical
coordinates can be converted into street addresses using
reverse-geocoding, and an API was used to do that in this
application. React contexts were used to keep track of
program states that were required in several parts of the
application.

One of the features of Leaflet that were utilised in the
implementation of the user interface is its layered system.
Everything that moves in the map view of Leaflet is
considered a layer, including the raster tiles making up the
map images themselves. Leaflet layers were used to add
and manipulate map markers as well as draw the resulting
paths received from the service logic server. Leaflet can draw
geometry on the map given a GeoJSON, which is a JSON
format to represent geographical features. The information
received from the server contains geographical information
as well as information required to display air pollution
data, categories, and other information that was used in the
path-finding algorithm which resulted in the found path to
be chosen as the optimal path. Consequently, handling the
received format and converting it into a displayable format
was the responsibility of the frontend application.

The GeoJSON Leaflet layers could have been implemented
in a few ways. One way is to create a GeoJSON for every
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complete path, using MultiLinestring geometry, and adding
that as one layer to Leaflet to show every section of the
path as part of one whole rather than individual pieces. In a
MultiLinestring, a path is represented as a single, continuous
entity composed of multiple line segments. This would mean
that any click events added to the layer would work on the
path as a whole rather than any individual sections of it.
The other way is to create a GeoJSON for every section
of a complete path, using Linestring geomtry which would
display not only the path but also the different sections
of the route. In the case of Linestring geometry, each line
represents a single line segment between two points. This
would allow every section added as a Leaflet layer to have its
own click events and thus be selected individually to perform
actions on. Because of this, a GeoJSON object is made for
every section of the route so that in future iterations of the
application users will be able to click on sections of the route
and get information about them.

V. EVALUATION

To evaluate the application, we chose to test the usability
of the frontend, and the resulting paths found by the path-
finding algorithm. The usability testing was designed to help
analyse how the system adheres to user experience (UX)
design principles and how real users would use the system, and
if there are any improvements that can be made which make
it more accessible. Heuristic evaluations typically involve
usability experts or evaluators who assess the user interface
against a set of predefined heuristics or guidelines. While
heuristic evaluations can provide valuable insights, they are not
always representative of how the system will be used by real
users. The decision to skip a heuristic evaluation, in favor of
usability testing with actual users, is based on the recognition
that the primary target users of the web application are the
general public, and these users may not possess technical or
design expertise.

A. Usability testing

For the usability testing, participants were asked to
complete questionnaires with Likert scale questions for a
System Usability Scale (SUS) along with some open and
closed-ended questions. SUS was chosen because of its ease
of use and standardisation in user experience testing [25].
Questions were posed to users to gauge how well the current
application meets the needs of potential users. The user
testing was undergone on-premises and performed on 10
participants. The testing was moderated to record observations
of user behavioural responses to usability tasks.

Figure 10 illustrates how the application was scored
according to SUS. Most users rated the application above
68, which is the SUS score studies use to indicate whether a
system is above or below average [26]. There is one outlier
which gave responses that yielded a score of 65, otherwise
responses were overwhelmingly positive. Some students
commented on UI features that could be improved, such as
the application sidebar, marker popups, and the behaviour of

Fig. 9. Percentage of user testing participants who felt their health was at
risk due to air pollution.

markers when they are clicked. A few application bugs were
noted to be fixed in the future.

From the questionnaire provided and while answering
the usability tasks, most students said that they would
normally not care about air pollution and would rather take
shorter or faster paths to get to their destination. Some
justified that by saying that their life activities may require
prioritising time-efficiency. This aligns with the results from
figure 9, where 70% of participants indicate that they do
not feel that air pollution has put their health at risk. A few
students pointed out that a path with less air pollution is not
guaranteed to be a healthier option, and being exposed to
air pollution for longer may be more problematic than going
through a highly polluted area for a shorter period of time.
Overall, users were receptive and seemed willing to use the
application, with some users even continuing to play around
with the application even after the user testing was over.

Participants were also asked to fill out general survey
questions to gauge the demographic that is being worked
with. Among the questions asked were what devices they
normally use to access maps, and if they have felt their health
was at risk due to air pollution. Results in figure 11 show
that all of the participants use phones to access maps, and
only 1 participant uses a computer or other device. This is
an important finding because the current web application is
designed to work on wide-screen displays such as in desktop
browsers. In order to continue addressing user needs, the web
application would need to be modified to also work with
phone displays.

B. Path-finding results

To evaluate the effectiveness of the path-finding results,
a comparison is made across the three available search
modes within the application. This comparative analysis
serves the purpose of showcasing the operational logic
and user interface outcomes, as well as highlighting the
distinctions between a pollution-aware search and one that
solely considers distance. In the distance-only search mode,
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Fig. 10. System usability score calculated from user testing participant
responses.

Fig. 11. Diagram showing user testing participant chosen devices to access
maps.

the air pollution’s contribution to the edge cost in equation
4 is given a coefficient of 0, while the distance is weighted
with a coefficient of 1. On the other hand, the distance-and-
pollution mode assigns a coefficient of 1 to both components
of the sum in equation 4. In contrast, the pollution-only
search attributes a coefficient of 0 to the distance, effectively
ignoring it, while placing sole emphasis on the air pollution
cost with a coefficient of 1. The duration required for a search
to reach completion is measured by the service logic server.
At each incoming request, the server records the console
time, which subsequently forms the basis for comparison of
search speeds. Most importantly, the air pollution on paths
found is compared using the application user interface, which
displays air pollution results on every path using information
curated by the service logic server. This is to evaluate whether
the search algorithm presented is an appropriate solution for
pollution-aware route-planning.

1) Martin Square to 1A Wallace Street: The first path
searched is using the distance-only mode and is from Martin

Square to 1A Wallace St. The starting point is denoted with
a red marker, and the destination is represented by a white
circle with a black outline. This is one of the source and
destination combinations found during testing that resulted
in interesting outcomes. The shortest path found by the
algorithm between the two points is shown in figure 12. The
server took around 6 seconds to return the result, but if we
swap the start and destination points the server takes around
1 second to return. This is interesting because while the result
appears to be the same, it indicates that the algorithm can go
through more options depending on where the search starts.
This aligns with our expectations because no part of the road
network is uniform, but it does pose a question of whether
the search speed and not just the result need to be consistent.

The second path searched is from the same starting
and destination points as the first one, but instead uses the
distance-and-pollution search mode. When Martin Square
is used as a starting point, we can get the result shown in
figure 13 in around 2 seconds, which is about a second
longer than the distance-only search. Swapping the start and
destination for this search mode, however, does not show the
same result. Instead of identifying a consistent and replicable
path analogous to the one depicted in Figure 13, the server’s
response corresponds to a path similar to that shown in
Figure 12. This path represents the shortest route shown in
figure 12 and takes around 4 seconds to be returned from the
server. This inconsistency contingent on the starting point is
attributed to the nuances of the edge costs we have assigned
in equation 4 of the design section. These edge costs account
for both distance and pollution factors and drive the variability
in path selection based on the chosen origin, introducing an
element of path preference in the search outcomes.

The air pollution for the first path is as shown in figure
16 poor and contains road sections which are categorised
as “very poor”. Sections are only categorised by the service
logic server as “very poor” if they exceed national limits.
The air pollution for the second path shown in figure 17 is
similarly categorised as poor and contains sections which are
“very poor” despite taking air pollution into consideration in
the search. However, the level of pollution is lower, as can
be seen from the lower maximum pollution. If we consider
the number representing the maximum air pollution as an
air quality index for the application, both paths found come
close to being categorised as “very poor” due to the extent
of the air pollution on the paths but one is better by 336.35
which is a significant difference.

2) Victoria University of Wellington to 46 Devon Street:
The third path searched is using a distance-and-pollution
search and is from Victoria University of Wellington to
46 Devon St. The server takes around 600ms to return the
result. As depicted in Figure 14, it is noteworthy that the
path remains consistent even when inverting the start and
destination points. The path is the same when the search
mode is distance-only, demonstrating that the edge costs for
the air pollution for this path did not introduce a significant
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change to the path chosen as the optimal one.

The fourth path uses a pollution-only search, and is
one of few routes than can be found for this search mode for
reasons that will be discussed below. The server surprisingly
takes only 400ms to find the path shown in figure 15 despite
it finding more road sections. More good categories counted
in figure 19 means path consists of more road sections, in
total 50 for this one. In an ideal scenario we can estimate 51
queries to the database were made; first two to find the start
and end edges, then 49 requests to find neighbouring roads.
We can tell that the pollution-only search went through more
road sections than the distance-and-pollution search on the
same coordinates because figure 18 shows only 7 sections
being categorised. The pollution-only search is potentially a
healthier alternative to the distance-and-pollution search by a
very small margin, as it has a lower maximum air pollution
on the route by 0.85.

The reason this pollution-only search is one of few that
can be found is due to it being a mode of search that is far
less limited than the others in that it’s only ending condition
is finding a path that has less air pollution. In traditional
path-finding algorithms, the search process generally halts
once the shortest or most efficient route in terms of physical
distance is identified. However, the pollution-only search is
unbound by this conventional constraint, enabling it to explore
and evaluate alternative routes that may be longer in distance
but substantially reduce exposure to air pollution. That is the
goal of the pollution-only search, but it is also its biggest
drawback, as the search can continue indefinitely searching
in the road network. It’s important to acknowledge that
real-world road networks are vast and, while not technically
boundless, they are extraordinarily extensive. This means that
the server continues the search until it hits a resource limit
and then has to stop. A resource limit most of the time is a
database connection timeout, but it can also manifest in the
form of program memory consumption exceeding capacity.

VI. FUTURE WORK

In the context of improving the current system, there are
some clear directions that can explored in the future to make
the application work better and address important issues
discussed in the evaluation of the project.

The application is currently reliant on data that is collected
manually via a mobile pollution measurement device. One
of the limitations discussed and mitigated in the design and
development of the software was dealing with the limitations
of using data from this device. Due to the data being collected
manually, the measurements are taken irregularly in small
areas and time intervals that would not allow for accurate air
pollution analysis. The mitigation was to use the data and
interpolate it, which covered unknown areas with estimated
measurements. However, this method in itself is limited, as
interpolations require data that is sparse to be able to fill in

Fig. 12. Result of a distance-only search.

Fig. 13. Result of a search considering distance and air pollution.

unknowns more accurately without over-fitting to the existing
data as can be seen in figure 3.

To address this, alternative data collection methods can
be explored such as through using atmospheric remote
sensors such as the Copernicus ESA Sentinel-5p sattelite
which monitors various air measurements globally [27].
There are also NASA satellites which provide some open-
source data for air pollution measurements [28]. It should
be noted that for any remote sensing that is used, the the
data should be taken frequently and have a granular enough
resolution to allow for accurate interpolations. Finding a
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Fig. 14. Result of a distance and air pollution search, which is identical to
the result of a distance-only search. Search completes in 580.33ms.

Fig. 15. Result of a pollution-only search. Search completes in 395.88ms.

Fig. 16. The recorded air quality of the path found in figure 12.

New Zealand-specific dataset would also be essential to
maintain this project in a New Zealand context. Notably, the

Fig. 17. The recorded air quality of the path found in figure 13.

Fig. 18. The recorded air quality of the path found in figure 14.

Fig. 19. The recorded air quality of the path found in figure 15.

search for open data from the National Institute of Water and
Atmospheric Research (NIWA) is of paramount importance,
given the organization’s involvement in climate, atmospheric,
and hydrological research. This pursuit holds the potential to
bolster the accuracy and applicability of air pollution data
within New Zealand.

The current system predominantly relies on a combination
of air pollution data and distance metrics for path
selection. However, the existing method does not provide
a comprehensive understanding of users’ potential exposure
to air pollutants, which is a critical factor in assessing
health risks associated with air pollution. The goal is to
motivate users to make informed route selections. To achieve
this objective, it is imperative to improve the underlying
algorithm, going beyond mere measurements to encompass
a more holistic representation of air pollution exposure.
This enhancement does not only require a thorough analysis
of the algorithm but also a strategic approach that factors
in duration, intensity, and other variables contributing to
cumulative exposure.

To further extend the efficiency of the path-finding algorithm,
the implementation of optimizations is highly advisable.
Strategies such as informed search techniques, for instance,
the A* algorithm, present the potential to speed up route
calculations by directing the exploration process towards the
solution. Similarly, the integration of bi-directional searches
can significantly reduce the search space, thereby enhancing
efficiency. Partial graph loading presents another approach
for optimization, beyond the confines of the immediate
neighboring nodes. This approach can substantially diminish
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the number of database calls and, in turn, facilitate the
expeditious retrieval of routing information.

Additionally, using time in the search method is something to
consider. Adding time in the search would essentially mean
adding another variable to filter data by. This would require
further aggregations of pollution layers and more complex
pre-processing in the service logic server. It would also mean
more complex queries. Therefore due to the added complexity
a temporal search would cause, such changes should only
happen if the search is made more efficient so that it can
handle more expensive database queries.
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