
1
ENGR 489 (ENGINEERING PROJECT) 2023

ENGR489 Final Report: Zero Harm Mobile App

Vincent Alvarez

I. INTRODUCTION

Upholding the Health and Safety of all workers on a work site

is of the utmost importance to the management of the site.

However, keeping track of personnel working on site, hazards,

locations, and substances being used and keeping all site

workers informed and up to date can be difficult. Having real

time updates and communication between the workers on a site

and the management is very difficult to achieve. For example,

reporting an incident on a site can take quite some time as the

location of the site must be mentioned, people involved,

severity of incident and any hazards, substances or equipment

involved in the incident. If updates about hazards, safety

standards and emergency plans are not given to workers in real

time, site workers’ understanding of how to work safely on a

site will become outdated. This can lead to an increased risk in

safety on a site and can lead to site workers either hurting

themselves or other workers.

A solution to this would be to create a mobile app which can be

downloaded onto the workers’ mobile phones. This app should

allow the workers to:

• Induct workers into a site.

• Sign a worker in and out of a site.

• Read information about the site and its health and

safety practices.

• Notify users of updates to safety and emergency

plans.

• Report and Raise concerns on the site and report

incidents that happen on the site.

This mobile app should be compatible with both an Android and

iOS device and should be able to communicate with the already

existing database used for the Zero Harm web app.

To ensure the mobile act work correctly the following features

should be performed successfully:

• Workers can sign into a site using a QR code. This

information is then persisted to the site management

through the mobile app via the internet. This should

be done in real time if a stable internet connection is

available.

• A worker can induct themselves into a site also using

a QR code. The QR code takes the worker to an

induction page where they go through the process of

inducting themselves into the site.

• A worker can access the site profiles of a site they

have been inducted onto. This includes site

information like address and management.

• A worker should be able to access a site’s emergency

contacts and plan and should be able to see a list of

all hazards present on the site.

• Workers should be able to inform the management of

an incident or hazard that happened on the site in real

time. This incident report should be sent immediately

to manage assuming internet connection is available.

Final Products Features

Induct and Sign In

The Final Product can induct a user into a site and sign them

into a site. However, this is not done buy scanning a QR code

but instead, instead the user must go to a site profile and induct.

If the user has already been inducted, then the sign in option

will be made available instead. Induction and sign in are done

through a form and does not use QR code scanning.

Site Information

Information about a site can be viewed on its site profile. Site

profiles of the sites a user is connected to is viewable on the

dashboard of the mobile application. By clicking on the site

profile information about that site will be displayed on the site

profile page. This consists of general information like site

address and health and safety plans, hazard information like

hazard names, description and prevention methods and the

emergency information about each site like emergency plans

and contacts. All this information is readily available on each

site profile displayed on the dashboard.

Notify Management

User can now send a message to management about concerns

they see on the site. This is done through the notify button on

each site profile page that, when clicked, brings them to a notify

form. In this form the user can write a message they would like

to send to the management and select a time in which the

incident happened. This is not to be confused with an actual site

report it is simply a message a worker can send to that site’s

management.

II. RELATED WORK

As part of the research for this app, research was done on the

existing solutions for a similar issue. These apps mainly stem

from work management software are where mobile apps

developed for the worker to better communicate to their

management through there software. The five main apps that

research was done into was:

• Safe365

• HazardCo

2
ENGR 489 (ENGINEERING PROJECT) 2023

• SignOnSite

• Site Docs

• Site App Pro

It is to be noted that when researching these apps, the focus was

not on user experience but rather what features did these apps

have what features they not have.

This table shows the different features that each app has.

From this table we see that many of the existing apps all support

signing into a work site by scanning a QR code. Three out of

the five apps also support inducting users into a site. From the

table above we can see a clear lack of hazards listing on mobiles

apps. Having the hazards of a site available for the user to see

and having the site’s emergency contacts and plans available to

the worker is a focus of the Zero Harm Mobile App. This is so

that workers have all information they need to work safely on a

site within their phone, reducing the risk of accidents or

incidents happening on the site.

All apps meet the basic requirement of letting the management

of a site know who is and who is not currently working on their

sites. These apps simply help management manage their

personnel on site, but this design does not give the workers to

communicate back to management. The Zero Harm Mobile App

aims to put the power into the workers hands, allowing for open

communication between workers and sites management. This

will be done through allowing the user to report incidents

directly to the management through the app. Only 3 of the 5

apps researched allowed for reports to be made from workers to

management so this will be a focus for the app to help

differentiate itself from other apps.

Tools and Methodology

The Zero Harm App will run both on Android and iOS devices.

This means the app should be written to be compatible with

both environments. To avoid having to write the same app in 2

different languages the app will be written in React Native.

React Native is an open-source framework which allows for the

creation of a mobile app which is compatible with both iOS and

Android. This does this by interpreting either TypeScript or

JavaScript language which defines the functionality of the app

and the UI components and converts them into each

environment’s native language [1].

This streamlines the development as this framework allows for

develop of both Android and iOS versions of the mobile

application at the same time. React Native is open source

meaning many different components already exist online which

can be used in the Mobile App, keeping the development

simpler. React Native allows for changes of code in the project

to be updated to the app in real time [2]. This means that any

changes that are made to the code base is automatically

reflected in a running emulation of the mobile application in

real time. This allows for faster feedback for changes made in

the mobile application since changes are made in real time. This

cuts back development time as the app does not have to be

repackaged or recompiled every time a change is made to it.

There were several different libraries used in the development

to this mobile application. These were the ones that contributed

the most to the mobile application’s functionality.

Apollo GraphOS

Apollo GraphOS is a library that allows for the use of GraphQL

in both react and react native applications [1]. The API used to

connect to the already existing Zero Harm database is a

GraphQL API. This library has the app the ability to use

GraphQL to connect to the database. This library allowed the

mobile application to query [4] information about the user, the

sites the user was a part of and allows the mobile application to

make mutations [5] like Sign In and Out and notify

management. This library benefitted the design of the mobile

application because it allowed for easier execution of mutations

and queries made through GraphQL API.

 It also makes handling responses from the GraphQL queries

and mutation easier as it makes use of hooks for each type of

response the GraphQL query or mutation returns. Examples of

these hooks include loading, a Boolean which indicates if the

query or mutation is still loading and error, a Boolean that

indicates if the query or mutation failed. All data return in the

response is encapsulated as a hook called data. This benefitted

the design of the app as I did not need to parse the body response

of the query or mutation response, this was done by the Apollo

client.

React Native Async Storage

Async storage is an asynchronous, unencrypted, persistent, key-

value storage system for React Native [6]. This allows a react

native mobile application to store string values asynchronously

and data from this storage can be accessed at point in the mobile

application or in any scope of the code [7]. This benefits the

design of the app as variables like the session ID of the login

user or the visitId used in the Sign In and Out mutations can be

store using this feature. This means that these 2 values can be

set and extracted in any scope of the mobile application.

React Native Cookies

React Native Cookies allows a react native app to handle

cookies being used during its execution [8]. This library gives

the mobile application the ability to set cookies, get cookies and

clear cookies being used. This benefits the design of the mobile

application because the cookies automatically handled by the

react native environment needs to be cleared. The mobile

3
ENGR 489 (ENGINEERING PROJECT) 2023

application requires users to log into their Zero Harm account

which returns a cookie for authentication. The React Native

environment handles this cookie but based on the

documentation React Native has some known issues regarding

cookie-based authentication and its own environment [9].

Because of this the mobile application handles cookie-based

authentication itself by manually extract the cookie from the

header from the login response and clears all other cookies

possibly stored anywhere else in the system by using React

Native Cookies. Specifically, it uses clearAll() to remove all

cookies currently being store. This is so that the cookie

manually stored by the app and any cookies stored by the

environment do not cause issue to one another.

React Native Navigation

React Native Navigation allows applications to smoothly

transition from different screens established in the application

[10]. The main feature used from stack navigator and bottom

tab navigator [11, 12]. Stack navigator allows for transition

between screens of the application and keeps the history of the

route the user takes as a stack. Bottom Tab navigation can create

a bottom tab bar at the bottom of a screen. These tabs can then

be clicked to take you to different screens. This benefits the

design of the mobile application because the path in which the

user goes down can be determined by the navigation tool. For

example, if a user’s login is successful the app can transition the

user to the home page screen by using the navigate function.

Another example is when user is in the dashboard, goes into a

site profile and now wants to go back to the dashboard. The

stack navigator knows which screen the user was on previously

so by simply using the native back functionality (gesture swipe

back (iOS or android) or back button (Android)) the user can be

brought back to the page they were on previously.

III. DESIGN

Conceptual Design

The mobile application uses existing resources that are used in

the existing Zero Harm web app. This web app has an API

written in GraphQL communicates changes made by the user

on the web app to the Zero Harm database. The API also helps

the web app retrieve the relevant information from the database

to display for the user e.g., site information. This same structure

is used in the Zero Harm mobile app, using the existing

GraphQL API to communicate changes from the mobile app to

the database and retrieve the relevant data to display to the user.

The structure of the app can be broken down into 3 different

sections: application section, GraphQL section, database

section.

Application Section

This section is essentially the mobile app UI itself. Here the user

interacts with the application meaning 100% of all user

interaction will happen in this section. User inputs are collected

in this section i.e., incident reporting and signing in and out of

a site and then use the GraphQL section to send this information

to the database.

GraphQL Section

This section sits in between the application section and the

database section. This section communicates between the

database and application section pulling information from one

end to another. Any information that needs to be pushed from

the mobile app to the management of the site will be handled

by this section. Any information the mobile app needs from the

database will be queried by the GraphQL section and given to

the application section. The application section and database

section never directly communicate with each other, all

communication is handled by this section.

Database Section

This section contains the database used in the existing Zero

Harm web app. This contains all information about the sites

registered in Zero Harm, the management and admins

registered in Zero Harm and all workers registered in Zero

Harm. All data being represented in the application section will

be from this database and all information pushed from the

application section will be stored and sorted in this database.

Any information concerning reports or signing in and out of a

site that is pushed to the database will then be relayed to

management.

The reason this structure was considered was so that the mobile

application’s functionalities and the GraphQL functionalities

are not coupled together i.e., the mobile functionalities are

independent of the GraphQL functionalities. This is so that

changes made to the mobile application GraphQL API did not

have a significant impact on the implementation of the

GraphQL API. This was also done because changes and

upgrades are constantly being made to the GraphQL API by Site

Safe. By keeping the Application section separate from the

GraphQL section the Application section would not be heavily

effect by changes made in the GraphQL section. It also meant

that there was more freedom when designing how information

was parsed and displayed into the application.

Wireframes

Wireframes of the basic layout of the map including a

dashboard screen and site profile screen were made to better

understand what exactly the layout of the map would look like

and what information will be needed from the API.

Examples of the wireframes created are on the next page:

4
ENGR 489 (ENGINEERING PROJECT) 2023

Figure 1

Figure 2

Figure 3

Figure 4

Dashboard

Site Profile

Emergency Info

Hazard Info

5
ENGR 489 (ENGINEERING PROJECT) 2023

Sustainability

The design of this mobile application addresses the 3rd goal of

sustainability of good health and wellbeing [16]. When using

this app on site workers will have the resources needed to

conduct themselves safer on site within the app. This includes

having access to site hazards and being able to report hazards

seen on site. With this, overall risk can be decreased on the site

ensuring a healthier and safer work environment. This creates

help maintain a worker’s healthier life by reducing chances of

injuries to themselves and others.

IV. IMPLEMENTATION

When designing the structure of the mobile application the

directories were broken down into four main parts:

• Screens Directory

• Navigation Directory

• GraphQL Mutations Directory

• GraphQL Queries Directory

This is done so that finding and identifying different

components can be easier for development and to make each

functional part of the mobile application modular from one

another. This is so that specific queries and mutations weren’t

so dependent on specific screens e.g., the site query is not

dependent or closely related to the site profile screen. From here

components in GraphQL Mutations, GraphQL Queries are used

in the Screen directory so that the screen components can call

queries and use the mutations needed to sign in and out of a site

and get the user’s site information.

Navigation Directory

A visualisation of the directory structure of the Zero Harm Mobile App. The

rectangles are directories, and the diamonds are components in the directories.

All components used in the Navigation directory make use of

the React Navigation library [10].

The navigation component, stored in the file called index.tsx,

isn’t explicitly used any other directory. It is there to set up the

stack navigation path of the application by creating a stack

navigator. When a stack navigator is created you must input

stack screens into it which consists of screens components. The

screen components used in the stack navigator of the mobile

come from the screen component meaning the screens created

for the mobile application are used in the navigation stack.

Transition between each screen in the stack navigator is

determined the navigate function made possible with the use of

the useNavigation hook. Transition between screens in the stack

navigator done by calling the navigate function [15].

The bottom bar component is also defined within the navigation

directory. This creates a bottom bar navigation tab which is

displayed on the home screen component in the Screens

directory. This bottom bar component makes use of the screens

already established in the Screens directory, specifically the

dashboard and more screen.

ApolloProvider

The entire mobile application is wrapped in ApolloProvider

component [13]. The way this is done is by encapsulating every

component being returned by the App function with

ApolloProvider tags. The App function is stored in a typescript

file called App stored outside of the src directory. By wrapping

the entire mobile application with these tags, you can use

Apollo’s useQuery [4] and useMutation [5] hooks at any point

or scope in the application.

GraphQL Queries Directory

The GraphQL Queries Directory contains all the files which

create and export the different queries used throughout the app.

All queries created in this directory were done using GraphQL

[3]. The 2 queries that are stored in this directory, the

SiteProfileQuery and SitesViewerIsWorkingOn query.

SitesViewerIsWorkingOn is stored in a TypeScript of the same

name in the GraphQL Queries directory. The query used is

called SitesViewerIsWorkingOn, a query defined in the schema

of Site Safe’s GraphQL API. This query pulls information about

any of the sites that the logged in user is currently working on

and returns the information in its response. If the query is

successful, parses the data received into an array called

siteData. siteData is a variable used in the dashboard page to

display the sites on the page. The information specifically

pulled in this query is the Site ID, name, and description. The

reason as to why it pulls this specific information is because its

response data is used in the dashboard. The dashboard does not

display site profile information, it only displays the number of

sites the user is working on as rectangles on the screen:

The method used to pull the relevant information is the

useQuery method, a React hook which can be used via the

Apollo Client library and the Apollo Provider. The useQuery

method can take in 2 parameters a query parameter and an

options parameter. The query parameter is the query itself

which is written in string then parsed by a function called gql

which converts the string into a query document [4]. The

6
ENGR 489 (ENGINEERING PROJECT) 2023

options parameter allows for variables to be inserted into the

query and other operations that can be done on the query [4].

For this specific instance the options parameter was used to

insert a polling time of 500 milliseconds. By inserting a polling

time option into useQuery, the query passed into the function

will refetch its information every 500 milliseconds. This means

that the information being displayed is constantly being

refreshed. The time interval of polling time can be any value in

milliseconds, I chose 500.

Example of useQuery in SitesViewerIsWorkingOn.tsx

An example of what the dashboard displays.

SiteProfileQuery is stored in a TypeScript file of the same name

in the GraphQL Queries directory. This file not only queries a

site’s information but also returns the site profile of the site.

This file is used by the Site Profile screen in the Screens

directory to display the profile of the site the user clicked on in

the dashboard screen. SiteProfileQuery makes use of the

useQuery hook provided by Apollo client and Apollo Provider.

It uses the query called Sites; a query defined in Site Safe’s

schema for their GraphQL API. This query takes in a Site ID as

a parameter and returns information of the site corresponding

with that Site ID. In SiteProfileQuery, useQuery runs this query

with a written version of the query parsed by a gql function, Site

ID value which will be inserted into the query, and a polling

time of 500 milliseconds as parameters. This means all

information on a site profile is refreshed constantly, meaning it

is up to date. The information returned by this query is all the

displayable information about the site.

Once a response has been received the data is then parsed into

an object called siteDetails. SiteQueryProfile, while using

siteDetails, constructs the entire site profile page of the site it

just query. This includes creating tabs which display the sites

hazard and emergency information and display the buttons used

to induct, sign in, sign out and notify.

To be clear, the SiteProfileScreen file attach the navigation

stack does not do any query calling or construction of the site

profile components, it simply imports the file SiteProfileQuery

and runs it within itself. By running SiteQueryProfile, it gets the

actual site profile components from SiteQueryProfile and

displays it on SiteProfileScreen.

Whether the sign in, sign out or induct button is displayed on

the site profile is determined by viewerCanSignIn,

viewerCanSignOut, and viewerCanInduct Booleans which are

queried from the useQuery function call. For example, if

viewerCanSignIn is true then the sign in button is displayed, if

viewerCanSignOut is true then the sign out button is displayed,

and of viewerCanInduct is true then the induct button is

displayed.

GraphQL Mutations Directory

GraphQL Mutations contains all files which have to do with

mutations. Mutations in GraphQL allows for the modification

of existing data or the creation of new data in a database. All

mutations used in this directory are strictly used in the

SiteProfileQuery components that are turned by that that file.

The mutations stored in this directory are:

• SignIntoSite Mutation

• SignOutSite Mutation

• Notify Mutation

• InductIntoSite

SignIntoSite is stored in a TypeScript file of the same name in

the GraphQL Mutations directory. This file returns the form the

user uses to sign into a site and, once the form is completed,

runs the mutation to sign in a user into a site. The form is made

visible when the Sign In Button is pressed in the site profile

page. The form consists of a dialog box where a user can write

a message and a sign in button which runs the mutation. The

mutation used in this file was the signIntoSite mutation defined

in Site Safe’s GraphQL API schema. The mutation reflects this

change in the database and creates a visit based off the sign in

and returns the visit ID of the newly made visit. This is then

stored into async storage for the sign out mutation to use.

The function used to execute the mutation is useMutation, a

React hook from the Apollo client library and made functional

with the use of Apollo Provider. useMutation, like useQuery,

takes in two parameters: the mutation which is written in string

7
ENGR 489 (ENGINEERING PROJECT) 2023

then transformed into a query document use the gql query, and

the options parameter which can be variables to be inserted into

the mutation or any other mutation option available. In

SignIntoSite, the parameters passed in were the mutation to sign

into site and the variables that needed to be inserted into the

mutation. These variables included the ID of the site the user

was signing in to, an optional message the user could attach to

the sign in, and a list of hazard IDs that the user had

acknowledged when signing in. This information is passed into

SignIntoSite by SiteProfileQuery when a user clicks submit

when filling out a sign in form.

SignIntoSite creates the sign in form components and returns

them to SiteProfileQuery for it to render when the sign in button

is clicked.

Sign In form generated by SignIntoSite

SignOutSite is stored in a TypeScript file of the same name in

the GraphQL Mutations directory. This file returns the form

containing a button which, when pressed, signs a user out of the

site. The form is made visible when the Sign Out Button is

pressed in the site profile page. The form only contains a sign

out button. The mutation used in this file was the signOutSite

mutation defined in Site Safe’s GraphQL API schema. The

mutation reflects this change in the database by cancelling the

current valid visit the user has with the site. It does this by

passing the visit ID the application has in async storage into the

mutation.

SignOutSite uses the useMutation React hook to run execute

the mutation once the user has clicked the sign out button. This

useMutation has the mutation itself and the visit ID as

arguments passed into it to when executed.

Notify is stored in a TypeScript file of the same name in the

GraphQL Mutations directory. This file generates the form

component used to create a notify message and runs the

mutation to create a notify message in the database. This file

uses the sendConcern mutation defined in Site Safe’s GraphQL

API schema. The form generated by Notify consists of a dialog

box where a user can type out their message they would like to

their management and a button which, when clicked, allows

users to select a time as to when their concern occurred.

The mutation can only be executed if both a time and message

value have been give. Once given, both the time and message

values are extracted from the form and passed into the

useMutation function as variables to be inserted into the already

established sendConcern Mutation. The useMutation function

is then executed, creating and sending a concern to the

management of that site.

Notify creates the notify form components and returns them to

SiteProfileQuery for it to render when the notify button is

clicked.

Notify form generated by Notify.

InductIntoSite is stored in a TypeScript file of the same name in

the GraphQL Mutations directory. This file generates the

induction page and runs the mutation that inducts a user into a

site in the database. The mutation used is then induct mutation

which is defined in Site Safe’s GraphQL API schema. The

induction page generated by InductIntoSite consists of the

health and safety policy, hazards, emergency plana and incident

reporting information of a site. At the bottom of all this is the

button which allows a user to induct into a site. This information

is passed to InductIntoSite by SiteProfileQuery when it renders

this page in the site profile components it generates.

InductIntoSite creates the induction page components and

returns them to SiteProfileQuery for it to render when the

induction button is clicked.

8
ENGR 489 (ENGINEERING PROJECT) 2023

Portions of the Induction form generated by InductIntoSite.

This follows the design set out before as it separates the

GraphQL components separate from the screen and navigation

components. This means that the navigation and screen displays

operate completely independently from the GraphQL

components.

It also satisfies the requirements as these mutations allow the

user to sign in and out of a site, induct into a site, and notify

management about events on the site. Through the queries a

user can see all sites they are working on and can also find all

site information about each site. This information

Screen Directory

Structure of the screens in relation to navigation. Rectangles are directories

and diamonds are components.

The screen directory consists of all the screens used in the

mobile application. These screens consist of:

• Sign In Screen

• Home Page

• Dashboard

• More Page

• Site Profile

This follows the design as these screens are completely

independent of the GraphQL components of the mobile

application. The functionality of the screen components can

function independently of the GraphQL components.

The screens can be split into two groups: stack navigator group,

the screens being used in the stack navigator, and bottom bar

navigator group, the screens being used in the tab navigator. The

screens in the stack navigator are screens that can only be

transitioned using when the navigate function is called. For

each screen the navigate function is called in different places

e.g., navigate is called in Sign In Screen of the response to the

login attempt is 200. Screens used in the bottom bar screens can

be accessed by clicking the different icons in the bottom bar i.e.,

when dashboard is clicked then the user the user is taken to the

dashboard page.

Sign In Screen

The sign in screen is the first screen the user sees when the

mobile application is booted. This is where the user can enter

their Zero Harm account email and password to log into their

account. This page uses no GraphQL mutations or Apollo

libraries. All login in procedures is handled using the fetch

function which sends a HTTP request to the Zero Harm servers.

Requests are handled by the file itself by reading the response

code return in the header. If the response code is 200, the file

uses the navigate function to transition the user to the home

screen page.

Home Page Screen

9
ENGR 489 (ENGINEERING PROJECT) 2023

The home screen page is unique from the other pages because

its purpose is to display the bottom tab component. Effectively,

the home page screen allows for the bottom tab navigator to be

nested inside of the stack navigator, allowing there to be the use

of 2 navigators in one application. When the bottom bar

navigator is returned by home screen the default page of the

bottom bar navigator is displayed. In this case, the default

screen is the dashboard screen.

Dashboard Screen

The dashboard screen is the first screen displayed by the Home

Page Screen and shows all sites the user is currently working

on. This is done by importing the SitesViewerIsWorkingOn

component from the queries folder and returning the

components return by the query component. Any time the user

clicks on a site displayed on the dashboard the dashboard screen

finds and extracts the ID of that site from the siteData array and

passes it to the Site Profile Page. It then navigates to the site

profile page using the navigate function.

Site Profile Screen

Site Profile Screen imports the SiteProfileQuery and uses the

component to generate the site profile. It does this by the taking

the site ID that the dashboard page passed to it and giving it to

the SiteProfileQuery component as an argument in its function

call.

Example of site profile page giving the site ID to SiteProfileQuery.

The Site Profile Screen then renders the site profile screen

returned by SiteProfileQuery.

More Page Screen

The more page is rendered by the bottom bar component and is

only ever made visible when its tab is pressed by the user. This

page is rendered on the Home Page Screen and displays the log

out button. This page was implemented to simply allow the user

to log out of their Zero Harm account. This button does not use

any GraphQL or Apollo client but rather uses HTTP request to

log out of the application.

Log Out Screen displayed on the More Page Screen.

V. EVALUATION

To evaluate the mobile application the application was testing

on real workers on a working site. Because the participants for

these user tests were not students at the university an ethics

application had to written and approved by the university. This

resulted to recording the user’s consent instead of collecting the

user consent via forms.

To evaluate the usability of the mobile application user tests

needed to be conducted on real site workers to see if the mobile

application was usable from the perspective of its target

audience, the site workers themselves. Gathering feedback from

site workers can give a better understanding of whether the

mobile app in its current state is understandable and easy to use

or if the application is not at all usable.

Evaluation Method

To properly test the application a user test script was created.

This script would be used to test each participant of the user test

so that each user test was consistent. The user tests went as

followed:

1. Participants would be asked if they consent to being a

part of the user test and they consent to their test being

recorded. Their response was video recorded for

evidence of consent.

2. Participants would be given a mobile phone with the

app installed, already on the dashboard of a dummy

user.

3. Participants are asked to complete specific tasks by the

interviewer with limited instruction from the

interviewer.

4. After each task the user is asked to rate the difficult of

each task. If the task was very difficult the interviewer

would ask why.

10
ENGR 489 (ENGINEERING PROJECT) 2023

This user test was conducted on 15 different participants and for

every task they found difficult they were asking as to why it was

difficult. The focus of the user testing was to get the overall

opinion about the mobile application from site workers and to

see if site workers found it easy or difficult to use the

application.

Each task in the user testing script covered the use of an

essential feature of the application. These features included:

• Induction.

• Sign into site.

• Viewing hazards.

• Viewing emergency information.

• Notifying Management.

• Sign out of site.

This was to ensure that each participant had an opportunity to

use these features and comment on whether it was easy or hard

to use the feature. After every task the user was asked to rate the

difficulty of each task between easy, medium, and hard.

Keeping the ratings of each task simple and within 3 different

options was intentional. This was done so that the rating system

would not overwhelm any of the participants especially since

some of the participants first language is not English.

Results

Figure 1

Figure 2

As showed by the result many participants in the user tests

found the mobile application easy to use. This could be mainly

attributed to the fact that many of the participants were already

proficient at English and that the UI layout of the site profile

page made it obvious as to where to find information about the

site and what button to press to perform a specific task.

11
ENGR 489 (ENGINEERING PROJECT) 2023

Example of the site profile page.

The main reason as to why some of the users found the

application hard to use was because a language barrier. Some

participants did not have English as their first language meaning

understanding the text of the application was harder to

understand.

VI. FUTURE WORK

The Zero Harm Mobile App is clearly not in its final iteration

and the one presented here is just a simple prototype. QR code

scanning for induction and signing into a work site should be

considered. This was the original intention of this version of the

application but due to time constraints, the feature was cut from

development. The use of a map in the notify form to show

where the incident or concern is that they are notifying about.

This would better reflect the web application version of the Zero

Harm app as that is a feature on that version. Being about to

change the default language of the application to a desired

language. This way the application would be easier to use and

more accessible to users who do not have English as a first

language.

Although the application was created in the React Native

framework the application was never tested for an iOS device,

strictly on an android device. There is some ambiguity

regarding whether the mobile application does work on an iOS

device although theoretically it should. Testing the application

on iOS device would be the next step forward. One possible

feature would also be to add geo sign in meaning that the

application would track your location and as soon as it detects

you are on site via GPS, the application signs you into the site.

REFRENCES

[1] “Core Components and Native Components · React

Native,” reactnative.dev. https://reactnative.dev/docs/intro-react-native-

components

[2] “Fast Refresh · React Native,” reactnative.dev, Jan. 12, 2023.

https://reactnative.dev/docs/fast-refresh.

[3] “Apollo Docs Home,” Apollo GraphQL Docs.

https://www.apollographql.com/docs/

[4] “Queries,” Apollo Docs.

https://www.apollographql.com/docs/react/data/queries

[5] “Mutations in Apollo Client,” Apollo Docs.

https://www.apollographql.com/docs/react/data/mutations/

[6] “react-native-async-storage/async-storage,” GitHub, Apr. 12, 2021.

https://github.com/react-native-async-storage/async-storage

[7] “Usage | Async Storage,” react-native-async-storage.github.io.

https://react-native-async-storage.github.io/async-storage/docs/usage

[8] “React Native Cookies - A Cookie Manager for React Native,” GitHub,

Oct. 12, 2023. https://github.com/react-native-cookies/cookies/

[9] “Networking · React Native,” reactnative.dev, Jun. 21, 2023.

https://reactnative.dev/docs/network#known-issues-with-fetch-and-cookie-

based-authentication

[10] Reactnavigation.org, 2021. https://reactnavigation.org/docs/getting-

started/

[11] “createStackNavigator | React Navigation,” reactnavigation.org.

https://reactnavigation.org/docs/stack-navigator/

[12] “React Navigation,” reactnavigation.org.

https://reactnavigation.org/docs/upgrading-from-5.x/#bottom-tab-navigator

[13] “Integrating with React Native,” Apollo Docs.

https://www.apollographql.com/docs/react/integrations/react-native/

[14] “Queries and Mutations | GraphQL,” graphql.org.

https://graphql.org/learn/queries/

[15] Reactnavigation.org, 2022. https://reactnavigation.org/docs/navigating/

[16] United Nations, “Goal 3: Ensure healthy lives and promote well-being for

all at all ages,” United Nations, 2022. https://sdgs.un.org/goals/goal3

https://reactnative.dev/docs/intro-react-native-components
https://reactnative.dev/docs/intro-react-native-components
https://reactnative.dev/docs/fast-refresh
https://www.apollographql.com/docs/
https://www.apollographql.com/docs/react/data/queries
https://www.apollographql.com/docs/react/data/mutations/
https://github.com/react-native-async-storage/async-storage
https://react-native-async-storage.github.io/async-storage/docs/usage
https://github.com/react-native-cookies/cookies/
https://reactnative.dev/docs/network#known-issues-with-fetch-and-cookie-based-authentication
https://reactnative.dev/docs/network#known-issues-with-fetch-and-cookie-based-authentication
https://reactnavigation.org/docs/getting-started/
https://reactnavigation.org/docs/getting-started/
https://reactnavigation.org/docs/stack-navigator/
https://reactnavigation.org/docs/upgrading-from-5.x/#bottom-tab-navigator
https://www.apollographql.com/docs/react/integrations/react-native/
https://graphql.org/learn/queries/
https://reactnavigation.org/docs/navigating/
https://sdgs.un.org/goals/goal3

