
1

ENGR 489 (ENGINEERING PROJECT) 2023

Developing a Clustering-Based Semi-Supervised

Learning Algorithm for Data Streams

Vaishnav Manapetty Ajith

Abstract— In today's world, we encounter an enormous volume

of continuous data streams. The task of processing and deriving

insights from this data can be overwhelming. To address this

challenge, we propose the use of a machine learning algorithm,

specifically, a clustering-based semi-supervised learning

algorithm. This choice is motivated by the recognition that data

from these streams is often imperfect, exhibiting issues such as

partial labelling, missing values, and noise. Therefore, a

clustering-based semi-supervised learning algorithm has been put

forward as a solution, as it is capable of handling diverse and

inconsistent data, including both labelled and unlabeled data

types. After conducting thorough background research, one

prominent algorithm has been identified as capable of effectively

addressing the project's requirements: the cluster and label

classifier. In this project, variations of the cluster and label method

were employed to build the proposed algorithm. At the current

stage, the proposed model utilizes the cluster and label method to

assign a pseudo label to the data points without a label, and then

an ensemble OzaBag classifier is built and trained on both labeled

and pseudo-labeled data. And then OzaBag classifier is used to

classify stream data. This model is evaluated using metrics such as

accuracy and execution time. The model that is used has an

average accuracy rate of 68% and an execution time of 100

seconds when processing 100,000 data instances.

I. INTRODUCTION

n today's rapidly evolving world, many devices and sensors

are being utilized in everyday activity, and they are

generating enormous amounts of data in the form of data

streams [1]. Due to the overwhelming amount of data, it is

impractical for humans to manually process and derive

meaningful insight from the data. That is why a machine

learning algorithm that is capable of processing, interpreting,

and making high-level predictions from data streams in real-

time is essential. Examples of real-time processing and

prediction from data streams are evident from various fields.

For example, in finance, real-time analysis of stock market data

can help investors make critical investment decisions.

 However, data from data streams are not perfect. The data

that is extracted from the world could be partially labelled,

missing values, noisy etc. This is due to external factors such as

network delay, expensive labelling processes, corrupted data,

etc [2]. That is why we need a semi-supervised learning

algorithm which can handle inconsistent types of data (mainly

labelled and unlabeled types of data).

This project was supervised by Heitor Gomes (primary).

 This project is about developing a basic clustering-inspired

semi-supervised learning method for data streams. The aim is

to analyze existing algorithms in the field of semi-supervised

learning for data streams and propose a novel approach that is

based on clustering. Which can leverage unlabeled and labelled

types of data, when creating the model. Concept drift is also an

important factor when developing a machine-learning

algorithm. It is the change in the relationship between the input

and target data as time progresses, and this occurs because data

is constantly evolving [3]. Which causes the accuracy of the

model to severely decline. This means the clustering-inspired

semi-supervised learning method needs to be able to overcome

the concept drift problem.

 We can evaluate how effective the algorithm is using

evaluation metrics such as accuracy. We can also evaluate how

efficient the model is by checking the execution time of the

model. The execution time refers to how fast the model takes to

pre-process data, learn, and predict data, and it is essential that

the execution time is at least a reasonable time. So, the aim is

to build a model that has a high accuracy rate and has a

reasonable execution time.

 The proposed model utilizes the cluster and label method to

assign a pseudo label to the data points without a label, and then

an ensemble OzaBag classifier is built and trained on both

labeled and pseudo-labeled data. And then OzaBag classifier is

used to classify stream data. This model is evaluated using

metrics such as accuracy and execution time. The model that is

used has an average accuracy rate of 68% and an execution time

of 100 seconds when processing 100,000 data instances. This

meets the requirements.

 The biggest environmental and sustainability issue this

project faces is the amount of energy consumption that is being

used to develop this machine learning algorithm. However, the

energy consumption that is being used during the development

process of the algorithm is going to be minimal because no

high-energy consumption tools would be used. So, any

environmental or sustainability impacts are going to be very

minimal. The machine learning algorithm is most likely going

to use a minimal amount of energy as well since this algorithm

isn't going to be used on an industry level. It would still be good

practice to be using energy-efficient tools and make the

algorithm as efficient as possible.

I

2

ENGR 489 (ENGINEERING PROJECT) 2023

 The chosen development methodology for this project is the

Agile methodology, where each sprint is a cycle of planning,

executing, and evaluating. Sprints are time-boxed iterations

during which a developer would work on delivering a set of

product features or functionality. The beginning of the sprint is

the planning phase. In the planning phase, a product backlog

will be used. The items in the product backlog contain the

requirements and features that the machine learning algorithm

needs in the future. They are constantly updated throughout the

development cycle. After that, a set of backlog items needs to

be chosen to be worked on in the current sprint. Also, important

to break the items down into small tasks.

 After the planning phase, is the development phase where I

work on implementing the tasks identified in the planning

phase. This means that this is the phase where we design, code,

implement, evaluate/test the machine learning algorithm on

MOA.

 After the development phase is the evaluation phase. At the

end of the sprint, I conduct a review with the supervisor, collect

feedback, and adjust the product backlog based on the feedback.

After that continue to repeat the sprint until all the items in the

product backlog are finished.

 The Agile development lifecycle emphasizes iterative and

incremental progress, promoting frequent delivery of working

software and continual feedback and learning. Cycling through

the planning, executing, and evaluating phases in each sprint,

allows me to adapt to changes, improve my processes, and

deliver value to stakeholders in an iterative manner.

 While developing this project, there would be no specialized

equipment/hardware needed for this project. The only hardware

device required is a computer that can run the following

software: IntelliJ, MOA, and Git. IntelliJ IDEA is an IDE

(Integrated Development Environment) that acts as a software

tool to help code, debug, and test the semi-supervised machine

learning algorithm in the project. It also offers advanced

refactoring, debugging, and code editing tools which can help

streamline the development process for the machine learning

algorithm for this project.

The software required for this project is MOA, IntelliJ, and Git.

MOA (Massive Online Analysis) is an open-source software

framework that is designed for data stream mining in real time.

This is a critical piece of software as it allows users to build and

run machine learning experiments on evolving data streams. It

is also possible to implement the semi-supervised machine

learning algorithms that are being developed in this project on

MOA. The software also includes evaluation and visualization

tools that enable users to monitor the performance of the

learning algorithms, assess the quality of the models, and

analyze the results which would be essential for this project.

Because MOA is built on top of the Java Programming

language, it would be necessary to use Java in this project. This

means that a Java Development Kit would need to be installed

on the computer, to be able to develop the machine learning

algorithm.

Git needs to be installed on a computer for this project so it can

interact with GitLab. GitLab is a software tool that provides

many tools that would be useful in this project. It allows users

to manage and host git repositories, version control the code

used in this project, review code, and offer project management

features such as milestones, issue tracking, etc. This would be

very handy since the Agile methodology process uses those key

features.

II. • RELATED WORK

 After conducting thorough background research, two

prominent solutions or algorithms have been identified to be

able to address the project's requirements effectively. The three

algorithms are Cluster and Label, and SmSCluster.

 The Cluster and Label approach [2] uses a clustering

algorithm and a voting scheme to select the target label for each

data instance. During the training process of the cluster and

label algorithm, the clustering algorithm will consistently

receive data instances and then group similar data instances

together in an unsupervised manner, which results in a K

number of clusters. In each cluster, it is expected that most of

the data instances in the cluster would belong to the same class.

The most common class label will become the representative

class for that cluster.

 So, when a new data instance joins a cluster, if it's unlabeled,

the data will be assigned the representative class of the cluster

as its target label. To keep track of the frequency of the labelled

data in each cluster, the cluster has a data structure called label

features. This allows the algorithm to track how many instances

of each class are in the cluster, When the algorithm is trying to

predict the label of a new data instance, the algorithm finds the

closest cluster to the data point. The representative class of the

closest cluster is issued as a prediction of the new data point.

 The SmSCluster algorithm [4] is slightly different to the

Cluster and Label approach. The SmSCluster algorithm

receives the streaming data in chunks. Each chunk contains a

group of instances, and the SmSCluster algorithm starts

building a new model by applying a clustering algorithm to the

group of instances to create a K number of clusters. The

clustering algorithm uses an EM algorithm to produce clusters

that minimize both intra-cluster dispersion and at the same time

the impurity of each cluster regarding its labels. This means it

can create compact and tight clusters, where the data instances

within the clusters are like each other.

3

ENGR 489 (ENGINEERING PROJECT) 2023

 A summary of the statistics of the instances belonging to each

cluster is saved as a micro cluster. The micro clusters for a

particular chunk of data serve as a model to classify other data

instances. When the algorithm wants to classify new data

points, it uses the K-nearest neighbor algorithm, which

identifies Q-nearest clusters. The most frequent label in these

clusters will be the predicted label of the data instances.

 To deal with the stream evolution, an ensemble of L-such

models is used. So, when a new model is built from a new data

chunk, we update the ensemble by choosing the best L models

from the L + 1 models (previous L models plus the new model),

based on each model's accuracies on the labelled training data

inside the new data chunk [5].

The advantage that both algorithms have is that they do not need

a fully labelled dataset for the algorithms to work. They are both

able to work with a limited amount of labelled data, making

them suitable for scenarios where acquiring labelled data is

costly or time-consuming.

 One of the disadvantages of the SmSCluster is that it can be

sensitive to the initial parameter settings, such as the number of

clusters or the Q value which is used to find Q-nearest clusters.

Careful tuning and validation of these parameters are required

to achieve optimal results.

 Depending on the clustering algorithm that Cluster and Label

use, it might not be able to distinguish between datasets with

overlapping clusters. This algorithm works best when most

instances within each cluster share the same class label but

struggles with more complex labelling scenarios.

 The reason these solutions can be used as a benchmark is that

they both fulfil the aim of this project, which is to build a

cluster-based semi-supervised learning algorithm that combats

concept drift. It is possible to compare the prototype model with

the following solutions using evaluation metrics such as g-

means, kappa statistic, mean absolute error, etc. The solution

with the superior metric values means that the solution provides

the best performance.

III. DESIGN

Throughout this project, various algorithm designs were

considered and have now been narrowed down to two designs.

The first design solution is referred to as the Cluster and Label

Then Sub-Classifier (CLSC) while the other is known as the

Cluster and Label Then Extra Classifier (CLEC). These two

solutions represent extended versions of the CL algorithm.

When data/instances are sent to both algorithms. It first

arrives as part of prediction dataset so that the algorithm can

make a prediction. Then the data/instances are sent to the model

again as part of the training dataset to train the CL model. This

can be seen in Figures 1 and 2.

The CLSC design was a discounted design which involves

employing the first component of the CL method during the

training phase of the algorithm. Which is essentially,

grouping incoming training data into clusters. Figure 1 shows

where the training data is fed into the CL model and algorithm

1 shows how it works.

 In the training phase, the algorithm will find the closest

cluster Cx for each instance X using the Euclidean distance

formula (1). If the instance is labeled, then the clusterer C

creates new clusters or updates existing clusters by training on

the instance and the label. If X is unlabeled, then the algorithm

provides it a pseudo-label by finding the most common class

label (the representative class label) within Cx. Then C creates

new clusters or updates existing clusters by training on the

instance and the pseudo-label [2]. In the CLSC design, all the

data points are stored within the clusters, and either have a label

or a pseudo-label assigned to them.

𝑑(𝑎, 𝑏 … 𝑧) = √∑ (𝑎𝑖 − 𝑏𝑖 …− 𝑧𝑖)
2𝑛

𝑖 (1)

Algorithm 1: Cluster And Label: Training

Input: A clusterer C

while stream is active do

 X ←nextInstance()

 Cx ←closestCluster(X)

 If X is labeled then

 C.train(X,y)

 else

 ŷ← Cx.getPseudoLabel(X)

 C.train(X, ŷ)

The reason why the unlabeled X is given the representative

class label within Cx is because of the cluster assumption [8].

The cluster assumption states that data points belonging to the

same cluster belong to the same class. In this case we are

assuming that X is a part of Cx.

CLSC and the CL methods are similar; however, CLSC

differs in the classification stage of the algorithm. The

classification stage is when the data stream sends data points to

the CLSC model, so that the model can make a prediction of

what class belongs to that data point. This can be seen in Figure

1.

 In the classification phase, the clusters are utilized to classify

data. The algorithm first determines the closest cluster to the

unlabeled instance. Then, using the data points that are within

the cluster, a supervised classifier gets trained/updated and

subsequently is used to predict the label for the instance.

The classification phase of CLSC leverages both labeled and

pseudo-labeled data from the cluster so that the algorithm can

train/update and use a supervised classifier to make predictions.

The reasoning behind this is that pseudo-labeled data

effectively augments the size of the labeled dataset. In many

4

ENGR 489 (ENGINEERING PROJECT) 2023

machines learning tasks, having a larger labeled dataset can

lead to more robust and accurate models.

However, the biggest flaw with this approach is that clusters

are subsets the stream data, and they may not always represent

overall data. If the clusters are not well-balanced, it may

introduce bias in classification. Unlabeled data points may be

misclassified because they align with a different part of the

feature space. Which is why this design was ultimately

discounted.

Fig. 1: Overview and behavior of the CLSC Algorithm.

The CLEC design that was used in the project also employs

the CL method in the training phase just like the CLSC method.

This is because it also uses algorithm 1 in the training phase.

But, in the CLEC design, it does not use clusters, instead it uses

micro clusters which is a summarized representation of a cluster

of data points. The CLEC design also employs a slightly

different classification method using algorithm 2.

For the classification phase, the algorithm first determines

the Cx to the X. Then, a pseudo label ŷ is then given to the

instance if it’s unlabeled. Then using that (labelled or pseudo

labeled) data point, a supervised classifier gets trained/updated,

and then is used to predict what class belongs to that instance.

This is visualized in Figure 2.

Algorithm 2: CLEC: Classifying

Input: An instance X, A supervised classifier S, A

clusterer C

X ←nextInstance()

Cx ←closestCluster(X)

Prediction← null

If X is unlabeled then

 ŷ← Cx.getPseudoLabel(X)

 S.train(X, ŷ)

 Prediction← S.getVotesForInstance(X, ŷ)

else

 S.train(X, y)

 Prediction← S.getVotesForInstance(X, y)

return Prediction

Overall, CLEC has the same advantages that CLSC has,

which is the ability to use labeled and pseudo-labeled data to

train a supervised machine learning algorithm. The ability to

create and use pseudo-labeled data also increases the size of the

labeled dataset which can lead to more robust and accurate

models. However, CLEC uses the entire available dataset to

make predictions, whereas CLSC doesn’t, which makes CLEC

the better algorithm. This is because using the entire available

dataset is more likely to represent the overall data.

Fig. 2: Overview and behavior of the CLEC Algorithm

II. IMPLEMENTATION

In the implementation phase of the project, the CLEC design

was used to build two solutions called Cluster and Label Then

Classify Stats (CLTC) [10] and Cluster and Label Then Classify

Ensemble (CLTCE) [9]. Both solutions have the same

implementation for the training components which can be

visualized in Figure 3. However, both use different

implementations of the Classification component which can

also be visualized in Figure 4.

For the training component, both solutions use algorithm 1 to

build, train or update the CL model. They both use the

CluStream algorithm to cluster the incoming training data into

micro clusters. The reason why CluStream was the best

5

ENGR 489 (ENGINEERING PROJECT) 2023

clustering algorithm is it is designed to be computationally

efficient for streaming data [7]. This is partly because it uses

micro clusters, which is a summarized representation of a

cluster of data points. So, the clusters don’t need to store any

data points at all. The algorithm also uses a sliding time window

to make sure to retain recent micro-clusters, and to gradually

discard older micro clusters when they become too old. This

allows CluStream to adapt to evolving data distribution and

detect concept drift over time because it’s constantly adapting

to the newest data, and it also gradually removes redundant

data.

Fig. 3: The Training Component of CLEC Algorithm

Fig. 4: The Classification Component of CLEC Algorithm

 For the classification component, both solutions use

algorithm 2 to build, train or update the supervised classifier

model. They both use an ensemble algorithm as their

supervised classifier to make the final prediction of each

instance. This is because ensemble machine learning

algorithms combine predictions from multiple models to

produce a more robust prediction. This is because if an

ensemble has a diverse set of base models, the ensemble can

still perform well even if some individual models

underperform or are affected by outliers. However, the biggest

drawback in using an ensemble is that they are

computationally expensive and time-consuming due to the

need for training and storing multiple models. The reason why

these two solutions are a bit different is that CLTCE uses an

ensemble algorithm that was manually built with five different

sub learners and CLTC uses an ensemble algorithm from

MOA which is called the OzaBag ensemble.

 The solution proposed in this project does not need to

address environmental sustainability considerations. This is

because the amount of energy this solution uses is minimal

and will not affect the environment unless it used on an

industry scale which is very unlikely. This is because the

solution does not require any high energy tools or programs to

run.

III. EVALUATION

 To evaluate the solutions that I have built, I’m going to use

two main metrics which are the accuracy of the models, and

the how long each model takes to process 100,000 data

instances (execution time). Because the ideal model would be

something that can predict the target variable at a high

accuracy rate with a reasonable execution time to pre-process

data, learn, and predict data.

 Table I and II show the performance (the accuracy and the

execution time) of all the models under different datasets. The

models used was the CL algorithm (as a benchmark), the two

models that has been developed in this project, which is the

CLTCE and CLTC algorithm, and hoeffdfing tree algorithm.

The hoeffdfing tree algorithm is a supervised learning

algorithm that is used to compare against the semi supervised

learning algorithms.

 Each of the models except for hoeffdfing tree, had to

process 100,000 data instances, with 90% of them being

unlabeled data. The hoeffdfing tree algorithm only takes

labeled data as it a supervised learning model.

From what we can see in Table I, is that the hoeffdfing tree

algorithm does exceptionally well as it has the highest

accuracy amongst the models under every single data set. This

is to be expected because it does not use unlabeled data. It

does appear that CLTCE is the worst performing semi

supervised learning algorithm, as it has the lowest accuracy in

every single data set. Amongst the semi supervised learning

algorithms, the CLTC algorithm does the best in the SEA data

set with an accuracy of roughly 60%. Whereas the Cluster and

Label algorithm does the best in the SINE data set with an

accuracy of roughly 63%. So, to conclude, there is no semi

supervised learning algorithm that is inherently better than its

peers.

TABLE I: Comparing semi supervised learning algorithms

accuracy on different datasets.

Data

Sets

Cluster

And

Label

Accurac

y (%)

CLTCE

Accuracy

(%)

CLTC

Accura

cy (%)

Hoeffdfing

Tree

Accuracy

(%)

6

ENGR 489 (ENGINEERING PROJECT) 2023

SEA 55.407 53.85 60.231 86.42

STA

GGE

R

88.89 88.89 88.89 99.91

SINE 63.306 46.46 58.1 96.51

 In Table II, we see that amongst the semi supervised learning

algorithms, that the Cluster and label algorithm is generally the

quickest algorithm, as it has the fastest time in the SEA and

STAGGER dataset and is only 3 seconds slower than the CLTC

algorithm in the SINE dataset. This is to be expected, because

the CLTC and CLTCE algorithm is an extended version of the

Cluster and Label algorithm. Since both these algorithms use

the Cluster and Label model as well as an ensemble model.

TABLE II: Comparing semi supervised learning algorithms

execution time on different datasets.

Data

Sets

Cluster

And

Label (s)

CLTCE

(s)

CLTC

(s)

Hoeffdfing

Tree

(s)

SEA 103.23 116.63 110.43 0.32

STA

GGE

R

55.46 92.90 60.45 0.20

SINE 131.42 174.37 128.40 0.17

 Figures 5 and 6 show the accuracy of the CLTC and CLTCE

and the CL algorithm. However, in Figure 5 and 6 we also see

accuracy of the pseudo label within these algorithms as well. In

Figure 6, the accuracy of the sub classifiers is shown as well.

These models also had to process 100,000 data instances, with

90% of them being unlabeled data.

Fig. 5: The evolving accuracy of the CLTC algorithm and the pseudo

label accuracy inside the CLTC algorithm using the SINE data set.

Fig. 6: The evolving accuracy of the CLTCE algorithm and the pseudo

label and the sub classifiers accuracy inside the CLTCE algorithm

using the SINE data set.

 After evaluating Figure 5, the pseudo labeling generally

performed better than the overall performance of the CLTC

algorithm. However, this is most likely since the models were

processing a SINE data set. The CL algorithm outperforms

both the CLTCE and CLTC algorithm when it comes to

accuracy in the sine data set as seen in Table I. This is

important because the pseudo labeling process is based on the

CL algorithm. This is further shown in Figure 8, where the

pseudo-label accuracy was consistently below the CLTC

algorithm when it was running on SEA dataset. This means

that the accuracy of the CLTC algorithm is not completely

dependent on the CL algorithm.

 After evaluating Figure 6, it is safe to say that CLTCE

algorithm has underperformed. This is because the accuracy of

three of the sub classifiers and the pseudo labelling accuracy

has consistently been higher than the CLTCE algorithm. This

means that the two underperforming sub classifiers has

dragged the CLTCE algorithm to their level. This algorithm

isn’t also performing poorly due to the SINE dataset, because

the algorithm also performed poorly on the SEA dataset as

you can see in Figure 7.

Fig. 7: The evolving accuracy of the CLTCE algorithm and the pseudo

label and the sub classifiers accuracy inside the CLTCE algorithm

using the SEA data set.

7

ENGR 489 (ENGINEERING PROJECT) 2023

Fig. 8: The evolving accuracy of the CLTC algorithm and the pseudo

label accuracy inside the CLTC algorithm using the SEA data set.

 Figures 9,10 and 11 show the model’s performance when it

experiences concept drift. In all three figures, all the models

experience a drop in accuracy when all the models process

roughly around 50,000 data instances. This means that concept

drift is being simulated around that time. However, all three

models can slowly recover from the concept drift, after 10,000

instances later. This means that all the models can adapt to

concept drift.

Fig. 9: Simulating Concept Drift on the CLTCE algorithm.

Fig. 10: Simulating Concept Drift on the CL algorithm.

Fig. 11: Simulating Concept Drift on the CLTC algorithm.

To summarize, when evaluating the two algorithms that I’ve

built, the algorithm that performed the best was CLTC, as it was

able to consistently get higher accuracy percentages than the

CLTCE algorithm. The CLTC model had an average accuracy

rate of 68% and an execution time of 100 seconds when

processing 100,000 data instances which is better than the 162

second exection time and 62% that CLTCE achieved. Also, the

CLTCE algorithm has performed poorly, since the accuracy of

the CLTCE algorithm usually imitates the accuracy of the worst

performing sub classifier, which is not ideal.

The biggest limitations for the CLTC algorithm were that it

sometimes underperforms against the pseudo-label classifier

inside the algorithm. The idea is that CLTC algorithm would

outperform the pseudo-label classifier inside CLTC. This could

be done by adding weights to the pseudo-label classifier. By

adding appropriate weightage to the pseudo labeled data. The

CLTC algorithm could perform even better.

IV. CONCLUSION AND FUTURE WORK

 In the future, other types of semi supervised learning

algorithms asides from cluster based supervised learning, such

as active learning or transfer learning.

V. REFERENCES

[1] M. Bahri, A. Bifet, J. Gama, H. M. Gomes, and S. Maniu, “Data stream

analysis: Foundations, major tasks and tools,” WIREs Data Mining and
Knowledge Discovery, vol. 11, no. 3, Mar. 2021, doi:

https://doi.org/10.1002/widm.1405

[2] M. H. Le Nguyen, H. M. Gomes and A. Bifet, "Semi-supervised Learning

over Streaming Data using MOA," 2019 IEEE International Conference on Big

Data (Big Data),Los Angeles, CA, USA, 2019, pp. 553-562, doi:
10.1109/BigData47090.2019.9006217

[3] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Computing Surveys, vol. 46, no. 4,

pp. 1–37, Apr. 2014, doi: https://doi.org/10.1145/2523813

[4]M. M. Masud, J. Gao, L. Khan, J. Han and B. Thuraisingham, "A Practical

Approach to Classify Evolving Data Streams: Training with Limited Amount

of Labeled Data," 2008 Eighth IEEE International Conference on Data Mining,
Pisa, Italy, 2008, pp. 929-934, doi: 10.1109/ICDM.2008.152

[5] M. J. Hosseini, A. Gholipour, and H. Beigy, “An ensemble of cluster-
based classifiers for semi-supervised classification of non-stationary Data

8

ENGR 489 (ENGINEERING PROJECT) 2023

Streams,” Knowledge and Information Systems, vol. 46, no. 3, pp. 567–597,

2015. doi:10.1007/s10115-015-0837-4

[6] S. Jaramillo-Valbuena, S. Augusto-Cardona, and J. A. Aldana,

“Performance evaluation of different clustering algorithms for data streams,”
RevistaESPACIOS,https://www.revistaespacios.com/a19v40n38/19403817.ht

ml

[7]Sybernix, “CluStream — A Framework for Clustering Evolving Data

Streams,” Medium, Jul. 25, 2017. https://sybernix.medium.com/clustream-a-

framework-for-clustering-evolving-data-streams-b2f8b2d65ae (accessed Oct.
15, 2023).

[8]J. E. van Engelen and H. H. Hoos, “A survey on semi-supervised learning,”

Machine Learning, Nov. 2019, doi: https://doi.org/10.1007/s10994-019-
05855-6.

GitLab Links to the Project:

[9]V.M Ajith, “ENGR489”, GitHub, https://gitlab.ecs.vuw.ac.nz/course-

work/project489/2023/ajithvais/engr489/-

/blob/main/moa/src/main/java/moa/classifiers/semisupervised/ClusterAndLab
elThenClassifyEnsemble.java?ref_type=heads

[10] V.M Ajith, “ENGR489”, GitHub, https://gitlab.ecs.vuw.ac.nz/course-

work/project489/2023/ajithvais/engr489/-

/blob/main/moa/src/main/java/moa/classifiers/semisupervised/ClusterAndLab
elThenClassifyStats.java?ref_type=heads

https://www.revistaespacios.com/a19v40n38/19403817.html
https://www.revistaespacios.com/a19v40n38/19403817.html

