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Abstract— In today's world, we encounter an enormous volume 

of continuous data streams. The task of processing and deriving 

insights from this data can be overwhelming. To address this 

challenge, we propose the use of a machine learning algorithm, 

specifically, a clustering-based semi-supervised learning 

algorithm. This choice is motivated by the recognition that data 

from these streams is often imperfect, exhibiting issues such as 

partial labelling, missing values, and noise. Therefore, a 

clustering-based semi-supervised learning algorithm has been put 

forward as a solution, as it is capable of handling diverse and 

inconsistent data, including both labelled and unlabeled data 

types. After conducting thorough background research, one 

prominent algorithm has been identified as capable of effectively 

addressing the project's requirements: the cluster and label 

classifier. In this project, variations of the cluster and label method 

were employed to build the proposed algorithm. At the current 

stage, the proposed model utilizes the cluster and label method to 

assign a pseudo label to the data points without a label, and then 

an ensemble OzaBag classifier is built and trained on both labeled 

and pseudo-labeled data. And then OzaBag classifier is used to 

classify stream data. This model is evaluated using metrics such as 

accuracy and execution time. The model that is used has an 

average accuracy rate of 68% and an execution time of 100 

seconds when processing 100,000 data instances. 

I. INTRODUCTION 

n today's rapidly evolving world, many devices and sensors 

are being utilized in everyday activity, and they are 

generating enormous amounts of data in the form of data 

streams [1]. Due to the overwhelming amount of data, it is 

impractical for humans to manually process and derive 

meaningful insight from the data. That is why a machine 

learning algorithm that is capable of processing, interpreting, 

and making high-level predictions from data streams in real-

time is essential. Examples of real-time processing and 

prediction from data streams are evident from various fields. 

For example, in finance, real-time analysis of stock market data 

can help investors make critical investment decisions. 

 

    However, data from data streams are not perfect. The data 

that is extracted from the world could be partially labelled, 

missing values, noisy etc. This is due to external factors such as 

network delay, expensive labelling processes, corrupted data, 

etc [2]. That is why we need a semi-supervised learning 

algorithm which can handle inconsistent types of data (mainly 

labelled and unlabeled types of data).  

 

 
This project was supervised by Heitor Gomes (primary). 
 

 

    This project is about developing a basic clustering-inspired 

semi-supervised learning method for data streams. The aim is 

to analyze existing algorithms in the field of semi-supervised 

learning for data streams and propose a novel approach that is 

based on clustering. Which can leverage unlabeled and labelled 

types of data, when creating the model. Concept drift is also an 

important factor when developing a machine-learning 

algorithm. It is the change in the relationship between the input 

and target data as time progresses, and this occurs because data 

is constantly evolving [3]. Which causes the accuracy of the 

model to severely decline. This means the clustering-inspired 

semi-supervised learning method needs to be able to overcome 

the concept drift problem. 

 

    We can evaluate how effective the algorithm is using 

evaluation metrics such as accuracy. We can also evaluate how 

efficient the model is by checking the execution time of the 

model. The execution time refers to how fast the model takes to 

pre-process data, learn, and predict data, and it is essential that 

the execution time is at least a reasonable time. So, the aim is 

to build a model that has a high accuracy rate and has a 

reasonable execution time. 

 

   The proposed model utilizes the cluster and label method to 

assign a pseudo label to the data points without a label, and then 

an ensemble OzaBag classifier is built and trained on both 

labeled and pseudo-labeled data. And then OzaBag classifier is 

used to classify stream data. This model is evaluated using 

metrics such as accuracy and execution time. The model that is 

used has an average accuracy rate of 68% and an execution time 

of 100 seconds when processing 100,000 data instances. This 

meets the requirements. 

 

    The biggest environmental and sustainability issue this 

project faces is the amount of energy consumption that is being 

used to develop this machine learning algorithm. However, the 

energy consumption that is being used during the development 

process of the algorithm is going to be minimal because no 

high-energy consumption tools would be used. So, any 

environmental or sustainability impacts are going to be very 

minimal. The machine learning algorithm is most likely going 

to use a minimal amount of energy as well since this algorithm 

isn't going to be used on an industry level. It would still be good 

practice to be using energy-efficient tools and make the 

algorithm as efficient as possible. 

 
 

 

I 
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      The chosen development methodology for this project is the 

Agile methodology, where each sprint is a cycle of planning, 

executing, and evaluating. Sprints are time-boxed iterations 

during which a developer would work on delivering a set of 

product features or functionality.  The beginning of the sprint is 

the planning phase. In the planning phase, a product backlog 

will be used. The items in the product backlog contain the 

requirements and features that the machine learning algorithm 

needs in the future. They are constantly updated throughout the 

development cycle.  After that, a set of backlog items needs to 

be chosen to be worked on in the current sprint. Also, important 

to break the items down into small tasks. 

 

    After the planning phase, is the development phase where I 

work on implementing the tasks identified in the planning 

phase. This means that this is the phase where we design, code, 

implement, evaluate/test the machine learning algorithm on 

MOA. 

 

    After the development phase is the evaluation phase. At the 

end of the sprint, I conduct a review with the supervisor, collect 

feedback, and adjust the product backlog based on the feedback. 

After that continue to repeat the sprint until all the items in the 

product backlog are finished. 

 

    The Agile development lifecycle emphasizes iterative and 

incremental progress, promoting frequent delivery of working 

software and continual feedback and learning. Cycling through 

the planning, executing, and evaluating phases in each sprint, 

allows me to adapt to changes, improve my processes, and 

deliver value to stakeholders in an iterative manner. 

 

    While developing this project, there would be no specialized 

equipment/hardware needed for this project. The only hardware 

device required is a computer that can run the following 

software: IntelliJ, MOA, and Git. IntelliJ IDEA is an IDE 

(Integrated Development Environment) that acts as a software 

tool to help code, debug, and test the semi-supervised machine 

learning algorithm in the project. It also offers advanced 

refactoring, debugging, and code editing tools which can help 

streamline the development process for the machine learning 

algorithm for this project. 

  

The software required for this project is MOA, IntelliJ, and Git. 

MOA (Massive Online Analysis) is an open-source software 

framework that is designed for data stream mining in real time. 

This is a critical piece of software as it allows users to build and 

run machine learning experiments on evolving data streams. It 

is also possible to implement the semi-supervised machine 

learning algorithms that are being developed in this project on 

MOA. The software also includes evaluation and visualization 

tools that enable users to monitor the performance of the 

learning algorithms, assess the quality of the models, and 

analyze the results which would be essential for this project. 

Because MOA is built on top of the Java Programming 

language, it would be necessary to use Java in this project. This 

means that a Java Development Kit would need to be installed 

on the computer, to be able to develop the machine learning 

algorithm. 

  

Git needs to be installed on a computer for this project so it can 

interact with GitLab. GitLab is a software tool that provides 

many tools that would be useful in this project. It allows users 

to manage and host git repositories, version control the code 

used in this project, review code, and offer project management 

features such as milestones, issue tracking, etc. This would be 

very handy since the Agile methodology process uses those key 

features. 

 

 

II. • RELATED WORK 

    After conducting thorough background research, two 

prominent solutions or algorithms have been identified to be 

able to address the project's requirements effectively. The three 

algorithms are Cluster and Label, and SmSCluster. 

 

    The Cluster and Label approach [2] uses a clustering 

algorithm and a voting scheme to select the target label for each 

data instance. During the training process of the cluster and 

label algorithm, the clustering algorithm will consistently 

receive data instances and then group similar data instances 

together in an unsupervised manner, which results in a K 

number of clusters. In each cluster, it is expected that most of 

the data instances in the cluster would belong to the same class. 

The most common class label will become the representative 

class for that cluster.  

 

    So, when a new data instance joins a cluster, if it's unlabeled, 

the data will be assigned the representative class of the cluster 

as its target label. To keep track of the frequency of the labelled 

data in each cluster, the cluster has a data structure called label 

features. This allows the algorithm to track how many instances 

of each class are in the cluster, When the algorithm is trying to 

predict the label of a new data instance, the algorithm finds the 

closest cluster to the data point. The representative class of the 

closest cluster is issued as a prediction of the new data point. 

 

    The SmSCluster algorithm [4] is slightly different to the 

Cluster and Label approach. The SmSCluster algorithm 

receives the streaming data in chunks. Each chunk contains a 

group of instances, and the SmSCluster algorithm starts 

building a new model by applying a clustering algorithm to the 

group of instances to create a K number of clusters. The 

clustering algorithm uses an EM algorithm to produce clusters 

that minimize both intra-cluster dispersion and at the same time 

the impurity of each cluster regarding its labels. This means it 

can create compact and tight clusters, where the data instances 

within the clusters are like each other.  
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    A summary of the statistics of the instances belonging to each 

cluster is saved as a micro cluster. The micro clusters for a 

particular chunk of data serve as a model to classify other data 

instances. When the algorithm wants to classify new data 

points, it uses the K-nearest neighbor algorithm, which 

identifies Q-nearest clusters. The most frequent label in these 

clusters will be the predicted label of the data instances. 

  

    To deal with the stream evolution, an ensemble of L-such 

models is used. So, when a new model is built from a new data 

chunk, we update the ensemble by choosing the best L models 

from the L + 1 models (previous L models plus the new model), 

based on each model's accuracies on the labelled training data 

inside the new data chunk [5]. 

 

The advantage that both algorithms have is that they do not need 

a fully labelled dataset for the algorithms to work. They are both 

able to work with a limited amount of labelled data, making 

them suitable for scenarios where acquiring labelled data is 

costly or time-consuming. 

 

    One of the disadvantages of the SmSCluster is that it can be 

sensitive to the initial parameter settings, such as the number of 

clusters or the Q value which is used to find Q-nearest clusters. 

Careful tuning and validation of these parameters are required 

to achieve optimal results. 

 

    Depending on the clustering algorithm that Cluster and Label 

use, it might not be able to distinguish between datasets with 

overlapping clusters. This algorithm works best when most 

instances within each cluster share the same class label but 

struggles with more complex labelling scenarios. 

 

    The reason these solutions can be used as a benchmark is that 

they both fulfil the aim of this project, which is to build a 

cluster-based semi-supervised learning algorithm that combats 

concept drift. It is possible to compare the prototype model with 

the following solutions using evaluation metrics such as g-

means, kappa statistic, mean absolute error, etc. The solution 

with the superior metric values means that the solution provides 

the best performance. 

III. DESIGN 

Throughout this project, various algorithm designs were 

considered and have now been narrowed down to two designs. 

The first design solution is referred to as the Cluster and Label 

Then Sub-Classifier (CLSC) while the other is known as the 

Cluster and Label Then Extra Classifier (CLEC). These two 

solutions represent extended versions of the CL algorithm.  

 

When data/instances are sent to both algorithms. It first 

arrives as part of prediction dataset so that the algorithm can 

make a prediction. Then the data/instances are sent to the model 

again as part of the training dataset to train the CL model. This 

can be seen in Figures 1 and 2. 

 

The CLSC design was a discounted design which involves 

employing the first component of the CL method during the 

training phase of the algorithm. Which is essentially, 

grouping incoming training data into clusters. Figure 1 shows 

where the training data is fed into the CL model and algorithm 

1 shows how it works. 

 

    In the training phase, the algorithm will find the closest 

cluster Cx for each instance X using the Euclidean distance 

formula (1). If the instance is labeled, then the clusterer C 

creates new clusters or updates existing clusters by training on 

the instance and the label. If X is unlabeled, then the algorithm 

provides it a pseudo-label by finding the most common class 

label (the representative class label) within Cx. Then C creates 

new clusters or updates existing clusters by training on the 

instance and the pseudo-label [2]. In the CLSC design, all the 

data points are stored within the clusters, and either have a label 

or a pseudo-label assigned to them. 

 

𝑑(𝑎, 𝑏 … 𝑧) = √∑ (𝑎𝑖 − 𝑏𝑖 …− 𝑧𝑖)
2𝑛

𝑖            (1) 

  

Algorithm 1: Cluster And Label: Training 

Input: A clusterer C 

while stream is active do 

 X ←nextInstance() 

 Cx ←closestCluster(X) 

 If X is labeled then 

  C.train(X,y) 

 else 

  ŷ← Cx.getPseudoLabel(X) 

  C.train(X, ŷ) 

 

The reason why the unlabeled X is given the representative 

class label within Cx is because of the cluster assumption [8]. 

The cluster assumption states that data points belonging to the 

same cluster belong to the same class. In this case we are 

assuming that X is a part of Cx.  

 

CLSC and the CL methods are similar; however, CLSC 

differs in the classification stage of the algorithm. The 

classification stage is when the data stream sends data points to 

the CLSC model, so that the model can make a prediction of 

what class belongs to that data point. This can be seen in Figure 

1. 

 

 In the classification phase, the clusters are utilized to classify 

data. The algorithm first determines the closest cluster to the 

unlabeled instance. Then, using the data points that are within 

the cluster, a supervised classifier gets trained/updated and 

subsequently is used to predict the label for the instance. 

 

The classification phase of CLSC leverages both labeled and 

pseudo-labeled data from the cluster so that the algorithm can 

train/update and use a supervised classifier to make predictions. 

The reasoning behind this is that pseudo-labeled data 

effectively augments the size of the labeled dataset. In many 
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machines learning tasks, having a larger labeled dataset can 

lead to more robust and accurate models. 

 

However, the biggest flaw with this approach is that clusters 

are subsets the stream data, and they may not always represent 

overall data. If the clusters are not well-balanced, it may 

introduce bias in classification. Unlabeled data points may be 

misclassified because they align with a different part of the 

feature space. Which is why this design was ultimately 

discounted. 

 
Fig. 1: Overview and behavior of the CLSC Algorithm.  

 

The CLEC design that was used in the project also employs 

the CL method in the training phase just like the CLSC method. 

This is because it also uses algorithm 1 in the training phase. 

But, in the CLEC design, it does not use clusters, instead it uses 

micro clusters which is a summarized representation of a cluster 

of data points. The CLEC design also employs a slightly 

different classification method using algorithm 2. 

 

For the classification phase, the algorithm first determines 

the Cx to the X. Then, a pseudo label ŷ is then given to the 

instance if it’s unlabeled. Then using that (labelled or pseudo 

labeled) data point, a supervised classifier gets trained/updated, 

and then is used to predict what class belongs to that instance. 

This is visualized in Figure 2. 

 

Algorithm 2: CLEC: Classifying 

Input: An instance X, A supervised classifier S, A 

clusterer C 

X ←nextInstance() 

Cx ←closestCluster(X) 

Prediction← null 

If X is unlabeled then 

 ŷ← Cx.getPseudoLabel(X) 

 S.train(X, ŷ) 

 Prediction← S.getVotesForInstance(X, ŷ) 

else 

 S.train(X, y) 

 Prediction← S.getVotesForInstance(X, y) 

return Prediction 

 

 

Overall, CLEC has the same advantages that CLSC has, 

which is the ability to use labeled and pseudo-labeled data to 

train a supervised machine learning algorithm. The ability to 

create and use pseudo-labeled data also increases the size of the 

labeled dataset which can lead to more robust and accurate 

models. However, CLEC uses the entire available dataset to 

make predictions, whereas CLSC doesn’t, which makes CLEC 

the better algorithm. This is because using the entire available 

dataset is more likely to represent the overall data. 

 

 
Fig. 2: Overview and behavior of the CLEC Algorithm 

 

II. IMPLEMENTATION 

 

In the implementation phase of the project, the CLEC design 

was used to build two solutions called Cluster and Label Then 

Classify Stats (CLTC) [10] and Cluster and Label Then Classify 

Ensemble (CLTCE) [9]. Both solutions have the same 

implementation for the training components which can be 

visualized in Figure 3. However, both use different 

implementations of the Classification component which can 

also be visualized in Figure 4. 

 

For the training component, both solutions use algorithm 1 to 

build, train or update the CL model. They both use the 

CluStream algorithm to cluster the incoming training data into 

micro clusters. The reason why CluStream was the best 
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clustering algorithm is it is designed to be computationally 

efficient for streaming data [7]. This is partly because it uses 

micro clusters, which is a summarized representation of a 

cluster of data points. So, the clusters don’t need to store any 

data points at all. The algorithm also uses a sliding time window 

to make sure to retain recent micro-clusters, and to gradually 

discard older micro clusters when they become too old. This 

allows CluStream to adapt to evolving data distribution and 

detect concept drift over time because it’s constantly adapting 

to the newest data, and it also gradually removes redundant 

data. 

 

 
Fig. 3: The Training Component of CLEC Algorithm 

 

 
Fig. 4: The Classification Component of CLEC Algorithm 

     

    For the classification component, both solutions use 

algorithm 2 to build, train or update the supervised classifier 

model. They both use an ensemble algorithm as their 

supervised classifier to make the final prediction of each 

instance. This is because ensemble machine learning 

algorithms combine predictions from multiple models to 

produce a more robust prediction. This is because if an 

ensemble has a diverse set of base models, the ensemble can 

still perform well even if some individual models 

underperform or are affected by outliers. However, the biggest 

drawback in using an ensemble is that they are 

computationally expensive and time-consuming due to the 

need for training and storing multiple models. The reason why 

these two solutions are a bit different is that CLTCE uses an 

ensemble algorithm that was manually built with five different 

sub learners and CLTC uses an ensemble algorithm from 

MOA which is called the OzaBag ensemble. 

 

    The solution proposed in this project does not need to 

address environmental sustainability considerations. This is 

because the amount of energy this solution uses is minimal 

and will not affect the environment unless it used on an 

industry scale which is very unlikely.  This is because the 

solution does not require any high energy tools or programs to 

run. 

III. EVALUATION 

    To evaluate the solutions that I have built, I’m going to use 

two main metrics which are the accuracy of the models, and 

the how long each model takes to process 100,000 data 

instances (execution time). Because the ideal model would be 

something that can predict the target variable at a high 

accuracy rate with a reasonable execution time to pre-process 

data, learn, and predict data. 

 

    Table I and II show the performance (the accuracy and the 

execution time) of all the models under different datasets. The 

models used was the CL algorithm (as a benchmark), the two 

models that has been developed in this project, which is the 

CLTCE and CLTC algorithm, and hoeffdfing tree algorithm. 

The hoeffdfing tree algorithm is a supervised learning 

algorithm that is used to compare against the semi supervised 

learning algorithms.  

 

    Each of the models except for hoeffdfing tree, had to 

process 100,000 data instances, with 90% of them being 

unlabeled data. The hoeffdfing tree algorithm only takes 

labeled data as it a supervised learning model. 

 

From what we can see in Table I, is that the hoeffdfing tree 

algorithm does exceptionally well as it has the highest 

accuracy amongst the models under every single data set. This 

is to be expected because it does not use unlabeled data. It 

does appear that CLTCE is the worst performing semi 

supervised learning algorithm, as it has the lowest accuracy in 

every single data set. Amongst the semi supervised learning 

algorithms, the CLTC algorithm does the best in the SEA data 

set with an accuracy of roughly 60%. Whereas the Cluster and 

Label algorithm does the best in the SINE data set with an 

accuracy of roughly 63%. So, to conclude, there is no semi 

supervised learning algorithm that is inherently better than its 

peers. 

 

TABLE I: Comparing semi supervised learning algorithms 

accuracy on different datasets. 

 

Data 

Sets 

Cluster 

And 

Label 

Accurac

y (%) 

CLTCE 

Accuracy 

(%) 

CLTC 

Accura

cy (%) 

Hoeffdfing 

Tree 

Accuracy 

(%) 
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SEA 55.407 53.85 60.231 86.42 

STA

GGE

R 

88.89 88.89 88.89 99.91 

SINE 63.306 46.46 58.1 96.51 

 

    In Table II, we see that amongst the semi supervised learning 

algorithms, that the Cluster and label algorithm is generally the 

quickest algorithm, as it has the fastest time in the SEA and 

STAGGER dataset and is only 3 seconds slower than the CLTC 

algorithm in the SINE dataset. This is to be expected, because 

the CLTC and CLTCE algorithm is an extended version of the 

Cluster and Label algorithm. Since both these algorithms use 

the Cluster and Label model as well as an ensemble model. 

 

 

TABLE II: Comparing semi supervised learning algorithms 

execution time on different datasets. 

 

Data 

Sets 

Cluster 

And 

Label (s)  

CLTCE 

(s) 

CLTC  

(s) 

Hoeffdfing 

Tree  

(s) 

SEA 103.23 116.63 110.43 0.32 

STA

GGE

R 

55.46 92.90 60.45 0.20 

SINE 131.42 174.37 128.40 0.17 

  

    Figures 5 and 6 show the accuracy of the CLTC and CLTCE 

and the CL algorithm. However, in Figure 5 and 6 we also see 

accuracy of the pseudo label within these algorithms as well. In 

Figure 6, the accuracy of the sub classifiers is shown as well. 

These models also had to process 100,000 data instances, with 

90% of them being unlabeled data. 

     

 
Fig. 5: The evolving accuracy of the CLTC algorithm and the pseudo 

label accuracy inside the CLTC algorithm using the SINE data set. 

 
Fig. 6: The evolving accuracy of the CLTCE algorithm and the pseudo 

label and the sub classifiers accuracy inside the CLTCE algorithm 

using the SINE data set. 

    After evaluating Figure 5, the pseudo labeling generally 

performed better than the overall performance of the CLTC 

algorithm. However, this is most likely since the models were 

processing a SINE data set. The CL algorithm outperforms 

both the CLTCE and CLTC algorithm when it comes to 

accuracy in the sine data set as seen in Table I. This is 

important because the pseudo labeling process is based on the 

CL algorithm. This is further shown in Figure 8, where the 

pseudo-label accuracy was consistently below the CLTC 

algorithm when it was running on SEA dataset. This means 

that the accuracy of the CLTC algorithm is not completely 

dependent on the CL algorithm. 

 

    After evaluating Figure 6, it is safe to say that CLTCE 

algorithm has underperformed. This is because the accuracy of 

three of the sub classifiers and the pseudo labelling accuracy 

has consistently been higher than the CLTCE algorithm. This 

means that the two underperforming sub classifiers has 

dragged the CLTCE algorithm to their level. This algorithm 

isn’t also performing poorly due to the SINE dataset, because 

the algorithm also performed poorly on the SEA dataset as 

you can see in Figure 7. 

 

 
Fig. 7: The evolving accuracy of the CLTCE algorithm and the pseudo 

label and the sub classifiers accuracy inside the CLTCE algorithm 

using the SEA data set. 
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Fig. 8: The evolving accuracy of the CLTC algorithm and the pseudo 

label accuracy inside the CLTC algorithm using the SEA data set. 

    Figures 9,10 and 11 show the model’s performance when it 

experiences concept drift. In all three figures, all the models 

experience a drop in accuracy when all the models process 

roughly around 50,000 data instances. This means that concept 

drift is being simulated around that time. However, all three 

models can slowly recover from the concept drift, after 10,000 

instances later. This means that all the models can adapt to 

concept drift. 

     

 
 

Fig. 9: Simulating Concept Drift on the CLTCE algorithm. 

 
Fig. 10: Simulating Concept Drift on the CL algorithm. 

 
Fig. 11: Simulating Concept Drift on the CLTC algorithm. 

To summarize, when evaluating the two algorithms that I’ve 

built, the algorithm that performed the best was CLTC, as it was 

able to consistently get higher accuracy percentages than the 

CLTCE algorithm. The CLTC model had an average accuracy 

rate of 68% and an execution time of 100 seconds when 

processing 100,000 data instances which is better than the 162 

second exection time and 62%  that CLTCE achieved. Also, the 

CLTCE algorithm has performed poorly, since the accuracy of 

the CLTCE algorithm usually imitates the accuracy of the worst 

performing sub classifier, which is not ideal.  

 

The biggest limitations for the CLTC algorithm were that it 

sometimes underperforms against the pseudo-label classifier 

inside the algorithm. The idea is that CLTC algorithm would 

outperform the pseudo-label classifier inside CLTC. This could 

be done by adding weights to the pseudo-label classifier. By 

adding appropriate weightage to the pseudo labeled data. The 

CLTC algorithm could perform even better. 

IV. CONCLUSION AND FUTURE WORK 

   In the future, other types of semi supervised learning 

algorithms asides from cluster based supervised learning, such 

as active learning or transfer learning. 
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