
ENGR 489 (ENGINEERING PROJECT) 2023 1

Improving Usability of a Mechatronic Drum Robot
Jamie U

Abstract—This report details the development of a graphical
user interface for DrumBot to improve ease of use. DrumBot
is a mechatronic robotic system capable of playing complex
MIDI compositions on arbitrary drum kit setups. In order to
prepare DrumBot for a performance, the user must first run
the accompanying command line or graphical application and
follow through a setup and configuration process. But when this
project inherited DrumBot, several significant usability issues
were made apparent after testing the graphical user interface.
This included requiring text input where one would expect a
button or selection input, unexpected hangs in the software, and
users possessing little fidelity over certain configuration settings,
which made the configuration process confusing and tedious.
It was particularly difficult to navigate the setup process for
the first time if one was unfamiliar with the inner workings of
the system. This project addressed these issues by producing
a new graphical application that is more intuitive than the
previous, using standard usability heuristics for user interface
design to evaluate. Development involved designing a new user
interface, refining the process of configuring the various DrumBot
settings, facilitating communications between the host computer
and DrumBot, and navigating the challenges of designing an
application that reliably interfaces with a real-time embedded
system. This new application was designed to better guide the
user to navigate the DrumBot setup process, and gives the user
greater control over configuration, making DrumBot more usable
overall.

Index Terms—Drum Robot, Electrical and Electronic Engi-
neering, Software Engineering, Mechatronic Robotic System

I. INTRODUCTION

DRUMBOT is a mechatronic robotic system capable of
playing complex MIDI compositions on a drum kit. It

consists of three robotic arms, a self-actuated kick pedal, and a
self-actuated hi-hat pedal. A user can send a stream of MIDI (a
commonly used protocol for describing electronic music notes)
notes over a serial connection to the motherboard, which then
sends commands out to the arms and pedals instructing them
to move and play the notes.

Each component has a daughterboard which connects to
the central motherboard. The motherboard receives commands
over a serial connection and sends instructions out to the
components. The command contains the ID of the component
that the command is for, so only the associated component
will respond. For example, the user sends a command via the
user interface instructing DrumBot to move Arm 1 to the snare
drum. The command is received by the motherboard, which
sends the command out to all the arms. The board of the
matching arm – Arm 1 in this case – responds and moves the
arm to the position of the snare. Other DrumBot commands
include instructions for calibrating the limits of the arm joints
and configuring the positions of the drums.

This project was supervised by Dale Carnegie (primary), and Jim Murphy.

Fig. 1. DrumBot setup

Motherboard

Arm 1 Arm 2 Arm 3 Kick pedal Hi-hat
pedal

DrumBot

Power supply

Host PC

Fig. 2. DrumBot high-level structure – solid lines represent serial communi-
cation and dashed lines represent power

For a user to communicate with DrumBot, they have the
option to use the CLI (command line interface) or GUI
(graphical user interface). The DrumBot CLI is more robust
than the GUI, but is less comfortable to use, especially for a
user less experienced using a CLI. This needs to be considered
because DrumBot’s target users are musicians who wish to
use DrumBot for performance, and musicians generally are
not familiar with CLIs. This makes the GUI the preferred
application to use.

The GUI provides a more user-friendly experience by
making user input easier to provide via buttons, and not over-
whelming the user with a text dump of information messages.
But while it is an improvement from the CLI application in
terms of accessibility, the GUI possesses several significant
usability issues, which were identified at the beginning of
this project. These issues include requiring text input where a
clickable selection or button confirmation would be expected,
and being unable to cancel certain actions – issues which
ultimately make the GUI only a slight improvement over the



ENGR 489 (ENGINEERING PROJECT) 2023 2

more “primitive” CLI. For both the CLI and GUI, it is also
extremely difficult for a user who is not familiar with DrumBot
to figure out how to configure the system due to the lack of
documentation.

Addressing these usability issues is important for achieving
the greater goal of orchestrating a mechatronic band – one
of the overall goals for DrumBot is to coordinate with other
mechatronic instruments MechBass (bass guitar) and Azure
Talos (6-string guitar) to form a heterogeneous mechatronic
ensemble which can outperform other mechatronic ensembles.
To make this goal feasible, DrumBot needs to be accessible
to musicians who may have little engineering knowledge and
understanding about the inner workings of DrumBot, and this
is what this project achieved.

This project developed a new GUI, DrumSet. DrumSet is
developed with the aim of making a fully graphical UI that
utilises UI design conventions and fulfils usability heuris-
tics such as those outlined by Norman Nielsen [1]. Key
improvements over the old GUI include the elimination of
text input areas and replacing them with buttons, lists, and
comboboxes, providing the user with more guidance via non-
intrusive helpful messages, implementation of more error
messages to inform the user of the system status, and stopping
the system from unexpectedly hanging. DrumSet not only
improves user experience and accessibility, but also improves
code extensibility. Features can be more easily added onto the
codebase, and DrumSet’s GUI is built with PyQt5 allowing
developers to use the Qt Designer tool which enhances the
development process. By developing a new and improved
GUI, DrumBot has become more accessible to users, allowing
musicians to configure DrumBot with ease and use it in a
performance with other mechatronic instruments.

II. RELATED WORK

A. Robotic Music Ensembles

This section briefly covers several other robotic musical
ensembles that exist to help give context to the overall goals
of DrumBot.

There are several examples of robotic instruments and
robotic ensembles in the world (such as Compressorhead, Z-
Machines, The Trons [2], and The Machine Orchestra [3]), but
not all are the same. Some of these instruments are designed to
play alongside human players in a robot-human collaboration
of sorts, while others are fully automated and do not require
human input during performance.

The Machine Orchestra is an example of a robot-human
ensemble that incorporates robotic instruments and human
musicians [3]. Many of the robotic instruments involved in
the performances require the inputs of musicians to produce
music. For example, a percussion robotic instrument could be
connected to a custom sitar and responds to the player’s inputs
into the sitar [4]. In a sense, the percussion robot is “playing
alongside” the sitar player. There are also other robotic in-
struments in the ensemble that receive input from musicians,
but not via another traditional instrument. In summary, The
Machine Orchestra puts on a unique experience of robots and
humans playing alongside each other in harmony.

Compressorhead differs in comparison to The Machine
Orchestra in that it is a rock band consisting of only robots [2].
The robots are humanoid in appearance and play their electric
and acoustic instruments in a human-like manner, giving a
unique visual aspect to performances. They are controlled via
a MIDI sequencer [2] much like DrumBot. The lineup consists
of a lead guitarist, bassist, drummer, drummer’s assistant (for
operating the hi-hat cymbal), a vocalist, and a rhythm gui-
tarist [2], imitating a complete rock band. Compressorhead’s
combination of musicality and visual appeal makes it highly
entertaining for audiences.

As discussed previously, one of DrumBot’s greater goals
is to form a mechatronic ensemble with other mechatronic
instruments MechBass and Azure Talos. This ensemble would
differ to the previously discussed robotic bands and offer its
own unique experience that is both musically impressive and
visually intriguing. However, if DrumBot is not easily accessi-
ble to its target users (musicians), then its use becomes limited.
Thus, this project sought to address DrumBot’s usability issues
by developing a new GUI.

B. Evaluating User Interface Design

This section discusses the evaluation methods used in this
project.

Norman Nielsen’s 10 Usability Heuristics for User Interface
Design [1] are widely used heuristics for evaluating user
interfaces. They are not strict guidelines, but instead general
principles to follow when designing and evaluating user in-
terfaces. These heuristics were proposed by Jakob Nielsen.
The 10 heuristics are below, with a short summary. They are
described in more detail in [1].

1) Visibility of system status – Keep the user informed of
what is going on.

2) Match between system and the real world – Use words,
phrases, and concepts familiar to the user, follow real-
world conventions and natural and logical organisation.

3) User control and freedom – Allow users to quickly back
out of unwanted actions.

4) Consistency and standards – Follow platform and estab-
lished industry conventions.

5) Error prevention – Prevent errors from happening in the
first place rather than always relying on error messages.

6) Recognition rather than recall – Minimize the user’s
memory load by making elements, actions, and options
visible. Help should be readily available instead of
relying on the user to remember information.

7) Flexibility and efficiency of use – Make shortcuts avail-
able to experienced users who are familiar with the
interface. Provide personalisation and customisation.

8) Aesthetic and minimalist design – Essential information
should not have to compete with irrelevant or rarely
needed information for attention.

9) Help users recognize, diagnose, and recover from errors
– Error messages should be expressed in plain language
(no error codes), precisely indicate the problem, and
constructively suggest a solution.



ENGR 489 (ENGINEERING PROJECT) 2023 3

10) Help and documentation – If necessary, provide doc-
umentation to help users understand how to complete
their tasks.

These usability heuristics were used to evaluate DrumBot’s
preexisting GUI (Section III), define the requirements for
DrumSet (Section IV-A), and evaluate DrumSet (Section VI).
Using these set of usability principles to evaluate the UIs
means that they are being assessed against industry accepted
standards.

III. PRELIMINARY TESTING

This section details the usability issues identified in the
old DrumBot GUI, research into existing solutions, and spec-
ifications for the new configuration software. For context,
the original goal of this project was to create a software to
coordinate mechatronic robot instruments – one of which is
DrumBot – to play together as an ensemble. However, upon
testing and experimenting with DrumBot and its configuration
software, several significant usability issues were made appar-
ent, making the software unsuitable for use by a musician.
This prompted a change of project direction to one that is
more DrumBot-focused.

Taking time to gain familiarity with DrumBot was
necessary in order to understand how use it properly and
assess how it could be integrated into an orchestration
software. As mentioned, several usability issues with
DrumBot’s configuration software were identified during
this analysis. Indeed, it was the assessment of DrumBot’s
configuration software that prompted the change of project
direction. This section will walk through the features of
the configuration software, discuss the issues identified, and
suggest improvements.

DrumBot has a CLI (command line interface) and GUI
(graphical user interface) which are used to firstly configure
the system (configuration mode) and secondly receive and
process MIDI data (performance mode).

A. Command Line Interface

The CLI is programmed in the Arduino language which is a
variant of C++, as well as regular C++. This is programmed di-
rectly into DrumBot’s motherboard, which sends and receives
data to a host PC through a serial connection.

The lack of documentation for DrumBot made it challenging
to figure out how access the CLI, especially without prior
personal experience with Arduino. To access the CLI, the
serial connection between the host PC and DrumBot must be
monitored. For this, the Arduino programming environment
was used, but any program with a serial monitor can be used,
such as Virtual Studio Code .

When the program starts, the software begins its startup
procedure and declares what components (arms, kick, hi-hat)
are connected, as well as configured drums and latency. Then,
the user is presented with a menu of configuration options
that can be selected by entering a number from 0 to 9. If an
invalid input is entered, the options are displayed again. The
configuration options are as follows:

0 - Ping all possible arms
1 - Calibrate arm limits
2 - Add Drum MIDI position
3 - Clear all calibrated drum locations
4 - Review latency and PID coefficient info
5 - Change the proportional control coefficients
6 - Move to drum corresponding to MIDI note
7 - Run through automated positional latency
detection
8 - Enter performance mode
9 - Tighten/Loosen grips
10 - Disable servos

Several of these options, such as 2 - Add Drum MIDI
position, require additional user input after selecting an option.
For example, when adding a drum MIDI position, the user is
required to enter the character ‘y’ when the selected arm is in
the desired position.

Some configuration options output additional information
to the terminal. In particular, when configuring an option that
involves the movement of a robot arm, i.e. 1 - Calibrate arm
limits and 2 - Add Drum MIDI position, the program will
continuously output the current motor value to the console.
When the robot is put into performance mode using 8 - Enter
performance mode, the program will output the MIDI notes
received and additional information such as whether they were
played on time or skipped.

Due to lack of help documentation, some configuration
settings were unclear as to what is needed to be done by
the user. For example, in the Calibrate arm limits option, it
is unclear what such “limits” should be (they should be the
furthest the arms can extend without colliding with objects
such as other arms). Overall, it took an immense amount
of trial and error to determine how to properly configure
DrumBot. In addition, there is no way to cancel a process
mid-configuration – if the user makes a mistake, then the
configuration process needs to be restarted from the beginning.

There is also a usability issue specific to the 2 - Add Drum
MIDI position configuration option. It is impossible to tell
when an arm is outside of its configured range until after
the MIDI position has been selected. The current state of the
software involves much back and forth and reconfiguration by
the user. A possible improvement is displaying to the user the
current motor values of the selected robot arm, and its set
minimum and maximum values.

Overall, considering the inherent limitations of a CLI, the
DrumBot CLI is functional, aside from a few issues. The major
issues specific to the CLI being that when ‘y’ is input it is
not “stripped” of whitespace, and that the list of configuration
options are not displayed again after a configuration process is
complete. To work around these issues, the user must configure
that their input has no appended whitespace in the serial
monitor, and they may enter an invalid configuration option
number to display the list of options again. Other issues with
the software exist, but they exist in the GUI interface as well
(more issues to be described in III-B).

Obviously, an improved user interface, especially one for a
musician without engineering knowledge, would be graphical,



ENGR 489 (ENGINEERING PROJECT) 2023 4

because interactive graphical elements such as buttons are
much easier to use and prevent invalid inputs. The next section
walks through the original GUI solution as inherited at the start
of this project.

B. Graphical User Interface

This section refers to figures in Section 1 of the Appendix
[5].

The preexisting DrumBot GUI was built with the aim of
making DrumBot easier to use for users such as musicians
who have less engineering knowledge [6].

Due to the program being written in Python, the required
libraries needed to be manually installed in order to run it.
However, this led to the assumption that the program would
work with the latest versions of the libraries – this was not
the case. Customtkinter changed some of the formats of its
components, such as the combobox, meaning old code would
not work. It was not known as to what version of the library
the DrumBot GUI was written with, so the code had to be
updated to comply with the latest version.

Nevertheless, the purpose of creating a GUI for DrumBot
is to have a UI that it is easier to use compared to the CLI.
The DrumBot GUI attempts to fulfil this in several ways:

• Display the configuration options as buttons that can be
clicked. The most critical options are also highlighted for
the user.

• Implement a “back” button which allows the user to exit
out of the current configuration option.

• Not display “debug” information, i.e. motor values and
received MIDI notes, to the user.

A manual evaluation was performed on the DrumBot GUI
to assess its usability. During this, several difficulties were
experienced while using the software to configure DrumBot,
and a list of usability issues were identified. It was surprising
that these issues were not caught in previous user testing
during its development [6]. The evaluation conducted during
this project is detailed below.

1) Connecting: When DrumBot is turned on and connected
to the user’s computer via serial USB, and the DrumBot GUI
is open, then the user must select which port the DrumBot
is connected to from a combo box (see Fig. 1 [5].), which
is a good design pattern (a design pattern in software and
user experience design is a practice used to solve a commonly
occurring problem). The list of ports can be refreshed in case
DrumBot is connected after launching the GUI. It is also clear
what actions the user should take here, that is, to connect
DrumBot and select the port.

However, one issue was identified. If the selected port is
invalid and the user selects a configuration option, the software
hangs. It would be better if the program was halted and an
error message displayed to the user, informing that there is a
connection error.

2) Option Menu: The DrumBot configuration options are
displayed as large buttons that are easy to read. The most
critical options are highlighted for the user, guiding them as to
what should be configured before entering performance mode
(Fig. 2 [5]).

An issue identified with the usability is one that sometimes
occurs when selecting an option. A pop-up appears, as shown
in Fig. 3 [5]. This sort of “error” never occurs in the CLI
version of the configuration software. It is also unclear what
should be done when this pop-up shows – it seems that you
need to continuously keep selecting the option until it works.
But sometimes, this is an indication of a connection error
and the software needs to be restarted. In any case, there is
no indication of what the error is. This violates the usability
heuristic of visibility of system status [1]. The wording of the
pop-up also implies that the user needs to “wait” for the pop-
up to go away, when that is not the solution.

3) Using The Configuration Options: The main issue with
the DrumBot GUI is that despite it being graphical, it largely
functions the same as the CLI version of the software, and also
hides away information that could be useful for debugging.
The GUI does not fully utilise graphical features, for example
requiring text input for confirmation for everything, instead of
using dropdowns or buttons. Also, the messages displayed to
the screen exactly mirror those of the command line prompts
with no amendments to typos and grammatical errors. This
means that the GUI essentially behaves in the same way
as the CLI, but with additional issues (to be described) and
less information being shown to the user (motor values when
configuring arms, and information on MIDI notes received are
not shown to the user).

a) Software hangs when pinging arms: Upon clicking
Ping all possible arms, there is a delay where the software
seems to “hang”. After pinging is complete, the user is shown
a screen that says which arms are connected. However, the
“hang” is rather startling and violates the usability heuristic of
visibility of system status [1]. It would be better if there was
no hang and the screen changed instantaneously, then pinged,
or there was some sort of indication that the software was
loading and not hanging. (e.g. animated loading icon).

b) Software hangs when disabling servos: The interface
also seems to “hang” when disabling servos.

Fig. 3. The GUI requires text input in places it shouldn’t, contrary to
conventional design

c) Selecting an arm requires text input: When selecting
an arm to configure, the user is prompted to enter a number
a number from 1 to 3 in a text input box (Fig. 4 [5]). This is
poor UI design; the arms should be selectable via buttons, or
a dropdown. This doesn’t utilise graphical features, making it
functionally no different to the CLI.

d) Confirming input requires text input: “Press y when
in position” is shown when configuring one of the robot arms
(Fig. 5 [5]). It would be more sensible to use a button for
confirmation instead.



ENGR 489 (ENGINEERING PROJECT) 2023 5

e) Motor values are hidden during calibration: When
calibrating arm limits, it is no longer possible to view the
value of the motor being set. In the CLI version, the program
would constantly output the motor position value to the serial
monitor. These values are intentionally hidden from the user
to have a cleaner UI. But this has the adverse effect of
hiding what is actually useful information for debugging the
system. The current value of the motor should be displayed
somewhere.

f) User must exit and re-select configuration option:
Upon completion of configuring an arm, the software asks
the user to “please exit” (Fig. 6 [5].) Better user experience
would involve “resetting” the configuration option so that the
user can immediately begin configuring another arm, without
having to exit and click back in again.

g) Unable to clear single MIDI positions from arm: It
is only possible to clear all MIDI note positions at once, then
reconfigure the positions.

h) Unable to cancel action mid-configuration: It is not
possible to exit and cancel actions while in the middle of
configuring an arm. This affects the usability heuristic of user
control and freedom [1]. This behaviour is also observed in
the CLI.

C. Performance Mode

When in performance mode, the user is presented with
a screen with a single message – no other information is
communicated. This is actually a downgrade from the CLI
program – when the CLI program was in performance mode,
the received MIDI notes and details on whether the note was
played on time or skipped would be output to the screen.
It is also unclear for a new user as to what should be done
in performance mode. There is a lack of documentation
explaining that DrumBot should be connected to a DAW
(digital audio workstation) such as FL Studio, Ableton Live,
or Logic Pro X, like a regular instrument. A simple solution
for this is to add additional help messages to the UI.

Overall, while the GUI makes it a little easier for a user
without engineering experience to understand and use the
software, it doesn’t do a good job of utilising graphical features
to improve the user experience. The user is still required
to frequently switch between the mouse and keyboard when
configuring DrumBot, and there is no additional indication of
what “valid” input is for some configuration options, such as
Move to drum corresponding to MIDI note.

There is also a lack of documentation on how to configure
the software properly, for both the CLI and GUI programs.
For example, in the Calibrate arm limits option, it is unclear
what such “limits” should be, as mentioned previously.

Analysing the code reveals that the GUI essentially sits on
top of the CLI – the CLI output is buffered to a stream which
is read by the GUI. Essentially, the CLI hides underneath
the GUI, instead of the being replaced by it. While this
solution works to an extent, is not a particularly elegant
solution, and isn’t very flexible. This is not an ideal solution
as the GUI depends on the CLI. The GUI directly reflects

the CLI, meaning code changes would need to be both the
CLI and the GUI. Instead, it is preferable if the CLI and GUI
commands were separate. This, as well as selecting an ideal
GUI framework that is well supported, would make it easier
for developers to build on the software in the future.

IV. DESIGN

A. Requirements

This section discusses the requirements for the new con-
figuration software, DrumSet. These requirements are largely
informed by Norman Nielsen’s Usability Heuristics for User
Interface Design [1] as well as the shortcomings of the original
DrumBot GUI and CLI as discussed in III. In general, the
software should allow, at a minimum, the same functionality
offered by the original DrumBot GUI application.

1) The software shall allow the user to ping the arms,
kick pedal, and hi-hat – Pinging the arms involves
sending a “ping” request to DrumBot which then sends
a request to each component. The components that send
a response back are connected. This is necessary for
knowing which components are available for configura-
tion.

• The software shall inform the user when a ping is
in process. (Usability heuristic Visibility of system
status [1])

• The software shall inform the user which compo-
nents have responded to the ping.

• The software shall inform the user how long it took
for a component to respond.

2) The software shall allow the user to calibrate the limits
of the joints

• The software shall give the user clear instructions
to calibrate a joint. (Usability heuristic Help and
documentation [1]

• The software shall allow the user to calibrate a
specific joint. (Usability heuristic User control and
freedom [1])

• The software shall allow the user to calibrate all
joints in one routine.

• The user shall be able to cancel calibration once
started. (Usability heuristic User control and free-
dom [1])

3) The software shall allow the user to configure MIDI
drum positions

• The software shall allow the user to add a new MIDI
drum position.

• The software shall allow the user to remove a single
configured MIDI drum position. (Usability heuristic
User control and freedom [1])

• The software shall allow the user to remove multiple
configured MIDI drum positions at once.

4) The software shall allow the user to run through the
automated positional latency detection routine

• The software shall inform the user when the routine
is running, and when it has finished. (Usability
heuristic Visibility of system status [1])



ENGR 489 (ENGINEERING PROJECT) 2023 6

5) The software shall allow the user to review configured
values of DrumBot

6) The software shall allow the user to directly edit the
shoulder PID coefficients of the arms

• The user shall be able to cancel editing the shoulder
PID coefficients. (Usability heuristic User control
and freedom [1])

7) The software shall allow the user to move an arm to a
configured drum position

8) The software shall allow the user to tighten and loosen
the grips of the wrists

9) The software shall allow the user to disable the servo-
motors of the arms

10) The software shall allow the user to put DrumBot into
Performance Mode

• The software shall display the log of DrumBot
system messages to the user while DrumBot is
performing. (Usability heuristic Visibility of system
status [1])

11) The software shall allow the CLI application to function
as normal – Modifications to DrumBot’s code may be
made to accommodate the new GUI application, but the
user should still be able to use the CLI application.

12) While the software is completing an action, the software
shall prevent user input – This is to prevent the system
from entering an error state. (Usability heuristic Error
prevention [1])

13) The software shall inform the user what each config-
uration setting does – (Usability heuristic Help and
documentation [1])

1) Excluded Features: In the DrumBot CLI and original
GUI applications, the user is able to modify values for the
wrists by accessing Change the proportional control coeffi-
cients. However, these configured values cannot be reviewed
like how the user can review the shoulder PID coefficients. As
it is not clear how the proportional control coefficients affect
the wrists’ movement (lack of documentation), it was decided
that it would not be included in DrumSet. However, it can
implemented in future work.

B. Choice of GUI Framework

This section discusses the candidates for GUI framework
that were explored.

As the DrumBot code was written in Arduino C++, it was
initially thought that using a C++ GUI framework would make
it easier to interface with DrumBot. Some frameworks consid-
ered were Qt (pronounced “cute”), and JUCE. Qt offers tools,
including a “design studio” for designing and implementing
GUIs. It is a popular choice of UI framework and is guaranteed
to look consistent across Windows, Linux, and macOS –
important as musicians make use of a wide range of platforms.
JUCE is a C++ framework for audio and plug-in development,
making it ideal for creating VST plug-ins (virtual instrument
plug-ins), but can also be used for making standalone GUI
applications. It also comes with additional MIDI support. In
fact, JUCE was used for GUI support in Signal for The
Machine Orchestra [7]. Some other options considered were

GTK and wxWidgets, but GTK is more focused on creating
applications for Linux, and wxWidgets is not guaranteed to
look consistent across all platforms, so these candidates were
not ideal.

Python libraries were also explored, the motivation being
that developing GUIs in Python is generally more developer-
friendly. Customtkinter and PyQt5 were considered. Cus-
tomtkinter is a UI library built upon tkinter (a popular Python
UI toolkit) but with additional features and more attractive
components out of the box. Customtkinter makes making
modern-looking GUIs easy, and is also what the original
DrumBot GUI was built with. PyQt5 on the otherhand, is a set
of Python bindings for the previously mentioned Qt, allowing
the use of the Qt C++ framework but in Python. It was also
thought that this would make it easier to interface with C++
code.

In the end, PyQt5 was chosen as the GUI framework.
Coding the application in Python is more developer-friendly
than in C++, and at the time it was also believed that PyQt5
should also allow easy interfacing with DrumBot C++ code,
making it the preferred option over Customtkinter. PyQt5 was
also chosen over JUCE because building components appeared
to be simpler, and the additional MIDI support from JUCE
was not deemed necessary. Qt is well-documented and is
discussed a lot in online forums by the developer community.
PyQt5 also comes with the free-to-use Qt Designer tool, which
is a graphical application for designing GUIs without using
code. This makes creating and maintaining a complex GUI
application much easier than developing the GUI from scratch
purely with code. Having access to the Qt Designer is a
significant advantage of using PyQt5.

It should be noted that while it was initially thought that
using a C++ framework would be advantageous for interfacing
with the Arduino C++ code, this was a misconception, as the
communication between DrumBot’s motherboard and the host
PC can only be achieved through messages sent over a serial
port – the language the GUI application is built in does not
matter for interfacing with DrumBot. This was realised after
development of the new DrumBot configuration software had
began, and a clearer understanding of the existing codebase
and how DrumBot works was gained.

C. Design Planning

This section discusses the planned design for DrumSet, as
a result of the requirements IV-A.

1) Configuration Settings: It was decided that DrumSet’s
list of configuration settings would differ from those of the
DrumBot CLI and original GUI (III-B). The aim was to make
the configuration settings more intuitive by grouping related
settings together, which as a result, reduces the number of
main menu options and the amount of navigation required by
the user.

The original eleven menu options were reduced to eight:
• Calibrate Arm Limits
• Edit MIDI Positions
• Run Through Automated Positional Latency Detection

Routine



ENGR 489 (ENGINEERING PROJECT) 2023 7

Select an option to begin configuring. Hover over an option to see more 
information about it appear in this box. In fact, hovering over almost anything will 
have a tooltip appear here!

Automated 
positional latency 
detection routine

Advanced Settings

Edit MIDI PositionsCalibrate arm limits

Tighten/loosen 
grips

Disable servos

Ping all arms
Enter performance 

mode

DrumBot Configuration

Ping the components to check they are connected.

Ping DrumBot Components

Ping status 

Components


Arm 1


Arm 2


Arm 3


Kick


Hi-hat

Status


Pinging...


Waiting


Waiting

Connected


Connected


Pinging...

Right WristLeft Wrist

ElbowShoulder

Calibrate All Joints

Calibrate Arm Limits

Arm 1


Arm 2


Arm 3

Select Arm:

Configure the limits that the arms can safely move.

Click “Configure all” to run through the entire configuration routine for the 
selected arm, or choose a specific joint to configure.

Edit MIDI Positions

Arm 1


Arm 2


Arm 3

Select Arm:

Configure MIDI note positions for each arm. Positions need to be within the limits 
defined in Calibrate Arm Limits.

Remove

Add

MIDI Positions

Note


38


42

Name


Snare


Hi-hat (closed)

Fig. 4. DrumSet mockup overview, full mockup suite available in Section 2 of Appendix [5]

• Tighten/Loosen Grips
• Ping All Arms
• Enter Performance Mode
• Advanced Settings
• Disable Servos
The Edit MIDI Positions option allows the user to add

or remove (single or multiple) MIDI drum positions and
command an arm to move to a configured position. This
intuitively groups together three of DrumBot’s configuration
settings in one place.

Advanced Settings groups together Review latency and PID
coefficient info and Change the proportional control coef-
ficients, two configuration options that would not normally
be accessed by a user with little understanding of the inner
workings of DrumBot. By grouping these options under the
heading “Advanced Settings”, it makes it obvious to a user
that they should not be accessing these functions unless they
know what they are doing.

2) Mockup: A mockup (Fig. 4) was created to plan and
visualise how DrumSet would like (the full suite of wireframes
can be viewed in [5]). The final product as discussed later in
Section V does not look exactly like this, but comes very close
– design decisions were made during implementation as they
were seen fit. While the design takes some inspiration from
the original DrumBot GUI (e.g. in the main menu), there are
several major differences.

Of note, the design does not take any text input from
the user as if it were a CLI application, but instead utilises
graphical features such as buttons, comboboxes, and list and
table selections. At no point is the user required to use their
keyboard to submit text input – the user selects the arm they
want to configure by clicking the desired arm in the arm
selection list, and MIDI positions are selected via a combobox,
just to name a few improvements.

The design also has a “hint box” for displaying information
about the current page. It also will show information about
what the user is hovering over – when the user hovers over
a widget (a GUI component) such as a button, the hint
box will update its message to describe what the widget
does, providing easily accessible in-app help documentation.
This design choice was directly inspired by FL Studio’s user
interface, a popular DAW used by musicians.

a) Calibrate Arm Limits: The user selects the arm they
wish to configure, then clicks a button to start configuring a
joint. They can configure one specific joint, or all joints in
one continuous routine. To advance through the calibration
process, the use clicks the Submit/Save button. The user may

cancel the calibration process at any point via the Cancel
button.

b) Edit MIDI Positions: The user selects the arm they
wish to configure. DrumSet presents the user with the drum
MIDI positions the arm has been loaded with. From here, the
user can configure a new position by clicking the Add button.
The user then selects the MIDI drum note they wish to con-
figure from the combobox, then moves the arm’s drumsticks
to the centre of the desired drum and clicks Save when done.

In this menu setting, the user can also remove a configured
position by selecting it from the table and clicking Remove.
Multiple positions can be removed at once by clicking and
dragging or holding down the Ctrl or Shift keys to select.
An arm can also be made to move to a position if a single
position is selected.

c) Positional Latency Detection Routine: The user clicks
the button to begin the routine. While the routine is running,
a loading bar is shown to give an indication of progress. A
message is displayed when the routine has finished.

d) Tighten/Loosen Grips: The user selects the arm they
wish to configure, then the grip (left or right). The user then
clicks either the Tighten button to tighten the selected grip,
or the Loosen button to loosen it. As soon as tightening or
loosening begins, a Stop Tightening button appears. When the
user is finished configuring the grip and wants to go back to
the arm/grip selection page, they click the Finish button.

e) Advanced Settings: The user selects the arm they wish
to review or configure. The calibrated limits, loaded MIDI
notes, latency, and shoulder PID coefficients. The user can
click Edit to enable in-place editing of any of the values.

f) Ping Arms: The user is presented with the ping
information of the last time the components were pinged. The
user clicks the button to ping the arms. While DrumSet is
waiting for responses from DrumBot, the interface signifies
that pinging is in progress. As soon as a ping response is
received from a component, the latency is displayed in the
ping status table, and the component is listed as “Connected”.
If the component did not respond to the ping in the required
time frame, the component is listed as “Not Connected”. When
the pinging process is complete, the time of the last ping is
updated.

g) Performance Mode: Upon selecting this menu option,
DrumBot is put into Performance Mode. When DrumBot
receives a MIDI stream, the output is displayed in the MIDI
Log. This information may be useful for debugging.

h) Disable Servos: The user clicks the Disable Servos
menu option, and a “loading” popup message is shown while



ENGR 489 (ENGINEERING PROJECT) 2023 8

Fig. 5. Overview of DrumSet implementation

DrumBot is disabling the servomotors. A message is displayed
when the servos have been disabled.

V. IMPLEMENTATION

This section discusses the realisation of the design, the
differences between the design and the implementation, and
challenges faced. An overview of the implemented design is
shown in Fig. 5.

DrumSet was developed in Python with the PyQt5 library.
Because the design of DrumSet has a large number of com-
ponents, Qt Designer (the design tool PyQt5 comes packaged
with) was used to build the GUI. Qt Designer is a tool that
allows you to design a GUI in a drag-and-drop manner, making
it easier to build and maintain the GUI. Using Qt Designer
reduces the amount of code the developer needs to write. The
Qt Designer also allows the GUI to be styled with a CSS-like
style sheet, which makes it easy to update the look and feel
of widgets.

By using PyQt5, it contributes to the sustainability goals
of the project, that is, to ensure DrumSet is easy for other
developers to extend and maintain in future. The application
was also designed such that it does not directly mirror the
DrumBot CLI, so that development of the CLI and DrumSet
can diverge from each other and have different functionality.
This is an improvement from the original GUI application
which was not easily extensible due to the fact that it directly
mirrored the CLI and used the same commands.

In addition to developing the DrumSet application, Drum-
Bot’s code needed to be modified in order to respond to Drum-
Set. Developing for DrumBot requires the Teensyduino add-on
for Arduino. The Arduino IDE was used to modify DrumBot’s
code, which is written in Arduino C++. Several new functions
were developed for DrumBot in order to respond to DrumSet.

One of the requirements for DrumSet is to ensure that
the functionality of the DrumBot CLI is maintained. To
accomplish this, commands sent to DrumBot from DrumSet
were designed to begin with a “!” character. This character
signifies to DrumBot that the command should be interpreted
differently to a CLI command. CLI commands and DrumSet
commands often elicit the same behaviour/response from
DrumBot and its arms, but some actions require different
behaviour depending on if the command were from the CLI or
from DrumSet. For example, to add a new MIDI position using
the CLI, the user would submit the number of the arm, then
the number of the MIDI position, then submit “y” to complete
the configuration – three separate inputs in total. For DrumSet,
only one command – containing the arm and the MIDI note
– is sent.

To provide a smooth user experience, much of the func-
tionality of DrumSet involves starting up a separate thread
to complete the task so that the GUI does not freeze. This
is because long-running processes and blocking instructions
block GUI updates, so threads are required to run such
processes in a separate thread to the GUI.

Many of the actions in DrumSet require some time to
complete, such as waiting for a response from DrumBot. Such
actions require blocking user input so that processes are not
interrupted and DrumSet is not put into an error state (e.g.
a state where two threads are reading from the serial port
at the same time). This has been accomplished via a “loading
message popup” (Fig. 6), where a popup message appears with
the message “Loading...” and does not hide until the process
is complete. The user is able to close the popup by clicking
the x, however; this solution is quite rudimentary, but lays the
groundwork for a more robust solution in future.



ENGR 489 (ENGINEERING PROJECT) 2023 9

Fig. 6. DrumSet loading message popup in Advanced Settings

A. Features

1) Connection: (See Fig. 5) The process of connecting to
DrumBot is largely the same as the original DrumBot GUI.
When DrumSet is opened, the user is presented with the list of
available ports, selectable in a combobox. The user can refresh
the list of ports by clicking the Refresh button, which spins
up a separate thread to complete the task. While the ports are
being retrieved, the Refresh button becomes disabled and its
text becomes “Refreshing...”. The reason a separate thread is
necessary for retrieving the list of available ports is because
it is a long-running process and would otherwise cause the
GUI to hang. Once the user has selected the port DrumBot
is connected to, they click Connect, and DrumSet sets up the
serial connection.

2) Main Menu: The main menu presents the eight menu
options to the user (see Fig. 5). From here, the user can select
their desired configuration option. If the DrumBot components
have not yet been pinged (i.e. when DrumSet has only just
been opened), then only the Ping All Arms option will be
available, with all other disabled (see Fig. 16 in Appendix
[5]). This is because DrumSet does not know which of the
components are connected, and all other options require at
least one component to be available. Specifically, Performance
Mode requires at least one arm, the kick, or hi-hat to be
available. All other options require at least one arm, since
they are configuration options for arms. After the user has
used the Ping Arms option, the software will enable/disable
the other configuration options based on what components are
connected.

3) Hint Box: A tooltip system was implemented to help
users understand what different things mean. At the top of
the screen, a box displays information about what the user is
currently hovering over, or general information about the page
if the user is not hovering over a widget with an associated
hint.

To implement this, a map of widget names to hint messages
was created in a separate file. Then, in the main file when the
GUI is initialised, the program traverses through the widget
tree of the GUI and checks if the widget has an associated
hint message. If it does, then a hover event listener is installed
into the widget, which updates the hint box’s text if the mouse

hovers over the widget. If the mouse moves off the widget,
then the text is set to the default text for the current page.

4) Ping Arms: (See Fig. 23 in Appendix [5]) The Ping
Arms option allows the user to ping the components of
DrumBot and view details about the most recent ping. At ini-
tialisation, the components’ response latencies are all recorded
internally as -2, and displayed as “Not Pinged” in the ping
status table. To ping the components, the user clicks the
Ping Again button which starts up a thread. The thread sends
a ping command over serial to DrumBot then waits for a
response for each component. If a response is received, the
latency is recorded, and the ping status table is updated with
“Connected” and the latency in milliseconds. If the latency for
a component is 1000 (arm took too long to respond to Drum-
Bot), or if no response is received for 4 seconds (sufficient
time to allow the command to be sent and processed, and for
the response to be sent and processed), then the component
is recorded as -1 internally, and “Not Connected” in the ping
status table.

When pinging the components, the table is updated row by
row as responses are received, giving a satisfying visual to the
user. This visual required that the ping function be threaded
because otherwise the GUI would freeze and not update until
pinging was completely finished.

Fig. 7. DrumSet calibrating the limits for elbow of Arm 2

5) Calibrate Arm Limits: (See Fig. 17 in Appendix [5]) The
user selects the arm they wish to configure by selecting from
the arm selection list, which is only populated with connected
arms. Then, the user clicks the button correspond to the joint
they wish to configure – the user may configure the limits of
just one joint for the selected arm, or configure all joints in
one continuous routine.

Clicking a button starts up a new thread for communication
with DrumBot. The thread sends a command to DrumBot
requesting to begin calibration for the selected arm and joint
and waits for a response. While waiting for a response, the
loading message popup is shown until DrumBot sends a
message confirming that it has begun calibration for the joint.

Implementing threading for this feature was particularly
challenging because the thread has to submit multiple com-
mands to DrumBot during its lifetime. It has to send the initial
command to start a calibration routine, a command to proceed
to the next step of calibration, and a command to cancel the



ENGR 489 (ENGINEERING PROJECT) 2023 10

routine. In addition, state has to be maintained to keep track
of what joint is currently being calibrated, whether all joints
are being calibrated, and the current step of the routine.

The specific details of the implementation for calibrating a
single joint versus all joints are detailed below.

a) Calibrating a single joint: After selecting the joint
to calibrate, the user is brought to a screen that instructs
them to move the joint to its topmost (for the shoulder) or
leftmost (for the elbow and wrists) position. The current value
of the servomotor’s position is streamed from DrumBot (this
is part of the original DrumBot CLI code) and displayed in the
GUI. When the joint is in position, the user clicks the Next
button to proceed to the next step – the thread sends a “y”
message to DrumBot to command it to go to the next step,
then waits for a response (loading message popup is shown).
The next step is to calibrate bottommost/rightmost position,
in the same way the topmost/leftmost position was calibrated.
Clicking Next sends the “y” command, and since this is the
last step in this calibration routine, the user is brought back
to the main Calibrate Arm Limits page once DrumBot has
responded confirming calibration has completed. The thread
is then discarded. At any point during the calibration process,
the user can click Cancel which will make the thread send
a “x” message to DrumBot, telling it to cancel the current
routine and do not save the calibrated values.

b) Calibrating all joints: Calibrating all joints follows a
similar process, the main technical difference being that there
are more steps. DrumSet guides the user through calibration
for the shoulder, elbow, left wrist, and right wrist, in the same
manner a single joint would be calibrated. But clicking “Next”
after calibrating the bottommost/rightmost position doesn’t
bring the user back to the main Calibrate Arm Limits screen,
but instead moves onto calibrating the next joint in the order,
unless the current joint is the right wrist, which is the last
joint in the order. Cancelling the calibration process discards
all values calibrated during the entire routine.

6) Edit MIDI Positions: This configuration option com-
prises of several features and has several dedicated threads
for completing the actions – the user can view the currently
configured drums, add a new position, remove positions, and
move an arm to a configured position. The user selects an
arm from the arm selection list, and views the configured
MIDI drum positions displayed in a table. The table rows are
selectable.

a) Viewing the currently configured drums: When the
user enters this menu option, a thread is immediately started to
fetch the configured drum positions for the currently selected
arm. While waiting for DrumBot to respond with the loaded
drums, the loading message popup is shown. The positions are
then displayed in the table, as shown in Fig. 8. The user can
select a different arm via the arm selection list, which will
send a new command to DrumBot to fetch the loaded drums.

b) Adding a new position: The user clicks Add and is
brought to a different screen as shown in Fig. 9. The user is
instructed to move the arms to the centre of the drum they
want to configure, then select the corresponding MIDI note
from the combobox. The user then clicks Save, which starts
up a new thread that sends a command to DrumBot to save

Fig. 8. DrumSet viewing the configured MIDI drum positions for Arm 2

a new drum position. The loading message popup is shown
while DrumSet waits for a response. DrumBot validates the
position, and if the position is invalid – if the arm is out of
range, for example – then DrumBot includes error messages in
its response, which DrumSet presents to the user. Otherwise, it
confirms that the position was saved, and the user is returned
to the main Edit Midi Positions page, where the drums are
fetched again and displayed in the table.

Fig. 9. DrumSet adding a new MIDI Position for Arm 2

c) Removing positions: The user selects a single position
in the table, or multiple positions (see Fig. 20 in Appendix
[5]) by clicking and dragging or holding down the Ctrl
or Shift keys. The user removes the selected positions by
clicking Remove Selected, which starts up a thread that sends a
command to DrumBot to remove the specified positions. The
loading message popup is shown while waiting for a DrumBot
response confirming that the positions were removed.

d) Moving an arm to a position: If the user has selected
exactly one position in the table, then the Move Arm to Drum
button will be enabled. Clicking this button starts a new thread
to send a move arm command to DrumBot, and the arm moves
to the position. If DrumBot returns a response that there was
an error in moving the arm, then a popup message alerting the
user is displayed.

7) Latency Routine: (See Fig. 21 in Appendix [5]) The user
enters the Latency Routine page, then clicks the button to begin
the automated positional latency detection routine. This starts



ENGR 489 (ENGINEERING PROJECT) 2023 11

up a thread that sends a command to DrumBot to start the
latency routine. While the routine is running, a loading bar is
displayed, giving an indication of how far along the routine is
– when positional latency detection for one arm is complete,
the loading bar progresses. Arms with more configured drum
positions will take longer to complete, so the loading bar is not
completely accurate. However, it is the closest representation
that can be achieved with the current state of DrumBot.

8) Tighten/Loosen Grips: (See Fig. 22 in Appendix [5]).
The user selects the arm they wish to configure using the arm
selection list. Then, they click the button for the grip they wish
to adjust. Once selected, the user is presented with Tighten
and Loosen buttons. When the user clicks on a button, a new
thread is created to tighten/loosen the grip, which sends the
command to DrumBot to tighten/loosen the selected grip. If
DrumBot confirms that adjusting has begun, the buttons are
then hidden, and a Stop button is shown. When clicked, the
thread sends “x” to DrumBot, commanding it to stop adjusting
the grip. If DrumBot confirms that adjusting has stopped, the
Stop button is hidden and the Tighten and Loosen buttons are
shown again. The user can click the Finish button to go back
to the main Tighten/Loosen Grips screen.

Fig. 10. DrumSet Performance Mode with log messages

9) Enter Performance Mode: (See Fig. 24 in Appendix [5]).
The Performance Mode page contains a text display which
displays the messages sent by DrumBot during Performance
Mode. At first, this text display is empty. The user is instructed
to start Performance Mode and connect DrumBot to a DAW
(digital audio workstation) as an external MIDI instrument,
which will allow DrumBot to receive and process MIDI notes.

The user clicks the Start Performance Mode button, which
starts a new thread to send the command to DrumBot. The user
stops Performance Mode by clicking Stop Performance Mode.
When starting and stopping Performance Mode, DrumSet
waits for a confirmation from DrumBot. If the confirmation
is not received, then an error message is displayed.

10) Advanced Settings: (See Fig. 26 in Appendix [5]).
When the user enters the Advanced Settings page, a new
thread is created to retrieve the review information for the
selected arm. The popup loading message is shown while the
information is being retrieved. The user can review details for
another arm by selecting it from the arm selection list, which
starts up a new thread. The information is parsed and displayed

in the corresponding tables in the GUI – the calibrated arm
limits, loaded MIDI positions, positional latency, and shoulder
PID coefficients.

It should be noted that this feature is highly dependent
on DrumBot formatting the review data in a certain way.
DrumSet expects a certain number of columns (except for the
latency data) and cannot infer table headers. This means that
if DrumBot had an update which changed the format of the
review data, this would cause DrumSet to crash.

a) Editing the shoulder PID coefficients: (See Fig. 26 in
Appendix [5]). Typically, a user would not want to edit the
shoulder PID coefficients, but a user may wish to if they want
to fine-tune the arm movements. To edit the coefficients, the
user clicks on the Edit button, which enables the values in the
table to be edited. The user clicks Save when they are finished
editing, or Cancel to reset their changes. Clicking Save creates
a new thread to send the update to DrumBot.

It should be noted that in the original plan, DrumSet
would also allow the user to edit the values for calibrated
arm limits, latency, and configured MIDI positions. Due to
time constraints, this was not implemented. Cutting out these
features is not a problem though, as the CLI and original GUI
did not allow this functionality in the first place.

11) Disable Servos: (See Fig. 27 in Appendix [5]). Click-
ing Disable Servos creates a new thread to send the disable
servos command to DrumBot. A popup message appears,
confirming that the command was sent. If the command was
correctly processed on the DrumBot side, then then the torque
of all of the servomotors are disabled and the arms relax.

B. Challenges
There were several technical challenges in implementing

DrumSet. These challenges were unforeseen due to limited
personal experience with Arduino, but they were able to be
overcome.

One was the challenge of safely communicating with Drum-
Bot in a way that doesn’t lead to error states. DrumBot is
an embedded system and does not respond instantaneously to
serial input, and during the delay between sending a command
to DrumBot and receiving a response, unexpected input from
DrumSet can often result in errors. Since threading is required
to complete many tasks, DrumSet is put into an error state if
it has two threads active and reading from the serial buffer at
the same time. Therefore, mechanisms were put in place in
the code to ensure only one thread is active at a time, and that
while a thread is running, user input is prevented (with the
loading message popup).

A challenge that also stems from the fact that DrumBot
cannot send back an instantaneous response, is that DrumSet
cannot always assume DrumBot’s state, since its configured
values could have changed since the last time the values were
retrieved – for example, DrumBot’s loaded MIDI positions
could have been changed by the CLI application while Drum-
Set was still open. Having inaccurate data about DrumBot’s
state can lead to error states. So, to be on the safer side,
DrumSet sends a new request to DrumBot every time a
page is visited, such as when viewing the Advanced Settings
information for an arm.



ENGR 489 (ENGINEERING PROJECT) 2023 12

Overall, implementing DrumSet was challenging because
it is required to interface with an external software-hardware
system which is limited in how fast it can process input and
return a response, making instantaneous – or even just fast
– communication infeasible. DrumSet also does not directly
control DrumBot (it just sends messages over serial), so extra
care needed to be taken to avoid error states.

C. Conclusions

Overall, DrumSet was implemented very close to the design
that detailed in Section IV. The required features planned in
the design were able to be implemented, and styling was
applied to make the GUI have a modern look and feel.
Particular noteworthy features of DrumSet are Calibrate Arm
Limits and Edit MIDI Positions, which are significant user
experience upgrades from their original counterparts. While
there are some aesthetic differences to the mockup, DrumSet
possesses all required functionality. Technical challenges due
to the embedded nature of the project were faced, but solutions
were found and implemented. DrumBot’s code lays a good
foundation for further improvement of these solutions in
future.

VI. EVALUATION

This section discusses whether DrumSet met the require-
ments outlined in IV-A, and whether the usability issues in
the original GUI were solved.

A. Meeting the Requirements

The requirements outlined in IV-A are reiterated here and
treated like a checklist.

1) The software shall allow the user to ping the arms, kick
pedal, and hi-hat – Complete.

• The software shall inform the user when a ping is
in process. – Complete. DrumBot displays the text
“Pinging...” and disables the Ping button while a
ping is in progress.

• The software shall inform the user which com-
ponents have responded to the ping. – Complete.
DrumBot updates the ping status table as ping
responses are received. Text next to each component
informs the user whether the component is “Con-
nected” or “Not Connected”. If components have
not been pinged, then the text “Not Pinged” will be
displayed.

• The software shall inform the user how long it took
for a component to respond. – Complete. Next to
the “Connected” text, the latency is displayed in
milliseconds.

2) The software shall allow the user to calibrate the limits
of the joints – Complete.

• The software shall give the user clear instructions to
calibrate a joint. – Complete. Instructional messages
are displayed to guide the user.

• The software shall allow the user to calibrate a spe-
cific joint. – Complete. The user may select “Shoul-
der”, “Elbow”, “Left Wrist”, or “Right Wrist” to
calibrate that joint only.

• The software shall allow the user to calibrate all
joints in one routine. – Complete. The user may
select “Calibrate All Joints” and DrumSet will go
through calibration for all the joints.

• The user shall be able to cancel calibration once
started. – Complete. The user may click the Cancel
button to cancel the current calibration routine.
This is possible when calibrating a single joint or
when calibrating all joints in one routine. Cancelling
calibration discards any values calibrated during the
routine; calibrated values are not saved.

3) The software shall allow the user to configure MIDI
drum positions – Complete.

• The software shall allow the user to add a new
MIDI drum position. – Complete. The user clicks
Add, moves the drum sticks of the selected arm to
the desired position, selects the MIDI note from the
combobox, then clicks Save.

• The software shall allow the user to remove a single
configured MIDI drum position. – Complete. The
user may click to select a MIDI position in the table,
then click Remove Selected to remove the position.

• The software shall allow the user to remove mul-
tiple configured MIDI drum positions at once. –
Complete. The user may select multiple positions
at once and remove them.

4) The software shall allow the user to run through the au-
tomated positional latency detection routine – Complete.

• The software shall inform the user when the routine
is running, and when it has finished. – Complete.
DrumSet shows a message and loading bar while
the routine is running. A message is shown when
the the routine is complete.

5) The software shall allow the user to review configured
values of DrumBot – Complete. Calibrated arm limits,
configured MIDI positions, positional latency, and shoul-
der PID values can be viewed under Advanced Settings.

6) The software shall allow the user to directly edit the
shoulder PID coefficients of the arms – Complete.

• The user shall be able to cancel editing the shoulder
PID coefficients. – Complete. The user many cancel
editing the shoulder PID coefficients by clicking
Cancel.

7) The software shall allow the user to move an arm to
a configured drum position – Complete. In Edit MIDI
Positions, the user may select a single configured MIDI
position and click Move Arm to Drum.

8) The software shall allow the user to tighten and loosen
the grips of the wrists – Complete. The user can do this
in Tighten/Loosen Grips.

9) The software shall allow the user to disable the servo-
motors of the arms – Complete.



ENGR 489 (ENGINEERING PROJECT) 2023 13

10) The software shall allow the user to put DrumBot into
Performance Mode – Complete. The user starts and stops
Performance Mode by clicking the buttons.

• The software shall display the log of DrumBot
system messages to the user while DrumBot is per-
forming. – Complete. Serial output from DrumBot
is displayed while Performance Mode is running.

11) The software shall allow the CLI application to function
as normal – Complete. The DrumBot CLI application
functions as normal. Its functionality is not affected by
the implementation of DrumSet.

12) While the software is completing an action, the soft-
ware shall prevent user input – Partially Complete. As
discussed in Section V, a loading message pop appears
while DrumSet is completing an action, preventing user
input. However, this popup can easily be closed. A more
robust solution should be implemented in future.

13) The software shall inform the user what each configura-
tion setting does – Complete. Hint messages have been
implemented for each configuration setting, shown when
the setting is hovered over.

In summary, DrumSet fulfils most of the requirements
outlined in IV, except for requirement 12. Preventing user
input while DrumSet is busy is an important as to avoid the
application going into an error state. Thus, it is paramount that
a more robust solution is implemented in future. A possible
solution for this is to have a dark, translucent overlay cover the
GUI, preventing user input. Another solution is to implement
a popup box, but remove the buttons to close it, and always
ensure that it sits on top of the main GUI. Improvements such
as these can easily be integrated into the code, as the current
solution lays the groundwork.

B. Evaluation against Original GUI

DrumSet was evaluated against the original DrumBot GUI
to assess whether it is an improvement and if it addresses the
usability issues in the original GUI discussed in Section III.

1) Software hangs when pinging arms and disabling servos
– Addressed. DrumSet does not hang when pinging the
components or disabling the servos because it starts a
separate thread to run these tasks. A separate thread
is used for any long-running task or task that requires
writing to or reading from the serial buffer.

2) Selecting an arm and confirming input requires text input
– Addressed. DrumSet does not require any text input
(unless they are editing the shoulder PID values), and
instead follows design conventions and receives user
input via buttons, comboboxes, list selections, and table
selections. Receiving user input via graphical options
where appropriate is more sensible for a GUI, and sets
it apart from a CLI.

3) User must exit and re-select configuration option –
Addressed. After finishing configuring a setting for an
arm, DrumSet automatically brings the user back the the
main page for that configuration setting. This reduces
the number of clicks the user has to make, making the
process more efficient.

4) Motor values are hidden during calibration – Addressed.
During a calibration routine, the current positional value
of the joint being calibrated is displayed to the user in a
small text box. Although users will not generally need
this information, it is now available if a user does need
it, such as when debugging the system.

5) Unable to clear single MIDI positions from arm –
Addressed. DrumSet allows the user to select single
MIDI positions to remove, instead of having to clear
all positions. The user can also select multiple positions
to remove at once.

6) Unable to cancel action mid-configuration – Addressed.
It is now possible for a user to cancel actions that were
previously not able to be cancelled. For example, a user
can now click Cancel to back out of calibrating limits for
an arm. This has also been extended to arm calibration
in the CLI application, and by extension the original
DrumBot GUI, since it mirrors the CLI. Now, users have
greater freedom of control.

All the issues identified in the original DrumBot GUI have
been addressed in DrumSet. This shows that DrumSet does
indeed improve the usability of DrumBot.

C. Evaluation against Sustainability Goals

One of the goals of this project was to ensure DrumBot is
easily extensible by other developers. To achieve this, PyQt5
was chosen as the GUI framework because it is well-supported
with resources and comes packaged with the Qt Designer
studio, a tool which greatly assists development. This not
only contributes to DrumSet’s extensibility, but also the ease
to maintain it, as it is usually easier to make modifications
with a GUI than in code. DrumSet’s design is also modular.
Configuration features do not interfere with each other, ensur-
ing that features can be updated or added without affecting
other features. Each DrumSet feature that requires a thread
uses a separate thread, creating separation of responsibilities.
The GUI is easy to update to accommodate new functionality
as well, thanks to Qt Designer.

Good documentation is essential for enabling other
developers to work on DrumBot and DrumSet in the future.
In fact, the lack of documentation at the start of this
project made it difficult to learn how to configure DrumBot
and understand the codebase, which hindered progress.
Unfortunately, this project was not able to develop extensive
documentation for DrumSet within the time constraints, so
DrumSet’s codebase is currently not easily understandable.
However, some code comments have been written to guide
developers and clearly outline what each part of the code is
for. As discussed previously, a “hint box” was implemented
for DrumSet to guide users in configuring DrumSet as well.
In the near future, extensive documentation should be written
for DrumSet and DrumBot.

In summary, DrumSet has addressed all the usability issues
identified in the original DrumBot GUI. It also satisfies all
of its design requirements, except for one where only a
partial solution was implemented, but lays the groundwork



ENGR 489 (ENGINEERING PROJECT) 2023 14

for it to be expanded upon on in future. DrumSet addresses
software sustainability issues regarding code extensibility and
maintainability, but more documentation should be written in
the near future to ensure the project is easily picked up by
future developers. Overall, DrumSet is an improvement of the
original DrumBot GUI, therefore fulfilling the project goals
of improving usability of DrumBot, making it fit for use by a
musician for performance.

VII. CONCLUSION

DrumBot is a mechatronic robotic system capable of playing
complex MIDI compositions on an arbitrary arrangement of
drums. It consists of three robotic arms for playing the drums,
and two self-actuated pedals for controlling a kick and hi-
hat. For DrumBot to perform a composition, it must first be
put through a setup process to configure the limits of the
movement of the arms, set the positions of the drums, and
calculate the latency when moving arms between drums. A
user can do this using DrumBot’s CLI or GUI programs which
communicate with DrumBot over a serial connection. How-
ever, several significant usability issues were made apparent
in DrumBot’s GUI, making it unsuitable for use by a musician.

An evaluation was carried out on DrumBot’s GUI to assess
its usability, and several significant issues were identified.
Many of the issues stem from the fact that the GUI goes
against design conventions and does not utilise graphical
features in its implementation, making it essentially behave
in the same way as the CLI program. DrumBot also lacks
documentation, making it particularly difficult for a new user
to understand how to configure DrumBot. To address the issues
of DrumBot’s preexisting GUI, a new software, DrumSet, was
developed. Developing a new solution instead of building upon
the original DrumBot GUI was required because the original
GUI is difficult to extend and maintain long term.

DrumSet gives the user the same essential functionality
provided by the original GUI, with additional features and
improvements to user experience. DrumSet’s design was in-
formed by widely used usability heuristics and the shortcom-
ings of the original GUI. DrumSet is is easy to navigate,
provides flexible functions like allowing the user to calibrate a
singular joint or remove a single MIDI position, and guides the
user by providing helpful messages. With DrumSet, DrumBot
is now more accessible and usable by musicians for perfor-
mance.

A. Future Work

Some areas of potential future work have been identified
for both DrumBot and DrumSet.

1) Improvements to DrumSet: DrumSet’s solution for pre-
venting user input while waiting for a response from DrumBot
can be improved upon. Some suggestions are made in Section
VI-A, and DrumBot’s code lays the groundwork for such a
solution to be implemented.

Future work could also involve implementing editing and
reviewing of the wrist proportional control coefficients (as
discussed in IV-A1), as well as direct editing of the values
of the arm limits, MIDI positions, and positional latency.

2) Orchestration Software: Now that DrumBot is in a
state where it can be used by a musician for a performance,
the greater goal of orchestrating a mechatronic band can be
revisited. This would likely involve developing a software
program that can interface with DrumBot, MechBass, and
Azure Talos, and synchronise them with consideration to their
individual latencies.

3) Finer Control of Movement: DrumBot and DrumSet
could be extended to allow the user to have finer musical
control of DrumBot. The “pitch bend” property of MIDI notes
could be used to communicate positional information, such
as playing more to the center or more to the edge of a given
drum. This would extend the musical capabilities of DrumBot.

This project overcame the challenges of implementing a
GUI that interfaces with a real-time embedded system, and
produced a new software application that enables a user to
configure DrumBot with ease. DrumSet has addressed the
usability issues present in the original DrumBot GUI and has
made DrumBot more accessible to users who are not familiar
with the inner workings of DrumBot. By developing DrumSet,
this project has achieved its goals in improving the usability
of DrumBot, and as a result, DrumBot is now in a state where
it can be used in a performance by a musician. DrumSet is
also in a position where it can easily be extended by other
developers in future.

ACKNOWLEDGMENTS

I would like to thank Dale Carnegie and Jim Murphy
for their support, guidance, and feedback on this project.
They have been excellent supervisors and I have benefit from
their expertise in mechatronics. I would also like to thank
electronics technician Tim Exley, for his help when DrumBot
needed repairs. Lastly, I would like to thank those in my cohort
for their friendship and camaraderie.

REFERENCES

[1] J. Nielsen, 10 usability heuristics for user interface
design, Apr. 1994.

[2] R. Bogue, “The role of robots in entertainment,” Indus-
trial Robot, Mar. 2022.

[3] A. Kapur, M. Darling, D. Diakopoulos, et al., “The ma-
chine orchestra: An ensemble of human laptop perform-
ers and robotic musical instruments,” Computer Music
Journal, 2011.

[4] The machine orchestra, https://youtu.be/3spspyK28E4,
[Online; accessed 29-May-2023], Sep. 2010.

[5] J. U, “Final report appendix,” Appendix for Final Report.
[6] F. Olley, “The development of a novel mechatronic

percussion system,” Victoria University of Wellington,
Kelburn, Wellington, New Zealand, Tech. Rep., Oct.
2022.

[7] O. Vallis, D. Diakopoulos, J. Hochenbaum, and A. Kapur,
“Building on the foundations of network music: Explor-
ing interaction contexts and shared robotic instruments,”
Organised Sound, vol. 17, 2012.


