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Firmware Design for a Mechatronic Chordophone

Alex Tait 300525521

Abstract—Azure Talos is a mechatronic chordophone that is
theoretically capable of producing many of the expressive sounds
and techniques of a human guitar player. However, despite its
potential, Azure Talos was inherited in an incomplete state.
To achieve full functionality, an entire firmware architecture
is designed, implemented, and evaluated. A User Interface (UI)
is then implemented to facilitate operation by non-mechatronic
composers. The result is a fully functioning mechatronic chor-
dophone that is capable of levels of expressivity beyond any
comparable devices found in the literature.

I. INTRODUCTION

HE development of advanced musical robots has been

an area of significant interest and research at Victoria
University of Wellington. Among these creations is ‘Azure
Talos’, a unique and expressive mechatronic chordophone.
Azure Talos has demonstrated the potential to perform some
aspects of human guitar players [1]. However, Azure Talos
is inherited as unusable for its intended purpose, and is,
instead, dormant. The fundamental issue lies in the lack of
documentation or access to the firmware installed on the
microcontrollers, consequently blocking access to its actuators
and restricting potential improvements. A new firmware design
for Azure Talos developed as part of this research unlocks
additional expressive capabilities of the robot.

Expressivity, in music, is a term with numerous and di-
verse meanings. In this project, we use the term to refer to
several specific deliberate actions of a human guitar player.
Specifically, we refer to the impact of auditory parameters in
music performance, including loudness, intensity, tempo, and
frequency spectrum.

Sustainability is prioritised within its new firmware design.
It achieves this by giving a new purpose to hardware that might
otherwise end up as electronic waste. Moreover, the design
not only extends the lifespan of the current hardware, but also
addresses hardware issues, thereby minimizing the necessity
for hardware upgrades. The open-source documentation of the
design ensures long-term viability by enabling firmware reuse
and adaptation, enhancing product maintainability.

Azure Talos is a six-string mechatronic guitar designed to
play the equivalent of the first six frets of a standard guitar
(notes ranging from E2 to A4).

It is required that a new firmware design for Azure Talos:

1) Facilitates access to all actuators.
The inherited system presents non-functional actuators,
therefore, accessing these through the firmware to con-
firm their functionality will allow the system to be used
for its intended purpose.

2) Consists of minimal hardware changes.

This project was supervised by Dale Carnegie (primary), and Jim Murphy
(NZSM).

With a commitment to sustainability, the existing hard-
ware of Azure Talos is to be utilised to reduce electronic
waste.
3) Ensures the system is usable.
Azure Talos is designed to facilitate expressive musical
performances by composers, ensuring not only usability
from a composer’s standpoint, but also accessibility and
versatility for future firmware developers.
4) Implements successful note mapping.
To produce the composer’s instructions when playing a
musical score, musical notes must be played accurately.
5) Showcases a range of expressive parameters.
Azure Talos is a unique device due to its potential to
play expressive parameters.

Azure Talos was designed to enable a variety of perfor-
mance modes which can afford this expressivity. The follow-
ing subsections detail these expressive techniques, including
(where feasible) quantifying metrics.

A. Tremolo

Tremolo is the quick and continuous reiteration of a single
pitch, often performed by plucking one string over and over
[2]. The human ear struggles to distinguish timing differences
beyond 100 ms (10 picks per second), detailed in Section
II-A3. Therefore, Azure Talos must pick at least 10 times per
second to achieve tremolo.

B. Palm Mute

Palm muting is a guitar-playing technique where the strings
are partially silenced by the picking hand at the moment of
striking [3]. To create this muted effect, the palm is positioned
just in front of the guitar’s bridge, generating a distinctive tone
that is reduced in volume and sustain. For Azure Talos to
execute palm muting successfully, a palm-muted pick should
produce a note that is sustained for less than the normal pick
whilst diminishing its intensity.

C. Ghost Note

A ghost note, also referred to as a ‘false note’, is a muted
or dampened note that has rhythm, but often no discernible
pitch [4]. To achieve ghost notes, Azure Talos must produce
a pick that is of greater non-harmonic content than a normal
pick event.

D. Slide

A slide is a technique where a guitarist physically slides
their fretting finger from one note to another. This produces
a rapid run of notes without differentiating or accenting each
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of the intermediate notes [5]. Therefore, to achieve a slide,
Azure Talos must be able to show a continuous increase or
decrease in frequency over time, from one note to another,
with no interruptions.

E. Vibrato

Vibrato is a wavering variation in pitch produced by a
guitarist physically bending a fretted note up and down rapidly
[6]. To achieve vibrato, Azure Talos must be able to play a
changing audible difference (discussed in Section II-A3).

F. Pitch Bend

A pitch bend is a technique where a guitarist’s fretting finger
is used to bend the string up or down (towards either side of
the neck) [7]. The bend creates an increase of tension on the
string and, therefore, an increase in pitch. For Azure Talos to
achieve a pitch bend, it must be able to increase its pitch by
greater than 3 Hz (detailed in Section II-A3)) when clamping
(a term for actuated engagement with the string) in the same
position.

These requirements will guide the firmware design for
Azure Talos, along with preliminary research.

II. RELATED WORK

Exploring existing literature concerning firmware setups for
mechatronic chordophones will provide the necessary context
and insights to inform the design and development of the
new firmware for the inherited machine. Understanding the
hardware limitations of the machine itself will further help
design the final firmware implemented.

A. Literature Review

1) Introduction

Mechatronic chordophones are musical instruments that
combine stringed instruments with electronic and mechanical
components. This study examines firmware structures, musical
theory, communication protocols, and existing mechatronic
chordophone systems.

2) Firmware Structures

Firmware structures determine how the software oper-
ates and interacts with hardware. Selecting the appropriate
firmware structure for Azure Talos can assist in meeting
the system’s functional performance requirements, outlined in
Section I).

Azure Talos is currently configured as a decentralized
machine, wherein each string unit operates independently with
its own microcontroller, outlined in Figure 1.
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Fig. 1. Decentralized setup of Azure Talos, where 6 string modules have
individual Teensy 3.5 microcontrollers

Decentralized architectures provide the advantage of mod-
ule independence, ensuring that if one module encounters a
problem, the others can continue functioning [8]. Expanding
the system with additional modules is straightforward, as it
involves replicating existing configurations. However, manag-
ing decentralized systems can become intricate when modules
require different sets of information.

Alternatively, Azure Talos could be configured as a central-
ized machine, like the setup displayed in Figure 2, where all
string modules are interconnected through a central server, for
example, a motherboard. [8].
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Fig. 2. Alternative centralized setup of Azure Talos

Centralized architectures simplify management and facili-
tate easier updates since all of the components are consoli-
dated. However, the downside is that centralization introduces
a single point of failure, meaning that if the motherboard
experiences any issues, it could disrupt the operation of all
connected string modules [8].

The choice of machine configuration influences the deter-
mination of the firmware structure for Azure Talos. To meet
the usability requirement stated in Section I, it must play
the incoming instructions with minimal delays to produce the
intended output from the composer.

Possible firmware structures for real-time systems include
sequential structures, state machines, and event-driven archi-
tectures.

A sequential firmware structure in a real-time system refers
to the organisation of the system’s firmware in a way that
prioritises a sequential execution of tasks or processes [9].
Within the main loop, tasks are organised and prioritised based
on their importance and timing requirements. Real-time tasks
often have deadlines and need to be executed within specific
time intervals. The sequential structure ensures that higher-
priority tasks are executed before lower-priority ones. In a
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sequential firmware structure, tasks can be implemented as
non-blocking or blocking tasks, where non-blocking tasks do
not cause the main loop to wait for their completion.

A state machine is a firmware structure based on distinct
states. Each state represents a specific mode of operation.
The advantages of using state machines include predictable
behaviour, modularity, and real-time responsiveness [9]. How-
ever, managing numerous states and transitions can become
complex, limiting flexibility in dynamic scenarios.

Event-driven structures revolve around responding to events
or interrupts. These events, triggered by hardware inputs,
dictate the firmware’s execution flow, making it responsive to
external inputs [9]. Event-driven architectures offer advantages
like quick responsiveness, scalability, and power efficiency.
However, their complexity can pose challenges in terms of
sequencing and debugging.

The firmware structure chosen for Azure Talos will affect its
real-time performance response, therefore, the selection should
allow for timing constraints to be considered.

3) Music Theory

In musical evaluation, two key concepts are the Just-
Noticeable Difference (JND) and cents. The JND represents
the smallest change in a musical attribute that the human
ear can perceive at least half the time [10]. For example, in
terms of pitch, the JND typically amounts to 3 Hz, or 10
cents, marking the threshold for perceiving changes in pitch
[11]. One cent equals 1/100th of a semitone, indicating the
smallest detectable shift in pitch. Similarly, in the case of
sound amplitude, the JND is approximately 1 dB, enabling the
detection of even minor volume variations. These perceptual
thresholds can be affected by factors such as frequency content
and controlled conditions. In terms of the JND for the speed
perception between two notes, humans begin to struggle to
distinguish a difference of 100 ms, or 10 notes per second
[10]. Consequently, these nuances must be considered to
ensure Azure Talos’ performance aligns with standards of
human auditory perception. Furthermore, these concepts can
assist in evaluating the quality assessment of Azure Talos’
performance.

The position at which each note will be clamped on
Azure Talos follows the same ideology as frets on a guitar.
In standard E guitar tuning, each fret on the guitar’s neck
represents a half step, or semitone, in the chromatic scale. As a
guitar player progresses up the fretboard, the pitch of the notes
played increases, with each fret representing a higher note in
the musical alphabet. As pitch increases, the distance between
the notes becomes narrower due to the logarithmic increase
in frequency within each octave. This same relationship will
assist in the note mapping calculations of each string unit,
where the distance between the frets/clamping positions will
get smaller and smaller as the clamp travels up the chassis.
This will assist in achieving the accurate note-mapping re-
quirement highlighted in Section I
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Fig. 3. Logarithmic increase in pitch and frequency, source [12]

4) Protocols

A communication protocol allows devices to transmit data
to each other [13]. Understanding protocols that could be
used for Azure Talos is needed as this is the communication
pathway that will allow access to the actuators of the system,
a requirement outlined in Section I). The ideal protocol for
Azure Talos should include features that allow the expressive
parameters, stated in Section I), to be communicated.

Open Sound Control (OSC) and Music Instrument Digital
Interface (MIDI) are two commonly used protocols in the
realm of digital music communication.

a) OSC

OSC is a protocol utilised for communication between
multimedia devices and software. Its messages, written in plain
text, include addresses and arguments to transmit information
such as control parameters, synchronisation cues, and multi-
media events. It provides higher precision and resolution for
data transmission compared to MIDI and supports a range
of flexible data types, including custom data types, which go
beyond data transmission of traditional musical parameters.
OSC is designed for network communication, making it well-
suited for distributed systems and remote-control applications
where devices communicate over local networks or the internet
[14]. However, there are also disadvantages to consider. While
OSC has gained popularity in the music domain, it lacks
standardisation which can lead to compatibility issues. OSC
messages can have high processing overhead in comparison to
MIDI which can impact network bandwidth and latency, which
needs to be considered for a real-time machine. Implementing
and understanding OSC can also be complex as it requires
knowledge of network protocols and programming techniques
specific to OSC.

b) MIDI

MIDI is a well-established standard for transmitting mu-
sical data between electronic instruments and offers many
advantages. It provides musical-specific features (like note-
on/off messages) making it more suitable for tasks related
to music communication in comparison to OSC. Another
feature includes Control Change (CC) messages, which enable
controllable functions, like volume (CC 7). This is a beneficial
feature that could enable expressive parameters, such as those
required in Section I.
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MIDI has low overhead in comparison to OSC, enabling
efficient transmission of musical data with minimal latency
[14]. Additionally, MIDI has achieved widespread standardis-
ation, ensuring compatibility between different MIDI-enabled
devices, software, and interfaces including Digital Audio
Workstations (DAWs).

A DAW is a software platform that acts as a Ul for
MIDI controls. An example of this is Ableton Live. A MIDI
device can be connected to a computer and the Ableton Live
application allows for a MIDI track to be created and com-
municated to the connected MIDI channel. MIDI’s capability
to work with a DAW can simplify the process of connecting
and integrating various musical instruments, controllers, and
software, which can enhance usability, a further requirement
stated in Section I. MIDI is also commonly used by the target
user group for this project. As OSC is predominantly used
in an academic and experimental context, MIDI is a more
practical choice for widespread usability [14].

However, there are also disadvantages to the MIDI protocol.
Its 31.25 Kbaud baud rate is slow compared to modern serial
protocols, limiting its suitability for transmitting large amounts
of data [15]. MIDI messages are not error-checked and are
not verified during transmission, making them susceptible to
undetected errors which can result in missed or corrupted
messages. This can, however, be overcome by using a USB
device that incorporates error-checking features. Moreover,
MIDI’s CC messages have a limited resolution, typically
ranging from O to 127 which can restrict the control precision.

Overall, the communication protocol for Azure Talos should
be chosen based on what can achieve the requirements spec-
ified in Section I. This can be investigated through other
expressive mechatronic chordophone systems.

5) Mechatronic Chordophones

An analysis of existing expressive mechatronic chordo-
phones helps determine how this project is to be approached.
The inherited system is designed for expressivity, but there are
expressive techniques that are non-functional. Among the well-
documented examples in this domain, Mechbass and Guitarbot
are examined.

Mechbass is a mechatronic bass guitar designed to surpass
human capabilities and consistency [16]. With its numerous
degrees of freedom, Mechbass executes expressive techniques
such as pitch bends and damping control. However, its pitch
shifter’s reliance on a non-rolling clamper limits its ability
to perform sliding techniques or play microtonal pitches. It
utilises a MIDI interface, compatible with DAWs or music
programming environments like ChucK [16].

Guitarbot (created by LEMUR) is a mechatronic slide guitar
consisting of four independent string modules. It offers a
range of expressive possibilities, allowing control over playing
speed and the creation of polyrhythms (simultaneously playing
contrasting rthythms). However, it is limited when performing
techniques that rely on applying pressure to the strings (like
vibrato, and pitch bends) due to the design of its slide
which cannot be disengaged from the strings. Guitarbot also
employs the MIDI protocol. This allows for individual or
ensemble playing options, through MIDI keyboards and other

compatible devices, without additional software or specialised
equipment [17].

Surveying these mechatronic chordophones highlights the
popularity of the MIDI protocol within the realm of mecha-
tronic instruments, and reveals that there is a higher rate of
mechanical innovation for these devices, rather than software
or firmware innovation. This project can showcase the unique
opportunity to create firmware that can simplify access to
playing basic notes, whilst allowing the ability to access
expressivity.

6) Conclusion

To meet the requirements specified in Section I, including
minimising hardware alterations, this project will maintain
Azure Talos as a decentralized machine. When it comes
to structuring the system, there are inherent trade-offs to
consider in the context of a real-time machine. While various
approaches such as sequential, state-based, and event-driven
designs can be explored, the use of a state-machine design
stands out as the most conducive to fulfilling the majority of
requirements.

Mechbass and Guitarbot are examples of mechatronic chor-
dophones that showcase some expressivity. These instruments
incorporate the MIDI protocol into their systems, which
demonstrates that MIDI is an effective communication pro-
tocol for an expressive mechatronic chordophone, and OSC
has had no such up-take.

Azure Talos utilises the Teensy 3.5 microcontroller system
to control each string module. One notable advantage of the
Teensy is its ability to function as a USB MIDI device, which
is supported by Arduino Teensy MIDI libraries (detailed in
Section II-B4). Given the MIDI-supported features of this
microcontroller, and the MIDI CC feature that can be used
to implement the expressive parameters required, the design
of the Azure Talos interface will use the MIDI protocol.

Azure Talos surpasses Mechbass and Guitarbot in terms
of expressivity, partly due to its greater number of actuators.
However, it cannot be optimized to play to its full potential
without access to its firmware.

B. Tools and Methodology

Upon reviewing approaches to mechatronic chordophone
systems in Section II-A, Section II-B helps refine the necessary
tools to help fulfill the requirements of Section I.

1) Firmware

Firmware, for a mechatronic chordophone, refers to the spe-
cialised software embedded in the instrument’s microcontroller
that enables low-level access to the actuators, allowing them
to be controlled and manipulated via a higher-level UI. The
firmware needs to support the MIDI communication protocol
for interfacing with other devices or systems. Additionally,
the firmware needs to provide a means of interacting with
the instrument’s hardware components. The firmware has
to recognise incoming MIDI messages and translate these
into accurate actuator movements. To develop the firmware
effectively, it is important to understand the available hardware
components.
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2) Exploration of Hardware
a) System Overview

Azure Talos comprises six separate string modules that must
communicate in parallel. To facilitate this, these modules are
interconnected via a USB hub, as depicted in Figure 4, and
are recognised by a laptop as separate MIDI channels.

To interact with this mechatronic instrument and meet
the usability requirement stated in Section I, users need to
establish a means of transmitting input commands to the
system. Typically, this can be achieved through MIDI hardware
or a DAW like Ableton Live.

String Module #1 | wmca

String Module #2 | wmc#2 Laptop
String Module #3

g — uss Arduino Ableton
String Module #4 [ wci Hub IDE Live
String Module #5 | mcss

String Module #6 | mc#s

| Amplifier |

Fig. 4. Final setup of Azure Talos

b) Actuators

The Azure Talos hardware consists of four parts that incor-
porate actuators for specific functionalities.

Firstly, the picking mechanism uses a NEMA23 stepper
motor to rotate the pickwheel. Manual alignment of the
pickwheel is necessary during the startup process of Azure
Talos as it requires a reference point to accurately monitor its
position during performance.

An additional NEMA23 stepper motor enables the raising
and lowering of the pickwheel. This motor incorporates a limit
switch which can be utilised in the firmware upon startup to
establish its home position.

The robot arm relies on a Dynamixel servomotor to move
the carriage along the chassis. The carriage holds the clamping
mechanism which is controlled by an MKS DS95i Micro
Tail Rotor Servo. This servo rotates the clamp to adjust the
clamping rod or damping sleeve pressure against the string.

The palm muting mechanism also uses an MKS DS95i
Micro Tail Rotor Servo. This servo rotates the silicone damper
from its idle position (parallel to the string), to firmly pressing
on the string.

Prior to developing firmware functionality for the actuators,
the physical limitations must be defined. For the Dynamixel,
the position is printed on a continuous loop, and the attached
carriage is manually moved to both ends of the string to
determine its maximum limits. This is to ensure the Dynamixel
does not exceed its safety boundaries or extend beyond its
physical capabilities, which could lead to component damage
or overextension.

TABLE I
DYNAMIXEL POSITIONS AT THE MAXIMUM CARRIAGE DISPLACEMENT
ALONG THE CHASSIS

String  Nut-end Max  Bridge-end Max  Difference
E 259 1077 818
G 222 1051 829
D 95 922 827
A 198 993 795
E 345 1142 797

The test results, shown in Table I, reveal that despite iden-
tical setups for each string module, the Dynamixel actuators
yield varying position readings at the same physical distances.
The relationships between these maximum positions are also
inconsistent, which indicates varying note position calculations
for each string module. This additionally suggests that each
string module’s Dynamixel may not be the only actuator re-
quiring different setpoint values to achieve equivalent actions.
Consequently, the nuances in the firmware versions will extend
beyond just string notes.

It is essential to maintain usability, as this is a requirement
outlined in Section I. Declaring these altering values as global
variables will streamline the process for future firmware devel-
opers, allowing them to make changes in a centralized location,
rather than having to search through the entire program to
adapt to each string module.

Furthermore, printing the Dynamixel’s position in a loop
revealed occasional null values as the output from some
actuators, which will need to be considered when interpreting
the current position of the Dynamixel in the firmware.

c) Pin Mapping

To enable communication with the actuators, pin mapping
is required. However, due to the absence of documentation
for Azure Talos, as previously noted in Section I, with no
information available regarding the printed circuit board (PCB)
or its corresponding pins, a manual alignment process is
undertaken. This procedure involves the use of an unpopulated
PCB, shown in Figure 5, to manually trace each connection
from the microcontroller pins to the actuator pins. This method
allows access to all of the actuators within Azure Talos,
thereby addressing another requirement highlighted in Section
L.
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Fig. 5. Unpopulated PCB used for manual pin mapping

TABLE II
RESULTING MICROCONTROLLER PINS FOR THE ACTUATORS

Teensy Pin Actuator

2 Dynamixel
4-9 Lift
14 Limit Switch
25 -30 Pickwheel

33 Palm Mute Damper
34 Clamper

The firmware needs to coordinate the initialised actuators of
Azure Talos to produce the desired musical tones, considering
factors such as timing, velocity, and dynamics, along with
being able to implement the various expressive techniques
stated in Section I. To write the firmware, an appropriate
development environment has to be chosen.

3) Development Environment

The development environment needs to support the Teensy
3.5 microcontroller on each string module, provide a dedicated
workspace for the firmware development tasks, ensure compat-
ibility with necessary tools (like a DAW), and support version
control. This is achieved through the Arduino IDE with the
Teensyduino add-on, which is set up on a Windows operating
system and stored on the ECS Mechatronics Gitlab.

4) Software Libraries

Programming languages are often set up with a range
of built-in libraries and functions to improve programming
efficiency. The firmware can utilise various libraries to assist
the control over Azure Talos’ actuators. The Arduino IDE has
a Teensduino add-on available to assist with communicating
MIDI instructions, and may be implemented when retrieving
MIDI inputs [18]. The DynamixelSerial Library may be used
to control the Dynamixel servos on each string module as

6

this allows specialised data to be read directly from the motor
[19]. The AccelStepper Library may be used to control the
stepper motor’s acceleration, speed, and position control [20].
Additionally, the Bounce Library can enable the activation of
the limit switch for the pickwheel lift [21].

Understanding the work surrounding Azure Talos provides
a foundation for the development and design of the firmware.
Azure Talos was inherited unusable with no firmware doc-
umentation, so its design is realised without a preexisting
foundation to build upon.

III. DESIGN AND IMPLEMENTATION

Mechatronic instruments need a process to convert input
commands into specific actions for playing music. The instru-
ment’s firmware handles several critical tasks:

1) Starting up the system and initialising actuator control.

2) Receiving and interpreting input commands (MIDI mes-
sages).

3) Processing input data and mapping it to output data.

4) Driving the actuators to produce actions.

Figure 6 illustrates the firmware structure of Azure Talos.
The system receives MIDI messages from the computer,
comprising channel data, note data, and velocity data. The
firmware must interpret this MIDI data and generate actions
for the actuators of each string module.
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Fig. 6. Azure Talos’ final firmware flowchart

The initial firmware design followed a sequential structure.
This allowed for the incorporation of each performance mode,
fulfilling the requirement in Section I, along with the im-
plementation of playing random notes within the boundaries
of the string as a MIDI note-on message was received.
This approach was initially selected due to its expediency
and simplicity in ensuring access to all actuators. While it
met requirements and allowed parallel operation across each
string module, it introduced delays, posing a challenge when
handling fast musical compositions with incoming MIDI note-
on messages before the sequential routine was completed.
This trade-off impacted usability, a further requirement. Con-
sequently, the firmware’s structure was transitioned to a state
machine model (with some event driven functions to receive
the MIDI data). This decision offered both advantages and
drawbacks, which are elaborated on in Section II-A2, but was
ultimately made to better meet the usability requirements due
to the reduction in latency.

A. Task One: System Startup

Upon system startup, the actuators are initialised and their
limits are set, the note array for the string module is retrieved,
the pickwheel lift is homed with the limit switch, detailed in
Figure 7, and the carriage is moved to the middle of the string

module.
System switched on

"
il

limit switch
open?

move stepper down a
step

- et liitSwitchOn to
on
- set stepper's current
position to 0
- move stepper up 10
steps

limit switch
closed?

Fig. 7. Flowchart of the pickwheel lift startup

B. Task Two: MIDI Note-on

As a MIDI note-on message is received, the note value and
velocity are stored using the setHandleNoteOn () function
within the Arduino MIDI Library [22]. The note position is
then retrieved from an array, detailed in Section IV-B

1) Control Change

Azure Talos utilises MIDI CC messages to enable its
expressive performance modes. As displayed in Table III,
performance modes with on/off functionality can be triggered
by sending a non-zero value with the MIDI CC message and
can be switched off with a value of zero. Performance modes
based on intensity can be adjusted using the MIDI CC range
of 0 — 127.

TABLE III
AZURE TALOS’ PERFORMANCE MODES
Performance Mode MIDI CC Type
Tremolo 20 On/Off
Palm Mute 21 On/Off
Ghost Note 22 On/Off
Slide 23 Range (0-127)
Vibrato Strength 24 Range (0-127)
Vibrato Speed 25 Range (0-127)
Pitch Bend 26 Range (0-127)
The MIDI CC data is retrieved using the
setHandleControlChange () function within the

Arduino MIDI Library [22], consisting of three bytes;
channel, control, and value. The midiCC () function uses
these three bytes to update the state of each performance
mode within the firmware.
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Fig. 8. Flowchart of MIDI CC message check

Figure 8 illustrates the processing of incoming MIDI CC
message data. The initial check represents the process for the
on/off performance modes (MIDI CC 20, 21, and 22). The
latter check is the process for intensity-dependent performance
modes (MIDI CC 23, 24, 25, and 26). During this step, the
value data (0-127) is temporarily stored before it undergoes a
mapping process.

C. Task Three: Mapping

Once the CC data has been received, the 0 - 127 input
range must be mapped to the output required by the actuators.
This is achieved through the Arduino map () function. This
is only relevant for the intensity-based performance modes as
the ‘value’ byte precipitately controls the data magnitude. An
input of zero results in the selected performance mode being
switched off, therefore, the range of 1 - 127 is mapped.

For the slide performance mode (CC 23), this range is
mapped to 1 - 400. This range was chosen due to the speed
tests conducted in Section I'V-C.

The vibrato strength, controlled by CC 24, is represented on
a scale from 0 to 6, with 0 indicating maximum string pressure,
and 6 indicating a light touch. These limits are determined
through manual testing to ensure that the clamper maintains
contact with the string within this range.

For the vibrato speed (CC 25), this range is mapped from
20 and limited to 300 for mechanical noise issues.

The pitch bend amount (CC 26) is mapped within a range
from 10 to 0. In this mapping, zero represents the maximum
position at which the clamping action can secure the string,
while 10 positions the clamp gently against the string. This
extended range, compared to vibrato strength, is due to the
pitch bend action being less hardware-intensive than vibrato,
making it a safer option for achieving more extreme string
bends with little mechanical noise.

Additionally, the mapping function can be used when setting
the velocity of each incoming MIDI note. This is also a O -
127 input range from the third byte of the incoming MIDI
message. This range is mapped from 1000 - 0, which is the
set range of the lift due to physical hardware constraints.

D. Task Four: Actions

When a MIDI note-on message is received, Azure Talos
executes a set of actions performed by its actuators. These
actions are executed based on the state of the actuators,
following a state machine firmware architecture.

1) Velocity Pick

The first action involves adjusting the velocity at which
the string is to be picked. This is accomplished by adjust-
ing the pickwheel lift to the specified dynamic level when
the moveLift () function is activated in response to a
MIDI note-on signal. The position is updated in the variable,
currentLiftPos, to keep track of the lift’s current posi-
tion. This provides continuous monitoring of the motor’s loca-
tion within the 0 - 1000 range. It is unnecessary to calculate if
the lift must move upward or downward based on its previous
position, as the runToNewPosition () function moves the
lift according to its position within the designated boundary
range, rather than considering the positional difference. This
enhances the usability of the machine as the user does not
need to manually interfere with the pickwheel’s height.

2) Move-Clamp-Pick

When there are no performance modes enabled, Azure Talos
follows the move-clamp-pick routine.

e Move: The robot arm slides the clamping carriage to the

target position on the string.

o Clamp: The clamping mechanism applies force upon the

string.

o Pick: The pickwheel plucks the string to create sound.

a) Move

The moveDyna () function is called when the lift is at its
target position. This uses the DynamixelSerial moveSpeed ()
function, which moves the arm to the note target position at
the specified speed, discussed in Section IV-C.

b) Clamp

The moveClamp () function is called when the carriage
has reached its target position. If the ghost note performance
mode is enabled (CC 22), it rotates the damping sleeve in
contact with the string. If either of the vibrato performance
modes (CC 24 and 25) are enabled, the doVibrato ()
function is called which uses the MillisTimer millis ()
function, so it can execute in parallel to other actions. For
the duration of the MIDI note-on message, the clamp angle
(mapped by vibrato strength) switches from position zero
(clamping the string) to the desired strength/rotation at the
velocity mapped by vibrato speed.

If CC 22, 24, and 25 are not enabled, or are at a value of
zero, the clamper is rotated to the zero position, where the
clamping rod is in contact with the string.

c) Pick

The movePick () function is called when the clamper is

in the engaged position. If the tremolo performance mode (CC
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20) is enabled, the pickwheel moves at a rate faster than 10
picks per second for the duration of the note-on message. The
pickwheel position is updated to ensure realignment of the
pick after a tremolo pick.

If CC 20 is not enabled, or is at a value of zero, the
pickwheel rotates forward to pick the string once.

3) Slide

If the slide performance mode is enabled (CC 23), the
actions detailed in Section II-B2b are executed, but in a clamp-
pick-move routine, rather than a move-clamp-pick routine.
This produces a continuous increase or decrease in frequency
from one note position to another, which refers back to the
original requirement stated in Section I.

4) Palm Mute

When the palm mute performance mode (CC 21) is enabled,
the palm mute servo is rotated to its engaged position where
the damper comes in contact with the string. When CC 21 is
disabled (set to a value of zero), the palm mute servo returns
to its idle position where the damper is not in contact with
the string. As this instruction does not rely on the state of any
other actuator, the action is executed within the midiCC ()
function.

5) MIDI Note-off

When a MIDI note-off message is received, the clamp is
rotated to a dampened position where the damping sleeve
makes light contact with the string. This is to stop the sustain
to keep to the composer’s intended duration of the note.
Additionally, the pickwheel motor is turned off due to its high-
pitched mechanical noise when waiting for an instruction.

E. Note Mapping

The clamping mechanism is expected to enable playing
within the JND of +10 cents of a target pitch as outlined in
Section II-A3.

Common guitar tuning encompasses its six strings tuned
to Standard E tuning, as illustrated in Figure 9. This figure
visually represents the E2 to A4 range that Azure Talos is
designed to cover. In MIDI notation, this range translates to
notes 40 through 71. Within this range, each string offers a
different set of notes.

The firmware has been designed to accommodate the play-
ing of these notes by tuning the instrument to Eb, which is
one semitone below the standard E tuning. This adjustment
is necessary because of the hardware challenges associated
with the high E note on its respective string module. While a
typical guitar neck falls within the length range of 609.6 mm
to 647.7 mm [23], the Azure Talos chassis design extends the
string over 889 mm. This increased distance over which the
string is stretched creates additional tension, often leading to
the high E string snapping. As a solution, the instrument is
tuned to Eb, which helps alleviate the tension on this string.
Consequently, the first clamped note becomes the major note
rather than the open (unclamped) note. It is worth noting that
the current firmware does not support open notes, although
the possibility of incorporating them is discussed further in
Section V-A.

9
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Fig. 9. Expected MIDI notes for each string module, represented as guitar
strings

Azure Talos’ pitch shifter relies on a robotic arm to slide
the clamping carriage along the string. The carriage’s position,
denoted as X4, is determined by both the arm’s length, L, and
the servomotor’s angle, 6. This relationship is expressed as:

X; = 2L cos(6) (1)

Carriage Dynamixel

Fig. 10. Carriage movement variables for Eq. 1

As the Dynamixel rotates, it moves the carriage to different
positions (X;) along the string. Adding an extra distance of
11 mm to X; accounts for the additional engaged clamp’s
displacement from the carriage. This results in the final angles
required for the Dynamixel to stop at its various “fret”
positions on the string, similar to a standard guitar, outlined
in Section II-A3. This relationship is inherently non-linear,
leading to variations in the rate of carriage displacement along
the length of the string.
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Relationship Between Motor Angle and X,

0 10 20 30 40 50 60 70 80 90
Angle (degrees)

Fig. 11. The non-linear relationship between the Dynamixel angle and the
resulting carriage distance

A fret position calculator [24] is a tool that calculates these
theoretical fret positions based on the string length from the
nut to the bridge. This is employed to determine the Dynamixel
positions which are derived from the distances (X;) for each
individual string module.

The system maintains individual arrays dedicated to each
string module to store the resulting note positions. For each
firmware version running on various microcontrollers, the
incoming MIDI note is traversed through the respective string
module’s input note array. If a match is found, it is used as an
index to retrieve the corresponding note position of the output
array, as seen in Figure 12.

Input MIDI note

Input Array (available notes for selected string)
55 56 57 | 58 | 59 | 60 | 61

Output Array (motor positions)
246 | 380 | 475 | 545 | 615 | 665 | 720

Resultant Arm Position

Fig. 12. MIDI note to Dynamixel position arrays

If a match is not found, the instruction gets ignored and
the carriage stays in its previous position. Therefore, the user
must compose each string module based on the notes within
the designated boundaries displayed in Figure 9.

To maintain consistency across the decentralized machine,
identical code is implemented for every string module, and
altering values are declared as global variables. One of these
variables is declaring the string number.
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TABLE IV
STRING NUMBER DECLARATION FOR NOTE ARRAYS

String  String Number
High E 1

B 2

G 3

D 4

A 5
Low E 6

This number is checked against an if statement upon startup
to retrieve the corresponding set of note and position arrays.

The advantage of a decentralized machine, in this case,
lies in its ability to address scenarios where two strings may
produce the same note (e.g., string B and G both play a C4).
To address this overlap, note sets are stored as separate arrays
to ensure the matching position corresponds to the intended
string. This aligns with the decentralized setup, detailed in
Section II-A2, as each string module only considers its mapped
set based on the initial string identification. In contrast, a
centralized machine would need to deal with multiple strings
playing the same note. This is a trade-off which could be ben-
eficial in efficiency-focused systems rather than user choice.

IV. EVALUATION

To meet the specifications outlined in Section I, evaluations
of the expressive performance modes are conducted. Addi-
tionally, the note mapping designed in Section III-E is tested.
Lastly, speed tests are performed to determine the optimal
carriage movement speed between the mapped notes.

A. Performance Modes

Each performance mode was executed on Azure Talos and
the subsequent audio was recorded.

1) Tremolo

Section I specifies that to achieve tremolo picking, a rate of
at least 10 picks per second is necessary.

Fig. 13. Spectrogram of tremolo pick
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Figure 13 shows a spectrogram recording of the tremolo
performance mode!. Seven picks can be seen within a 0.63-
second time frame, equivalent to a rate of 11 picks per
second. This exceeds the required speed for tremolo picking,
confirming the successful execution of the technique.

2) Palm Mute

Section I specifies that to achieve palm muting, the ampli-
tude and sustain in comparison to a normal pick must decrease.

; Palm Mute Audio

Amplitude

damp palm mute pick

normal pick

Time (s)

Fig. 14. Audio analysis of normal pick vs palm mute pick

Figure 14 displays that the palm mute pick® is diminished
before the damper comes in contact with the string, showing
it sustains quicker than a normal pick. It is also at only 70
percent of the amplitude of a normal pick, therefore meeting
both of these requirements.

3) Ghost Notes

As specified in Section I, the ghost note pick must produce
a pick that is of more non-harmonic content than a normal
pick event. Unlike a palm mute pick, which still has a
distinguishable pitch, a ghost note results in a percussive
sound. This reemphasises the importance of having access to
all of Azure Talos’ actuators, as those with similar features
(both have a silicone damper) can result in different expressive
sounds.

Ghost Note Audio

0.5 1
@
=
2
= 0
E normal pick damp ghost
note
051 pick
4 . . . . . . .
16.5 17 17.5 18 18.5 19 19.5 20 20.5
Time (s)

Fig. 15. Audio analysis of normal pick vs ghost note pick

'Link to tremolo video: https:/gitlab.ecs.vuw.ac.nz/sonics/azure-talos/-/
tree/main/Videos/Tremolo

2Link to palm mute video: https://gitlab.ecs.vuw.ac.nz/sonics/azure-talos/-/
tree/main/Videos/Palm-Mute

Figure 15 shows an audio recording of a normal pick,
a damp of this pick, and a ghost note pick®. The normal
pick is sustained over 1.1 seconds, whereas the ghost note is
dissipated within 0.5 seconds and is over double the amplitude.
This result shows the percussive sound outlined in Section I,
therefore resulting in a successful ghost note.

4) Slide

Section 1 specifies to achieve a slide, there must be a
continuous increase or decrease in frequency over time, from
one note to another, with no interruptions. Figure 16 displays
a slide* performed by Azure Talos, where the frequency
continuously increases from approximately 220 Hz to 250 Hz,
successfully achieving a slide.

Slide Audio
T T T T
0.4 ‘l il
0.2 il
i}
=3
2
=]
£
s
0.2 ]
-0.4 il
. .
3 31 3.2 3.3 34 3.5 36 3.7
Time (s)
T T T T T T T
250 =
T 200 1
=)
c
i}
3
g
T 150 1
100 . . . . . . .
3 31 3.2 3.3 3.4 3.5 3.6 3.7
Time (s)

Fig. 16. Audio analysis of a slide

5) Vibrato

Section I specifies to achieve vibrato’, a wavering pitch
difference of over 3 Hz must occur as this surpasses the JND.
Figure 17 shows a wavering pitch difference between 90 Hz
and 280 Hz, which exceeds well beyond the 3 Hz requirement.

3Link to ghost note video: https://gitlab.ecs.vuw.ac.nz/sonics/azure-talos/-/
tree/main/Videos/Ghost-Note

“Link to slide video: https://gitlab.ecs.vuw.ac.nz/sonics/azure-talos/-/tree/
main/Videos/Slide

SLink to vibrato video: https://gitlab.ecs.vuw.ac.nz/sonics/azure-talos/-/tree/
main/Videos/Vibrato
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Vibrato Audio

Amplitude

14 14.5 15 15.5 16 16.5 17
Time (s)

Frequency (Hz

14 14.5 15 15.5 16 16.5 17
Time (s)

Fig. 17. Audio analysis of vibrato

6) Pitch Bend

Section I specifies to a play successful pitch bend®, a pitch
difference of at least 3 Hz must be achievable when clamping
in the same location.

Pitch Bend Audio

A#4 (70 dB, 466.164 Hz)
A4 (69 dB, 440.000 Hz)
A#4 (68 dB, 415.503 Hz)

Frequency (Hz)

Ad+21c— AH4-34c

MoSc— pdgc  Ad2c—AdH21c

Time

Fig. 18. Melodic range spectrogram of a pitch bend pluck at 3 different
intensities

Figure 18 illustrates three picks where the clamper is
exerting varying levels of tension on the string. It is evident
that as greater pressure is applied to the string, the pitch rises
by more than 3 Hz, and therefore creates a noticeable change
in pitch, meeting the pitch bend requirement.

These audio analyses prove the successful implementation
of the expressive techniques stated in Section I.

In addition to playing expressive techniques, Azure Talos
must be able to play musical scores.

B. Note Mapping
The estimated note positions were calculated in Section
III-E. The resulting pitches of these locations were evaluated

SLink to pitch bend video: https://gitlab.ecs.vuw.ac.nz/sonics/azure-talos/-/
tree/main/Videos/Pitch-Bend

to ensure the accuracy of each note was within the JND of +
10 cents.

Target Note Vs Actual Note

Cents
~

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Note Target

— — — moving down the string target note

— = = moving up the sting e unnoticeable audible range

Fig. 19. Note accuracy of calculated positions

Figure 19 shows the results from testing the calculated
string positions, where the audio was recorded and analysed
by Ableton Live’s tuner application. During this test, it was
revealed that the same position instructions in the firmware
would result in different physical positions from the hardware
depending on whether the carriage was travelling up or down
the string.

Further investigation revealed the presence of mechanical
backlash. When the Dynamixel believed it had reached its
intended position and froze, manually pushing the carriage
demonstrated a backlash. As a result, when the carriage moved
up the string, it stopped below the pitch of the target, and
when it moved down the string, it exceeded the pitch of the
target. These pitch discrepancies fell outside the JND range,
necessitating firmware adjustments.

To address this issue, an if statement was introduced within
the myNoteOn () function to compare the incoming MIDI
note value with the previous one, determining the direction
of carriage movement. Given a backlash discrepancy of 13
(Dynamixel position), the new note target would displace the
carriage by half of this value. Consequently, when the carriage
moved upward, the new target position became the original
array value plus 7.5 (Dynamixel position), and when moving
downward, the new target position became the array value
minus 7.5. This approach established a dual note-mapping
system for each direction of the string module, eliminating
the need to create six new note arrays in the programming.

After the note target was updated, the same test was
performed.

Figure 20 illustrates the improved note accuracy achieved
after addressing the issue of backlash, resulting in all six notes
of the G string falling within JND of the target note.

This same process was used to map the remaining string
modules of Azure Talos, with note positions updated based
on the carriage displacement relationships noted in Section
1I-B2a.

This fulfills the requirement of no hardware changes, as the
firmware could account for hardware issues. This further plays
into the sustainability of the machine as firmware adaptations
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to the machine are more sustainable than ordering or designing
new hardware to account for the backlash.

Target Note Vs Actual Note with Double Note Mapping
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Fig. 20. Note accuracy after backlash compensation

C. Carriage Speed

To determine how fast a user could compose Azure Talos
to play, the carriage was tested travelling at different speeds
to define a balance between minimizing delays, overshoot of
the target position, and mechanical noise. As a composer for
Azure Talos would use a DAW to send musical data, Ableton
Live is used for testing.

Incorporating the existing firmware structure of a per-
formance mode, MIDI CC 27 was introduced during the
evaluation phase to adjust the speed data transmitted to the
Dynamixel. The system was testing at speeds of 100 rpm,
200 rpm, 300 rpm, and 400 rpm, resulting in a mapping of
the input range from 1 to 127 to an output range of 1 to
400. This mapping resulted in equivalent Dynamixel speed
levels of 1, 43, 86, and 127. This reemphasises the value of
the previously developed firmware in the evaluation process.
The use of MIDI CC offers enhanced expressivity and overall
usability, aligning with the system’s requirements.

The test involved transmitting two MIDI note-on messages,
each lasting 0.25 seconds, as illustrated in Figure 21. This
test aimed to gauge the carriage’s capabilities in high-speed
situations, such as quickly traversing the string to play a
fast-paced melody. Additionally, it ensured that the system
could perform incoming instructions, allowing quarter notes
to transition to 1/8 notes at the commonly used tempo of 120
bpm. To accurately emulate this, the Ableton Live project was
configured at a tempo of 60 bpm, equating seconds to musical
time.

13

Fig. 21. Able Live program testing notes 1 and 2 0.25 s apart

These messages were evaluated at different positions along
the string, spanning from note position one to seven. In relation
to this note range, four distances were examined: O to 0.25
(encompassing notes 1 to 2), 0 to 0.5 (encompassing notes 1
to 3), 0 to 1 (encompassing notes 1 to 7), and 0.25 to 0.75
(encompassing notes 2 to 6).

The results presented in Table V illustrate various timing
intervals (0 seconds, 0.25 seconds, and 0.5 seconds) between
two played notes. The objective is for the system to execute
the move-clamp-pick routine when transitioning from opposite
ends of the string within a window of 0.25 seconds, ensur-
ing no instructions are missed. This capability enables the
composer to play four notes per second on a single string
module, regardless of the note played. To further enhance
this efficiency, predictive positioning, as discussed in Section
V-B, can be employed. This approach eliminates the need for
the carriage to wait for a MIDI note-on message, which is
presently a source of latency.

TABLE V
SPEED TESTING IF AZURE TALOS PLAYS BOTH THE GIVEN NOTES
Speed Note Relationship 0s 025s 05s
100 1to2 N Y Y
100 1to3 N N N
100 1to7 N N N
100 2106 N N N
200 1to2 Y Y Y
200 1to3 Y Y Y
200 1to7 N N Y
200 2t06 Y Y Y
300 l1to2 Y Y Y
300 1to3 Y Y Y
300 1to7 N Y Y
300 2106 Y Y Y
400 1t02 Y Y Y
400 1to3 Y Y Y
400 1to7 Y Y Y
400 2t06 Y Y Y

A speed of 400 rpm was initially deemed sufficient to
meet the timing constraints, albeit with a minor issue of
overshooting before reaching the target position. In the single
case when travelling from note 7 to note 1, the proximity
of the first note to the chassis with this overshoot caused
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the carriage to collide with the frame. To address this, the
speed was adjusted to 380 rpm, which still maintained the
timing precision and note accuracy, while eliminating excess
overshoot. This modification also resulted in a reduced level
of mechanical noise from the carriage hitting the frame.
This speed optimisation adjustment enhances the machine’s
usability by improving its real-time performance, consequently
expanding the range of musical scores it can accurately
reproduce.

Evaluating the requirements for the Azure Talos firmware
design shows the successful implementation of expressiv-
ity, usability, note accuracy, and no hardware changes. This
firmware design lays the necessary foundations for future work
to be explored.

V. FUTURE WORK

The evaluation of Azure Talos has highlighted several areas
where further research and development are warranted in order
to enhance its capabilities, which are now feasible due to the
new accessible and documented firmware design.

A. Advanced Firmware Design

The existing firmware has laid the foundation for Azure
Talos, but there is room for refinement and expansion. Future
work should focus on optimizing the firmware to achieve
an even greater speed response and accuracy. Additionally,
incorporating open notes to be played would increase the
melodic range Azure Talos could play.

B. Intelligent Positioning and String Selection

Improving the system’s capacity to intelligently determine
the appropriate string module for playing the next note in
scenarios where notes may overlap, as detailed in Section
II-E, could significantly boost the system’s performance.
Further investigation into Al-driven solutions, such as the po-
tential utilization of Markov models [25] or similar techniques,
should be pursued. Furthermore, integrating Al-driven score
following techniques or predictive positioning could empower
the system to play alongside real musicians or improvise itself.

C. Pitch Extraction and Auto-Tuning

Developing pitch extraction algorithms and implementing
auto-tuning capabilities can significantly improve the quality
of Azure Talos’ sound output. This will enable users to
maintain perfect pitch of the system.

D. Ul Enhancements

A designated UI for Azure Talos would allow for easy
interaction with the system without needing prior knowledge
of a DAW.

VI. CONCLUSION

In conclusion, the new firmware design for Azure Talos not
only renews the robot’s potential for expressive musical per-
formances, but also places a strong emphasis on sustainability
and usability, ensuring the longevity of this unique mecha-
tronic chordophone. The project’s objectives were successfully
achieved, laying the foundation for future advancements.
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