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UAV-to-UAV Communication Establishing a
Leader-Follower Formation

Daniel Cross

Abstract—The UAV-to-UAV communication project aimed to
research, implement, and review a communications structure
capable of establishing a leader-follower formation between
multiple unmanned aerial vehicles. With the intention of creating
a scalable and extensible system with consumer grade devices
to create an accessible swarming solution this research and
development process explored and implemented methodologies of
drone swarm control that allow operators greater command over
groups of UAVs whilst only communicating with a single access
point. This lens was chosen to increase the accessibility of drone
swarm solutions for enthusiast and entry level consumers who
require the technology but are unable to make large investments
into more costly options which provide similar behaviour natively.
As such, the system explored is composed of multiple consumer
grade UAVs paired with Raspberry Pi devices which form a com-
mon managing mesh network while providing processing power
for supplied in flight commands. These mesh network nodes
are combined with a developed ground controller application
that transmits commands into the network to be broadcasted
and actioned across connected devices to allow for the intended
formation flying. This framework achieves the goal of departing
from the standard operation of individual connections between
drones and corresponding ground controllers whilst maintaining
the desired accessibility and affordability compared with other
contemporarily available solutions.

I. INTRODUCTION

A. Project Overview

The rapid development, growing availability, and increasing
affordability of unmanned aerial vehicles (UAVs) has mas-
sively expanded the viability for commercial, militaristic, and
enthusiast applications to take advantage of this expanding
technological field. This evolution has allowed UAV imple-
mentations to propagate through the market with utilisation
increasing rapidly in a massive range of situations from mil-
itary operations to photography, search and rescue scenarios,
cinematography, and simply into individuals’ hands [1]. These
applications have also seen an increasing desire and capability
appearing in formation flying, which can expand the utility
of unmanned aircraft systems through one-to-many control
schemes that allow single operators command over swarms of
craft. [2]. However, typical deployments of UAVs still remain
in a fixed one-to-one model where a vehicle is connected to
and wirelessly communicates with a single ground controller.
This standard unmanned aerial system consisting of the UAV,
ground control system, and communication interface between
the two does offer an immense number of flexible use cases
with increased safety over traditional aircraft due to the much
smaller size of devices, lack of human operator, and much
lower initial investment. Despite this, one-to-many systems
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hold new opportunities for industry and military that have seen
the development of swarmable devices increase as these sys-
tems can expand search and rescue operations with automated
devices scanning grids from overhead, form light displays
that replace fireworks, and generally increase the flexibility
of single operator capabilities [1], [3]. A massive issue does
remain in that many of these systems are still prohibitively
expensive to both commercial and enthusiast consumers, with
one-off mesh light shows, for example, estimated to start at
around 99,000 United States Dollars (USD) for 200 drone
systems, which works out to 495 USD each for just a single
use [4]. Other implementations available may also require
refinement as large-scale systems are typically complex, follow
pre-set paths due to difficulties in computation required, or
are difficult to implement due to few consumer-grade UAVs
holding simple but extensible ad hoc out-of-box swarm ca-
pabilities. These limitations in accessibility and adaptability
to manual live input are constraining factors in the usability
of UAVs in more complex commercial and consumer-grade
scenarios that must be overcome to enable further adoption. As
such, this project focused on the development of a framework
that allows for the creation of a scalable and extensible
system using consumer-grade devices whilst enabling an ad-
hoc leader-follower UAV formation to assist in increasing the
availability and accessibility of multi-drone unmanned aerial
systems.

B. Environmental and Sustainability Considerations

The primary environmental and sustainability considerations
this project and its solution worked towards improving were
the United Nations (UN) 8th and 9th sustainability goals [5].
Goals 8 and 9 are defined as to “promote sustained, inclusive
and sustainable economic growth, full and productive employ-
ment and decent work for all” and to “build resilient infrastruc-
ture, promote inclusive and sustainable industrialization and
foster innovation,” respectively. This project partly addressed
each of these goals through the concepts of promoting in-
clusive economic growth, promoting productive employment,
promoting inclusive industrialisation, and fostering innovation.
Each of these points has attempted to be improved by enabling
an affordable and accessible drone-swarming solution that can
allow individuals and small businesses to implement and begin
utilising more UAVs in their processes. Inclusive economic
growth and inclusive industrialisation have been assisted by the
affordability of the solution created and the accessibility and
wide availability of the devices used, allowing for implementa-
tions to occur at all levels of business rather than just large cor-
porations. Fostering innovation benefits from these traits, too;
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however, it also benefits from the flexibility in control schemes
and onboard processing that this solution has implemented,
which massively increases the potential programmability and
specialisation for use cases that the devices are capable of
compared to their factory-provided state. Promoting productive
employment has been assisted by enabling greater swarming
control and aiding in providing more swarming opportunities,
which allows drone operators to be far more efficient when
needing to manage one-to-many UAV systems. Addressing
both of these goals has been a vital driving force behind
the restrictions and direction of this project, so managing to
partially fulfill them and improve these noted regions has been
a primary consideration and benchmark for the undertaken
development process.

C. Project Requirements

The primary requirements of this project were guided
by the principle desires of increasing the accessibility of
swarming, providing the ability to follow live manual input,
and maximising the extensibility and scalability of the created
solution. These considerations align with the UN sustainability
goals 8 and 9 through promoting inclusive economic growth,
promoting productive employment, promoting inclusive
industrialisation, and fostering innovation as the project is
working towards providing these improved behaviours within
an affordable and replicable solution.

Based on these considerations, the following basic
requirements for the solution were defined:

1) The developed solution must only require a ground con-
troller communicating directly with one drone member
at a time, that is in turn responsible for informing all
other members of received commands. This responsi-
bility must be able to be undertaken by any of the
system members the operator chooses when establishing
the system for use. Whichever member is currently
responsible for this is to be referred to as the current
system leader while it handles this operation.

2) The developed solution must offer scalability by being
able to accommodate for and handle the addition of new
devices quickly and safely once they are configured to
the settings the system requires.

3) The developed solution must be extensible through
providing a system that can be further configured and
developed for usage specialisation by operators.

4) The developed solution must be able to handle the repli-
cation of live flight command communications across all
included drones swiftly and accurately.

5) The developed solution must be replicable and accessi-
ble to enthusiasts and small business implementations.

6) The developed solution must not introduce excessive
management overhead that prevents prompt and real-
time actioning of commands across devices to ensure
the system is responsive and safe for flight.

7) The developed solution must have a safe handling of
communications failures in the event the ground con-
troller is no longer able to feed commands into the

system or in cases where the current system leader and
its followers are unable to contact each other.

D. Project Outcomes
1) Developed Solution Overview: The principle desires of

the project requirements led to the design and development
of the produced solution towards a mesh network containing
drone nodes and a ground controller application.

Mesh nodes in the system consist of paired Raspberry
Pi Zero W devices and Tello Talent drones, with each
Raspberry Pi being responsible for managing its respective
drone and communicating with neighbour nodes. This
responsibility is achieved through each Raspberry Pi Zero
W having an additional wireless interface added alongside
its inbuilt capabilities to allow the device to connect to
a common Wi-Fi network the mesh is hosted in whilst
also being able to broadcast its own wireless access point
that its drone and the ground controller can connect to.
Communication between the managing Raspberry Pi and
its drone is achieved through broadcasting commands in
plain text via User Datagram Protocol (UDP) packets in
accordance to the Tello 3.0 Software Development Kit (SDK)
specifications [6] while communication between Raspberry
Pis, and therefore nodes, is achieved through the usage of
the Better Approach to Mobile Ad-hoc Networking advanced
(B.A.T.M.A.N. advanced) utility which uses ad-hoc Wi-Fi
networks to form a mesh network of Linux devices [7].

The ground controller application has been developed with
a React and TypeScript front-end application communicating
with a Node.js back-end server that broadcasts and receives
plain text flight commands and responses via UDP. These
communications are undertaken with the network member it
is currently connected to via the Raspberry Pi-hosted Wi-Fi
network. When connected, the ground control software is
able to alert the connected member that it is the new leader,
which will then inform the mesh network of its elevated
status for command and response routing.

Fig. 1: The Developed Solution Topology Overview
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2) Performance of the Developed Solution: The solution
topology outlined in Fig. 1, defined as a mesh network
with variable leadership, overviews the constructed solution
relationships. Producing this structure fulfilled many of
the project requirements, with operators only needing to
direct messages to the currently designated leader device
to control both of the two configured nodes the project
has prepared in live and at-will flight. Despite only having
two nodes currently configured, the developed solution
provides the desired scalability with the capacity available
to extend this current implementation with only minor
configuration required from the repository settings as defined
in Appendix A, “Configuration of a Mesh Networked
UAV-UAV Communications Structure” whilst also providing
the extensibility of the system through each node having
processing power available on its assigned Raspberry Pi Zero
W. This scalability was ensured through the aforementioned
project requirements guiding the solution to designate the
current system leader the responsibility of learning the
details of its follower devices on demand and forwarding
communications and responses received accordingly to permit
the swift replication of flight commands. The requirements
for replicability and accessibility in the designed solution
drove the decision to use the widely available and reasonably
affordable Tello Talent drones and Raspberry Pi Zero Ws
as the base of the solution, which provide a current base
price of the core components of 453 New Zealand Dollars
(NZD) [8], [9]. This costing excludes the variable pricing
of the selected Wi-Fi adapters and additional cables, as
these are changeable based on implementation requirements
alongside the mounting solution costs, which were not able
to be finalised during the project, as will be discussed in the
hardware implementation section. These item choices worked
in tandem with the sustainability focus of the project, as
using such relatively affordable and widely available parts
and devices would allow for the replicability of this system
for a theoretical enthusiast or small business implementation.
Choosing the Tello Talent also allowed for the natural
fulfilment of the 7th project requirement as the devices have
multiple helpful inbuilt safety features, including an automatic
landing capability when no commands have been received in
the last 15 seconds when in the utilised SDK mode when
the battery level is too low, or when the connection to the
managing device is too weak or lost [10]. These native
behaviours allow for the safe handling of flight issues or
failures in the system, which is vital for potential cases where
devices which may only be indirectly managed are no longer
commandable.

Flight performance of the solution was intended to be
undertaken through measuring connectivity metrics, flight
performance, and failure resiliency; however, issues in the
final implementation, not including an in-flight power and
mounting solution for the Raspberry Pi Zero Ws to be
attached to their Tello Talent have prevented some test data
being gathered. Despite this, tests were able to be undertaken
with a temporary unmounted solution which showed that
actions were able to be replicated across the mesh network

reliably, safely thanks to the inbuilt behaviours, and swiftly
without undue overhead being added in system end-to-end
communications. This is shown through the average round
trip communications time increasing by an average of 6.3
milliseconds for the leader drone and 25.8 milliseconds for
the follower drone across hover and movement tests against
the baseline one-to-one performance of 28.85 milliseconds.
Overall, the performance of the system was found to be
acceptable for an initial implementation; however, clear areas
for improvement in further developments and testing have
been identified.

3) Project Tools and Methodology: The development of
the final implementation of this system has seen a wide
range of programming languages, hardware, libraries, and
tools utilised. The programming languages included in the
developed solution are Python for the Raspberry Pi onboard
flight management software, TypeScript with React for the
ground controller front-end software, and Node.js for the
ground controller back-end server. Python was selected for
the onboard flight management software following initial
development in C++ as it enabled much faster and safer
development and future extensibility despite the notable
performance disparities in the languages [11], [12]. This
trade-off overall benefited the project design as Python enables
a much lower barrier to entry for extensible development with
its emphasis on readability alongside an increased safety in
development due to the automatic memory management the
language holds that C++ does not. This is vital considering
the low Random-access memory (RAM) of 512 Megabytes
(MB) held onboard the Raspberry Pi Zero W [13] and the
risks of memory mismanagement potentially causing issues
for the system in flight. For the ground controller software,
the TypeScript+React front-end and Node.js back-end were
chosen for the widespread support of the systems, the
potential modularity for redevelopment React brings, and the
powerful libraries that exist within the ecosystem that allow
for swift development.

In the course of development in these languages, four
primary system-enabling libraries were vital for enabling
the major functionalities of the system. These were React,
Express.js, dgram.js, and Python’s socket library [14]–[17].
React is a common front-end library that enabled the quick
development of the interactive portion of the ground controller
software that was developed with Vite to allow for easy
starting and live refreshing of the development version of
the application as changes were being made. Express.js is a
web framework for Node.js that made the development of
the back-end server quick due to the ability to quickly create
an Application Programming Interface (API) the React client
would be able to communicate with. This heavily benefited
the design of the system as it made the communications of
commands through POST messages to the Node.js server
a quick and flexible task. These commands are processed
and then sent to the leader device using the dgram.js
library, which enables the quick and direct integration of the
UDP communications functionalities required for the flight
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command control structure. Python’s socket library is used in
the flight control software to enable the receiving and sending
of commands and responses from the Raspberry Pi Zero W
devices, which is vital for being able to process and redirect
content in the system as required. Together, these libraries
provided the key functionalities that the system required and
enabled development to continue on the logic and processing
of the control system without the need to redevelop these
existing structures.

The Raspberry Pi Zero W and Tello Talent were chosen for
the base solution hardware used because of their flexibility
and widespread availability. Raspberry Pi Zero Ws, as
complete single-board computers, opened up many design
and development avenues for the system compared to what
other more limited processing devices would have permitted.
Despite extra potential issues in processing timings being
affected by operating system activities, the potential to
run a complete Linux installation in Raspbian [18] opened
many options for software, programming languages, and
utilities used in the solution design. This was especially
useful for enabling the usage of the B.A.T.M.A.N. Advanced,
dnsmasq, and hostapd utilities that enable the mesh network
functionality, domain name system caching, and Wi-Fi
network hosting capabilities that this entire solution relies
on [7], [19], [20]. Without the flexibility of the Raspberry
Pi platform and these utilities, the system would have
required a dramatically different design. The Tello Talent
hardware choice benefited the solution design due to the
development capabilities inherent to the product, the inbuilt
safety measures, and the accessibility of the model. The Tello
Talent SDK [6] accessibility and flexibility, especially with
being able to convert the drone from access point host to
access point member, enabled the development of the system
as complete control could be achieved through the simple
hosting of a Wi-Fi network on the Raspberry Pi devices. The
inbuilt automatic landing safety measures benefited the system
design immensely with such a vital project requirement being
implemented by default in a reliable and definite way that
software control would have had issues replicating compared
to the firmware-defined actions.

II. RELATED WORK

A. UAV Development and Implementations

UAVs, as with many areas of technology, have historically
seen development driven by militaries for warfare,
reconnaissance, or intelligence gathering [21]. A renewed
interest arose in the 1970s and 1980s, which led to widescale
military development programs; however, in the past decades
commercial, industrial, and enthusiast interest in UAVs has
expanded as the technology has matured and become more
accessible for small-scale deployments.

Historically, these developed UAV systems have been
configured in one-to-one schemes with ground control
systems being linked to single air vehicles. This format is a
powerful tool in a range of situations, but the usability of

swarms, formation flying, and drone-drone communication is
a massive field that is dramatically expanding potential UAV
applications. Search and rescue operations can be expanded
across rough or remote terrain with autonomous UAVs,
drone-based light shows can replace fireworks, and swarms
can even be used in surveying and agricultural settings
[1], [3], [22]. Many of these implementations are, however,
restrictive in terms of scalability or controllability, have to
follow preprogrammed routes, or are expensive to implement
and, as such, are prohibitive for individuals or independent
companies that may not have the financial backing that
militaries, governments, or large corporations have.

Current commercial drone swarming solutions are available
for the public to purchase with systems such as Teal’s 4-Ship
multiple drone controller and out-of-box functionality in the
DJI Tello EDU and Tello Talent devices; however, these
systems each have disadvantages in their implementations
that this project aimed to rectify.

B. Existing Commercially Available Swarming Solutions

Teal produces a range of drone devices with a focus on
producing US DoD-compliant devices such as the Teal 2, but
has also produced the Golden Eagle [23]. Teal’s 4-Ship control
software allows a single operator to control four Golden
Eagles simultaneously and provides a focus on surveillance,
reconnaissance, mapping, or surveying applications [24],
[25]. This implementation can reduce the costs and times
required to a quarter of a single vehicle due to the ability
to have four UAVs working together simultaneously from a
single operator and, as such, fulfils some of the needs of this
project’s focus; however, the implementation and costs of
this system are prohibitively expensive for most applications.
With a single Golden Eagle costing more than ten thousand
United States Dollars (USD), completing a kit of this scale is
completely out of scope for enthusiasts and many companies.
Instead, Teal’s solution focuses on governmental departments,
defence, and security clientele who have the desire and
capability to invest massively into their swarm technology. As
this project aimed to instead provide an accessible solution
at a fraction of the cost of Teal’s 4-Ship control system, this
product fills a market and technological implementation space
far outside of what was in the scope of development.

The DJI Tello EDU and Tello Talent are devices that
were deemed feasible for usage within this project. They
are available at a much more accessible price point from
DJI of 219 and 389 Australian Dollars (AUD) per device,
respectively [9], [26]. This massive price difference stems
from the sizing, functionality, and intended usage differences
between the Tello and Teal devices; however, the Tello devices
provide the core functionality required to form a swarm.
This fits within an acceptable price point for enthusiast
and commercial applications, and also both are capable of
swarming out of the box. There are two major issues this
designed swarm capability does have, however. These are
the typical implementations requiring fixed, preprogrammed
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commands and the lack of adaptability in terms of deployment
scalability. The Tello SDK 3.0 declares the capability for
devices to be communicated with through text commands via
the Wi-Fi UDP protocol [6]. This SDK defines flight control
commands; device information read commands, and expected
behavioural responses for usage in development when the
aircraft is connected with the UDP command setting. These
capabilities allow users to connect their devices to defined
Wi-Fi networks where they can then use the same network
to communicate with multiple devices at the same time
through code. Typically, this code involves pre-setting the
exact drone information and sending commands to specific
devices individually, with swarming occurring from repeating
the same command information to all devices the user adds
code for. This solution is very limited in terms of scalability
and control complexity, which are features this project aimed
to solve as the swarming structure is limited in the ability
to handle changing swarm sizes with each device needing
to be found and programmed for whilst also being limited
to a range of the host network. The implemented solution
instead allows for dynamic sizing with the replication of
commands across any Raspberry Pi and Tello pair that are
accessible within the mesh network. The accessibility and
count of devices do not need to be known for the ground
controller to function as the flight management software on
the devices in the B.A.T.M.A.N advanced mesh network can
locate neighbours and adapt with the changing node topology,
which allows for command replication to be automatically
scaled as the network expands. This capability is combined
with the range expandability that utilising a mesh network of
nodes brings through, allowing devices to communicate with
each other even if they are not direct neighbours. This permits
the theoretical expansion of the system across wider physical
areas where node Wi-Fi networks overlap to extend the swarm
range in a much more effective way than a single access
point control system the Tello devices are typically used in at
the cost of longer response times from devices further from
the leading node. Utilising this methodology of command
communication also allows for more effective ad-hoc flight
controls as the added onboard processing available to the
user through the usage of Raspberry Pis massively expands
the capability and potential for pre-set or extended actions
compared to normal operation. This is because the Tello
devices are limited to the SDK commands available for flight
actions; however, independent processing capabilities running
for each pair unlocks an avenue for larger user-defined
routine functionalities and specialised control logic to be
built into the system. This increased device independence
can reduce ground controller workload whilst providing
much more complex control systems that leverage the SDK
capabilities and onboard processing of device statuses and
commands. These expansions to the capabilities of the Tello
devices that this project focused on massively improve the
potential usability, flexibility, and viability of swarm usage
for minimal further investment compared to upgrading to
more expensive commercial devices or creating custom UAVs.

Custom UAV systems are another existing solution that

would be able to permit a similar performance to the
solution developed in this project. This is especially the
case with guides available for Raspberry Pi and Pixhawk (or
similar flight controller) systems that would enable similar
B.A.T.M.A.N. advanced mesh control systems, complex
on-board software development, and more precise flight and
control management than the developed system offers [27].
Despite the shared capabilities, these systems have a higher
barrier to entry with the complexity of construction required
alongside a higher entry price with kits being available from
around 899 USD [28]. Sourcing the required components
individually is possible; however, this added complexity in
purchasing and assembling devices is a problem that this
project design reduces as the Tello devices come pre-built
and ready for flight with the only additional component
construction in designing and implementing a mounting and
Raspberry Pi power solution.

III. DESIGN

The design of the developed solution was heavily guided
by the aforementioned project requirements. As such, the
decisions regarding what design choices should be made when
there are multiple possible development avenues rested heavily
on which solution would better fulfil the requirements and
sustainability goals of the project. These considerations kept
in mind will be justified through this design section whilst
outlining the selected system design.

A. Design Overview and Sustainability

The final system design centered on creating a mesh
network of affordable nodes consisting of a drone and a
managing device that commands the drone and controls
communications of flight commands and responses between
neighbour nodes. This system was to be connected to an
interactive ground controller that would be used by the
operator to broadcast flight commands into the mesh and
receive responses and status updates from all connected nodes.
This ground controller software was only to communicate
live flight commands to one mesh node at a time, with
the currently selected pair acting as the current leader and
distributing commands to all followers within the network.
Enabling this communications structure required that each
mesh node managing device have the capability for running
an on-board flight management software that would process
and forward received commands, keep track of the system
topology, and provide extensible development through
being easily modifiable to add specific routines or complex
management methods.

These concepts drove the design to call for Raspberry
Pi Zero W devices mounted atop Tello Talent drones
running software to provide in-flight management of both
the connected UAV and communications with neighbouring
Raspberry Pi devices. These were designed to be achieved
through the Raspberry Pi hosting and connecting to two
Wi-Fi networks - the first being a hosted Access Point that the
paired drone and ground controller software could connect to
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and communicate with and the second being an interface for
the mesh network solution. This design decision also drew
from the UN sustainability goal considerations the project
aimed to address. Both of these items are widely available
and at a much cheaper price point than the other discussed
existing solutions, which enables inclusive economic growth
opportunities for operators of this system comparatively.
Additionally, this design kept technical sustainability in mind
through selecting the Raspberry Pi platform, which provides a
free and open-source implementation of the Debian operating
system in Raspbian [18], [29]. This means that the system
is sustainable across a longer timescale due to the tools and
updates available in free community libraries and the option
to run and modify the system software as needed, even if
the support of the operating system for the devices used is
discontinued. Additionally, the long-term sustainability of
the devices utilised in this specific system implementation
has been considered and reassured due to the Raspberry Pi
obsolescence statement available on many of their products.
For the Raspberry Pi Zero W, there is a stated minimum
lifespan of production until January 2026, while the Raspberry
Pi Zero 2 W, which could be used in place of it as they are
the same size, has a stated minimum production lifespan of
January 2028 [13], [30]. These dates provide certainty to the
long-term sustainability of this project design as new items
can be purchased through to at least these stated dates, device
support will be ongoing accordingly, and the system has been
designed in a way where the mesh solution is able to be
drone model agnostic. Although the system calls for the Tello
Talent drone, any new device that provides an open SDK,
communicates via Wi-Fi, and provides the lifting power and
shape a mount can be designed for would be able to be used
in the system with compatibility changes made in the flight
control software. These features of the selected items together
show how the designed solution promotes economic and
technical sustainability in line with the sustainability goals of
the project.

B. System Topology

In designing the system topology, two primary approaches
were considered in concepts based around a single leader with
fixed followers and a mesh network with variable leadership.

Fig. 2: Explored Single Leader Topology

Initially, the single leader with fixed followers structure, as
outlined in Fig. 2, was considered for perusal. Implementing
this would enable swarming and flight command replication
by creating a single Raspberry Pi-Tello pair that would act
as the leader device. The Raspberry Pi mounted to the UAV
would be a Wi-Fi access point to which all devices within
the topology would connect. This design would allow for the
ground controller to communicate with the leader Raspberry
Pi, which would then forward received commands to all
connected UAVs through UDP packets. This solution would
fulfil the desire of this project to allow a single ground
controller to control multiple drones with only needing to
communicate with a leader device; however, it lacks swarm
sizing extensibility due to the limited control range offered,
and it provides less complex control processing opportunities.

Swarm sizing extensibility is vital in ensuring that the
created solution can expand from the limited development
implementation created within this project to a theoretical
larger system with more aircraft. The main factor that affects
this explored solution’s capability in this regard is the issue
of control range caused by the inherent limitation found in all
devices connecting to the leader Raspberry Pi’s access point
rather than allowing for the network to extend across devices.
As all devices in this solution would connect to a single Wi-Fi
network, the range of usable flying would be permanently
limited to what is produced from the leader device. This
severely restricts the usability of this implementation as
practical usages of swarms need the flexibility to spread
craft further than what a single Wi-Fi network may provide.
Complex onboard processing is a major restriction that
this solution would hold due to the practical limitations of
controlling each connected device from a single Raspberry
Pi. Although logic can be handled at a small scale, as in
this project’s implementation, the requirements of managing
larger networks on a single low-powered Raspberry Pi Zero
may not be practical for what is required to keep a flying
formation safe. Instead, the ability to process commands
and system activity onboard each device was preferable to
reduce the peak workload on any given device whilst also
increasing the overall command or processing complexity
possible within the system.

Fig. 3: Explored Mesh Network Topology
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Considering these limitations, the mesh network with
variable leadership design, outlined in Fig. 3, was preferred
as this solution solved the major flaws the single leader
with fixed follower design held. This structure involves each
UAV being placed in a Raspberry Pi-Tello drone pair with
the mounted Raspberry Pi Zero W acting as a wireless
access point for the drone it sits atop with one wireless
interface whilst also being a member of a B.A.T.M.A.N.
Advanced mesh network on a second wireless interface.
This allows each drone to have a constant connection to
its controlling network and device while permitting flight
command replication by sending information within the
mesh network. In this situation, the ground controller can
be connected to any node in the network by joining their
active Wi-Fi network. Connecting to a Raspberry Pi-Tello
pair designates that device as the leader of the swarm, and all
commands will be sent through and replicated through this
bridging system. Commands in this structure are thus sent
from the ground controller to the currently selected Raspberry
Pi, which then sends the command via UDP to the Tello
it is mounted atop whilst also forwarding the content to its
neighbour nodes by flooding the network. These neighbours
can then forward the same control messaging to their relevant
drones, return drone responses and, through B.A.T.M.A.N.
advanced, rebroadcast the commands to neighbours allowing
the command to propagate through the network [31].

This solution solves the extensibility of the system by
allowing for any configured Raspberry Pi-Tello pairs to be
automatically added to the network by simply powering them
on as the B.A.T.M.A.N. Advanced mesh network will detect
them through nearby neighbours and begin broadcasting
commands to the new devices. This process simplifies the
network extension immensely, as no central device needs to
be modified to accommodate all new devices. Instead, only
the nearest neighbours will have overhead in searching and
providing communications for the mest to the new devices
whilst the flight control processing will be handled on the
new pairs dedicated Raspberry Pi.

Utilising a B.A.T.M.A.N. Advanced network also solves
the range issue identified in the single leader solution. As
long as a device has a neighbour in reach that has received the
broadcast command, it will be in range of the network, and as
such, the system can be chained across a much larger distance
than a single Wi-Fi network would allow. This improves the
expandability of the network usability immensely compared
to the initial design, as the member UAVs would be able to
cover a much greater distance whilst still only requiring the
control commands to be sent to the current designated leader
device.

Having each aircraft hold a dedicated Raspberry Pi expands
the onboard processing capabilities of this system immensely,
as the limited power each device holds is only dedicated
to managing its paired drone. This can allow for the
development of more complex tasks each Raspberry Pi can
run. For example, this power could be used to design and

define multiple command actions, which involve taking in a
single custom command and then converting this into a series
of SDK-compliant commands for example. Primarily, though,
this processing power availability allows for an overall much
safer system as it can permit the development of future
system safety and monitoring tools that could improve the
overall quality of network performance, such as flight health
monitoring tools.

C. Flight Control Software

Once this distributed processing-capable mesh solution was
selected, the onboard flight control software design trended
towards the concept of an identical control script running
across all Raspberry Pi Zero Ws in the system. Running
the same software with the inbuilt capabilities of adapting
the instance to behave as either a leader or follower on
system start as required was a core requirement for enabling
the variable leadership model that the design desired. This
functionality was to be achieved through the flight control
software having the ability to flood the mesh network with a
message informing all devices of its elevated status to ensure
they replicate commands sourced from it through flight and
return drone response messages accordingly. This developed
software was thus designed to enable communicating along
both wireless interfaces available to the Raspberry Pi Zero
Ws in the system to allow for the required communications
within the B.A.T.M.A.N. advanced mesh network through
neighbouring nodes and within the configured hosted access
point. Enabling this functionality in an extensible, safe, and
swift way was a core consideration for designing the specific
implementation details of the flight control software, as the
minimisation of added communication overhead and system
processing requirements had to be balanced against the ability
for the software to be redeveloped swiftly and safely for
expanded capabilities. As such, the initial design concept for
the flight control software called for using C++ to create the
system; however, Python was chosen for the final design.

C++ was initially chosen for its known speed afforded
to it by being a powerful compiled language with much
lower overhead than other potential languages. This afforded
speed and minimal processing requirements would be ideal
for an in-flight system that must permit swift communication
throughput to maintain operator control over devices they are
indirectly managing; however, this system does come at the
cost of ease of use. The added strict language requirements,
manual memory management, and high barrier to entry in
terms of writing good code that C++ faces heavily limit
the potential extensible of the software for potential users
who want to modify the software for their specific needs.
Although the same basic management structure the design
created could be recreated by another use, this adds a
barrier to the innovation potential this solution aimed for
as the excess work required reduces potential productive
development time. Additionally, the potential challenges in
writing safe and reliable C++ code in flight, particularly
around memory management on a system with only 512
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MB of RAM available for an entire operating system, raised
concern about the viability of providing a safe platform for
potential users to develop from. As such, the decision was
made to seek alternative design options for the flight control
software solution.

Python, despite its slower performance when compared
to C++ [11], [12], offers a far lower barrier to entry for
potential future system users through its simpler syntax, native
presence of a garbage collector for memory management
[32], large standard and community library, and inbuilt
extensibility [33]. These quality of life and usability
improvements contained within Python made it a clear choice
for the final flight control system design as it enables both
swift and accessible development for both this project and
any future potential work whilst still maintaining the complex
development opportunities and potential user-determined
speed and functionality improvements. The extensibility and
greater refinements Python offers are particularly powerful
for any users who have the confidence or need to refine the
system as they can turn off automated garbage collection
[34] and extend the system with modules written in faster
languages [33] as required if they are seeking performance
improvements. Python offering these more complex options
alongside providing a user-friendly system for less confident
users of the system, which can enable safe or improved
speed, drove the final decision in opting to use the language
for the flight control software.

D. Ground Control Software

The ground control software’s initial design concept fol-
lowed the simple structure of providing a visual interface that
a system operator could use to command the mesh network of
devices whilst receiving updates on the system status alongside
mesh updates and drone responses through communicating
with the flight management system instance running on the
leader drone. This led to the initial basic design concept
outlined in Fig. 4.

Fig. 4: Initial Planned Ground Control Software Design

This solution was designed to offer a clear and basic
command scheme that permitted the user to undertake basic
flight actions whilst receiving drone responses in the status
logs section, basic device information in the device statuses

section, and a recording of the flight in the flight log section.
These sections were selected for the information they offer,
being valuable for both in-flight and post-flight analysis of
the system. The status logs section is vital for identifying the
current command’s completion status alongside notifying the
user of any errors encountered with commands. The flight
log section allows for a much more visible display of the
commands and paths undertaken in flight to ensure that they
are correctly followed. The device statuses section gives a
quick overview of the discovered nodes, the relevant drone’s
battery status, and the last response time to ensure the user
can quickly identify if there are any power or communication
faults. However, the need for these sections to contain so much
information drove a large design change through this project
planning. The initially planned system aimed to use a cross-
platform framework such as Flutter to develop the ground
control software with both desktop and mobile functionality
in mind. This was intended to allow the operator to select
either mode for managing the system as preferred; however,
the amount of information planned to be displayed alongside
the space required for the control scheme rendered this design
unviable. Instead, the decision was made to limit the software
to desktop usage as the screen real estate and sizing of laptop
and desktop devices would much more easily permit all the re-
quired information and controls to be displayed. This decision
limited the expected flexibility of the system; however, the
design decision had to be made to ensure all information was
legible, and controls were able to be interacted with correctly
and consistently, which is vital for ensuring the safe operation
of such a system.

E. Hardware

The hardware design settled quickly on the concept of
mounting an Arduino or Raspberry Pi device onto each drone
used to form the desired mesh solution. These options were
considered due to the additional logic that can be added
to them and the meshing capabilities the platforms hold.
This choice was also influenced by the design considerations
around drone devices, as the Tello Talent comes packaged
with an Arduino ESP32 controller [9]. Despite this, the
uncertainty in the design stage around whether the Tello
Talent or Tello EDU device would be selected for purchase
based on university resourcing and potential future usage
meant that the usage of this device was not a definite answer
for the solution. As such, the design had to consider either of
the system design viabilities.

This decision focused instead on the potential fulfilment
of the project requirements each platform had and the
potential shown in each solution from existing similar
solutions. The Raspberry Pi-based design was preferred in
both of these considerations due to the much wider potential
for development and innovation available on the complete
computer system for users, despite the added operating system
overhead, the immediate compatibility it offered across both
devices and the existing community Raspberry Pi mounting
that offered guidance on the viability of the solution. The
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existing onboard Raspberry Pi solutions and mounts designed
by the Tello community [35], [36] supported the viability
of the desired solution as owners had been able to power
and connect Raspberry Pi devices to their Tello and Tello
EDU devices in flight. As such, the final hardware design
of Raspberry Pi Zero Ws mounted atop and powered in
flight by the micro Universal Serial Bus (USB) slot available
on the Tello Talent or Tello EDU devices was selected.
These existing open and available resources also allowed for
adapting the mounting and system solution to accommodate
the additional USB Wi-Fi adaptor that the Raspberry Pi
design required for providing an additional wireless interface.

IV. IMPLEMENTATION

A. Overview of the Delivered Implementation

The implemented system was able to match most of the
design expectations with a few modifications and finalisations
in terms of the framework used for the ground controller sys-
tem and in the final Raspberry Pi mounting status. The mesh
network system, outlined in Fig. 1, has been completed, with
the configuration of the devices, ground controller software,
flight control software, and hardware implementations outside
of the in-flight Raspberry Pi power solution completed. This
final implementation currently permits the management of two
nodes, as seen in flight in Fig. 5, due to difficulties in sourcing
compatible Wi-Fi adaptors for the Raspberry Pi Zero W’s
second WLAN1 wireless interface. However, has the capacity
to be used with far more devices with this issue solved.

Fig. 5: Mesh Network Controlled Tello Talents in Flight

The final implemented system consists of unmounted mesh
nodes of Raspberry Pi Zero W devices paired with Tello Talent
drones through the UAV connecting to the Wi-Fi network
hosted on its managing Raspberry Pi. Each Tello Talent drone
does, however, have an additional unpowered Raspberry Pi
Zero W attached in flight to simulate the mounting solution’s
performance impact on their flight abilities. The powered
Raspberry Pi Zero Ws both run the completed python based
flight control software, which can be set to either act as the sys-
tem leader or follower based on the ground control software,

built in React and TypeScript with a Node.js back-end, running
on a laptop connected to the selected leader’s broadcast Wi-Fi
network. This ground control software implements a system
starting process that informs the currently designated device
of its elevated status to begin the communication of leadership
to the follower through flooding the B.A.T.M.A.N. advanced
mesh network the devices are connected to on their WLAN0
interface. Once this status message has been broadcast, the
message “command” is sent through the mesh, as per the Tello
3.0 SDK [6], to prepare all nodes for flight by switching the
drones into SDK mode. Once this command is broadcast, the
flight control software begins receiving drone status updates,
which are emitted multiple times a second from the Tello Tal-
ent devices. These updates begin to populate the device status
information available in the ground controller software, which
indicates to the user that the system is flight-ready with the
discovered nodes. Commands can then be sent into the system
solely through the leader node and then replicated across both
drones through the constructed indirect management whilst
responses are returned from all devices.

B. Mesh Network Overview

Fig. 6: Mesh Node Network Relationships

The mesh network has been implemented with the planned
B.A.T.M.A.N. advanced utility running on each managing
Raspberry Pi Zero W drawing from the Innes and Walicki
guide [37]. This system is accessed through adding a virtual
“bat0” interface on the systems WLAN0 interface alongside
setting the default WLAN0 network to start on an ad-hoc
“raspi-mesh” network. With each device set to these ad-hoc
network settings, they automatically detect neighbour nodes.
Additionally, each device has a unique static Internet Protocol
(IP) address set in the 192.168.1.X/24 range through the
device’s dhcpcd settings file, which is used to provide a static
address the flight control software can communicate with. The
wireless interface added via USB provides a WLAN1 interface
to each Raspberry Pi. This interface is set to act as a Wi-Fi
access point through the hostapd utility, which allows both
the Tello Talent paired with the device and the laptop running
the ground controller software to connect to the device. These
interface interactions are shown in Fig. 6. This diagram shows
the distinct networks being broadcast from each node on
the WLAN1 interface with the leader and follower-hosted
Wi-Fi network sections whilst the common ad-hoc network
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used on WLAN0/bat0 is shared across devices. Fig. 6 also
shows, through the right-most section, the potential scalability
capacity this solution has as further nodes can be added
to the system with the same configuration setting applied
to managing Raspberry Pi devices. Once this is done, the
B.A.T.M.A.N. advanced mesh members would begin detecting
the new neighbour node if it is in Wi-Fi range which then
permits the utilisation of the node in the network. This func-
tionality is assured through the flight control software flooding
the address space through an informed leader broadcasting on
192.168.1.255, meaning that all devices in this potential range
can detect and begin following the elevated node.

C. Flight Control Software
The flight control software was ultimately implemented as a

Python run on the Raspberry Pi Zero W devices. The software
successfully interfaces with the drone the node manages via
the WLAN1 hosted Wi-Fi network, neighbouring nodes via
the WLAN0/bat0 interface, and the ground controller when
selected to be the current system leader running the ground
controller. The script communicates to all of these systems us-
ing plaintext UDP packets, as seen in Fig. 7, containing either
a command message meant for its drone and followers or a
response message directed toward the ground controller. These
messages are plaintext to provide simple communications and
to match the Tello 3.0 SDK, which requires commands to be
sent through this format to port 8889 on the controlled drone
[6]. This flight management script takes in arguments contain-
ing the ground controller and drone IP addresses alongside
the IP address the node occupies in the mesh space, such as
in “i.e. python3 flight control.py 192.168.10.4 192.168.10.6
192.168.1.10”. These addresses are taken in as arguments to
manage the variability in the IP address assignments given
to the ground controller and drone when connecting to the
Raspberry Pi Wi-Fi network alongside preventing hard coding
from being required in each software instance each time the
addresses change. This information provides the base settings
of the management system until it receives information on
whether its instance is a leader or a follower.

Fig. 7: Implemented Flight Control Software Design

D. Ground Control Software
The ground control software did follow the final design

concept of being a desktop system rather than a multi-platform
solution; however, the selected language and structure of
the application changed from the design phase. The initial
Dart+Flutter selection was abandoned for the developed React
front-end and node.js back-end solution. This decision was
made due to React’s web app nature more easily fitting
the new structure alongside the fast developing and scaling
solution that the library offers [38]. These features, along-
side the much wider library opportunities available through
JavaScript/TypeScript, led to the React front-end being created
with Vite and TypeScript to produce the basic ground con-
troller application shown in Fig. 8. This front-end application
interfaces with the back-end Node.js server that runs uses
the dgram library [16] to broadcast and receive the plaintext
messages the flight control software and drones use via UDP.
This interaction between the front-end and back-end, shown in
Fig. 9, is enabled through the Node.js server running express
[15], which provides API endpoints that the front-end posts
the appropriate flight command content to as directed by the
on-screen buttons. In turn, the Node.js back-end emits server-
sent events to update the content shown to the user through
the React front-end when it receives updates from the system.

Fig. 8: Implemented Ground Control Software

Fig. 9: Implemented Ground Control Software Design
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E. Hardware

The solution hardware saw the biggest changes and chal-
lenges in converting the solution from design to implemen-
tation. This was primarily due to Linux driver issues with
Wi-Fi adaptor chipsets and firmware changes across the Tello
EDU and Tello Talent. The current solution, as mentioned,
includes Raspberry Pi Zero Ws and Tello Talents performing
as expected; however, the ancillary hardware in the Wi-Fi
adaptor and in-flight management solution for the Raspberry
Pis have caused issues in producing the expected design.
Raspberry Pi Wi-Fi adaptor compatibility issues prevented
against multiple Wi-Fi adaptor models being used in this
project. Initial designs and productions were achieved through
the usage of an on-hand TL-WN821N V4 Wi-Fi adaptor,
which uses the RTL8192cu chipset [39]. This is a version
well supported by the operating system, which led to the belief
that the system should work with newer devices. This initial
testing exposed itself as misleading with testing of RTL8188eu
and RTL8192eu chipset-based devices, which are commonly
available in new products such as the TL-WN725N V2/V3
and TL-WN821N V6 devices, respectively [40], [41]. Unlike
the TL-WN821N V4, these products are not well supported
by the kernel, so they rely on community drivers such as the
lwfinger rtl8188e repository [42], however, these systems do
not provide the same functionality as the TL-WN821N V4
adaptor and as such would have required major reworking of
the system configuration to permit the same level of operation.
This issue heavily meant that either the system design would
have to be shifted or additional older adaptors had to be
sourced to provide more functional nodes. Fortunately, another
TL-WN821N V4 adaptor was located and attached to the
second Raspberry Pi, as seen in Fig. 10, enabling the operation
of the system at the expense of the current scalability of the
implementation.

Fig. 10: Raspberry Pi Zero W Devices with Wi-Fi Adaptors

The second change between design and implementation
is in the in-flight power solution for the Raspberry Pi Zero
Ws. Although examples existed supporting the potential of
using the micro USB port on the Tello drones to power a

Raspberry Pi Zero W in flight as in [35], a firmware update
released following the Tello Talent meant that powering a
device from the USB port on either the Tello Talent or Tello
EDU would result in the drone not being able to connect
to Wi-Fi [43]. This is an incredibly damaging concept for
this implementation as Wi-Fi is the intended communications
method between the managing Raspberry Pi Zero W and its
follower, and, as such, an alternative power solution must
be developed in the future to provide the designed mounted
control system. Without this solution, the current managing
devices must remain unmounted despite the 3D printed mounts
being available for usage, as seen in Fig. 11, which shows an
early and unstable version, and Fig. 12, which shows the latest
low-profile design.

Fig. 11: Tello Talent with V1 Raspberry Pi Mount

Fig. 12: Tello Talent with Latest Raspberry Pi Mount



ENGR 489 UAV-TO-UAV COMMUNICATION ESTABLISHING A LEADER-FOLLOWER FORMATION 2023 12

V. EVALUATION

A. Results

The suitability of the implemented solution and system
was based on the outlined project requirements. These seven
concepts drove the design and development of the system
and, as such, are the best determination of how well the
solution performs.

Project requirement 1 has the system meet expectations as the
developed solution requires the operator to communicate only
with the currently selected leader drone through the ground
controller software interface outside of beginning the flight
management software. Either node can take on this leadership
responsibility, and commands are successfully replicated
across to the follower device, reaffirming this success.

Project requirement 2 is partially successful as the system
holds the capacity for scaling with new devices; however, the
current issues in Wi-Fi adaptors and in-flight power systems
mean that this system still has much room for improvement
to permit the desired capability.

Project requirement 3 is successfully met through the
utilisation of the open-source and capable Raspbian operating
system on the device, alongside the usage of Python for the
flight management software, which permits easy development
for specialised usages.

Project requirement 5 is successfully met through providing a
system with a current core component cost of 453 NZD [8],
[9] compared to the higher 899 USD Raspberry Pi drone kit
[28] and the much more expensive Teal devices.

Project requirement 7 is successfully met through the
selection of the Tello Talent drones for the system. Their
inbuild collision avoidance and automated landing when no
management connection is detected or 15 seconds have passed
without commands in SDK mode mean communication losses
are safe failures even for the indirectly managed UAV.

Project requirements 4 and 6 had further flight testing
to determine their success. This evaluation was undertaken
by comparing the round-trip command time of a base
one-to-one control scheme system to the mesh system’s
leader and follower device response times. The results, found
in Fig. 13, show that the one-to-one control scheme had a
lower response time in all of the ground, hover, and flight
movement command situations; however, the performance
difference is in an acceptable range. The leader device only
saw a minor average response time increase of 6 and 6.6
milliseconds across the most important hover and flight
movement situations where the drone’s response time is vital
for maintained safety. The follower drone did see a much
higher jump of 24.95 and 26.65 milliseconds in round-trip
response times across these tests. These results saw an
average increase in response times of 21.83% and 89.42% for
the two drones, which does have room for improvement with

a drive for higher code efficiency or language usage; however,
they fall well within an acceptable operating window of 100%
increase for live flight management. This figure was selected
due to the incredibly quick base response times that the
system achieved in round-trip communications, and falling
beneath it reassures that flight response times are acceptable
in the developed solution. The command replication accuracy
raises questions, however, due to the underlying nature of
the communications structure the devices use. UDP, which
the Tello 3.0 SDK requires for drone communications [6],
is a “best effort” system that broadcasts without considering
or requiring confirmation of message acceptance. As such,
any messages that are dropped or take significantly longer
to arrive in flight will not be detected natively within
the system. This could cause issues if commands are not
continually arriving, causing desynchronisation of the mesh
node’s drones, allowing them to exist in different direction
states, and causing potential crash opportunities or control
issues if the operator does not identify the problem. This
potential safety issue brought about by the system does
indicate that requirements 4 and 6 are partially fulfilled as the
swift execution of commands and low overhead are achieved,
but system safety is not guaranteed in regard to command
replication accuracy.

Fig. 13: Round Trip Command Response Times

B. Implementation Limitations

The produced artefact is a limited implementation with
improvements available in multiple areas. The first opportunity
for improvement would be to offset some of the potential
problems UDP communications has on the system by
converting the ground controller - flight control and flight
control - flight control communication systems to use the
much more sturdy Transmission Control Protocol (TCP)
system for communicating commands and responses. This
system requires acknowledgments of events occurring and so
would allow the control systems to detect and rebroadcast
possibly missed commands automatically through flight
to allow for greater replication accuracy across the mesh.
Although the flight control - drone communications are stuck
with UDP in this situation, this added security in the rest of
the system would be hugely beneficial to providing certainty
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of command execution and identifying quickly if a device is
no longer available. A potential improvement related to this
factor would be the integration of flight health monitoring
and flight safety tool software that could be added to the
system. Having each aircraft hold a dedicated Raspberry Pi
expands the onboard processing capabilities of this system
immensely, which could the development of more complex
tasks each device could be running to monitor the current
system status. This could be used to utilise the connection
strength, command delay, relative drone location from launch,
or battery life of the commanded drone to begin landing
routines or send commands back to the ground controller,
for example, as the consistent connection and updates from
an individually controlled drone open many opportunities for
more complex analysis of its status.

The current hardware implementation problems are another
massively limiting factor in the developed artefact. Although
the system does work in providing mesh management of a
leader and follower drone, the lack of an in-flight power
solution and reliable new Wi-Fi adaptors being ready for
integration means that the true potential of the system can
not yet be realised. Solving these issues would allow for
tests to be undertaken at greater distances and with larger
swarm sizes to provide much richer evaluation of system
performance metrics and would provide development goals
for a more effective implementation accordingly.

A final limitation of the system that could be improved
is the overhead of the developed solution. Although the
system evaluation found the increased response times to be
acceptable for a system of this scale, increased distances
and swarm sizes would massively increase the workload
and maximum node hops commands have to take. As such,
redeveloping the flight management control system for
efficiency or changing its language to something with faster
performance would allow for a more scale-friendly solution
compared to the currently produced project. Although C++
was written out of the design stage for extensibility purposes,
swapping back to the language could provide the higher
performance the system would require at a larger scale at the
expense of operator usability.

VI. CONCLUSIONS AND FUTURE WORK

A. Project Conclusions

Through this project, the desired goal of an accessible, ex-
tensible, and adaptable multi-UAV communications structure
has been successfully formed. The mesh networked solution
has enabled the replication of commands across devices with
lower operator demand due to being able to indirectly man-
age follower drones whilst maintaining a swift end-to-end
response time across a two-node system, allowing for precise
and controlled live inputs, with per node costs of less than
half of comparable Raspberry Pi drone kits. This successful
implementation of such a system has shown that drone swarms
can be an accessible concept for individual enthusiasts and
small corporations alike with modern and affordable hardware

that can still provide additional opportunities for innovation
and development for specific needs operators may have.

B. Future Work opportunities

Following this system implementation, future work
opportunities include adding a security protocol and
verification system, potential flight monitoring software
development, and redevelopment with future software and
hardware updates.

The current implementation has no formal security checking
outside passwords on the Raspberry Pi-hosted Wi-Fi networks.
This was because the project focus did not place any focus
on enforcing secure communications, and it means that any
device that was to join the B.A.T.M.A.N. advanced mesh
network, which is open, could begin to send malicious
commands into the system. Developing a standard for source
identification and confirmation would be a task that would
massively improve the safety of this style of system.

Developing adaptive flight monitoring software based
on drone update messages and external communication levels
also offers an avenue for future work that could utilise this
system base as a testing and data collection location. Software
that would be able to smartly adapt and warn operators of
potential upcoming problems in either their node or mesh
region would offer valuable insight and expand the reliability
and use cases of the system immensely.

Finally, as the system has been so restricted by hardware
behaviour and availability, taking this mesh network concept
and redeveloping it for alternate or future hardware iterations
would be a massively beneficial task for the system. Updating
it with the lessons in this developed solution would provide
massive improvement avenues for individual and commercial
users at a much quicker timescale.
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