
ENGR 489 (ENGINEERING PROJECT) 2023 1

DRAKVUF Malware Sandbox
Sukhjinder Singh

Abstract—A sandbox is a system that provides a safe environ-
ment for analysis and deployment of malware samples while all
the activities of the malware are captured and logged. DRAKVUF
is an open-source black box analysis sandbox based on the
popular Cuckoo sandbox system. The current implementation
of DRAKVUF has shortcomings in terms of the web user
interface, which restricts user customisation of the analysis
environment variables. This project will extend DRAKVUF’s
web user interface to support new capabilities such as, an
operating system with various configurations and easy selection
and assignment of environment variables that are currently
hidden within the DRAKVUF configuration files or command
line interface. The queuing system of DRAKVUF is also extended
to allow for multiple samples to be analysed at once. The
reporting component is significantly improved by implementing
the capability to generate and send comprehensive reports to a
given email address provided by the user during submission. The
reporting interface also provides historical data on previously
submitted malware samples.

The improved DRAKVUF system is hosted on an ECS server
and is accessible to staff and students to submit and analyse
potentially malicious samples. The success of this project is
determined through a successful deployment and fully opera-
tional malware sandbox of DRAKVUF sandbox instance and a
developed web interface.

I. INTRODUCTION

MALWARE analysis is the process of examining a piece
of malicious software (malware sample) to understand

its behaviour and purpose. The information provided by this
analysis can be used to develop defences against malware,
such as antivirus signatures and firewalls [1].

There are two types of malware analysis: “static” and
“dynamic”. Static malware analysis is a technique that ex-
amines the code and properties of a malicious file without
executing it. Dynamic malware analysis is any examination
performed after executing malware [2]. This generally requires
the malware sample to be executed in a system that is set
up in a closed, isolated virtual environment so that it can be
studied thoroughly without the risk to a production system.
Malware analysed using the static analysis technique is much
safer than using the dynamic analysis technique. Basic static
analysis and advanced static analysis are the two steps of
the static analysis method used to analyse malware [3]. On
the other hand, basic dynamic malware analysis involves
running malware samples in controlled environments, such
as virtual machines, to observe their behaviour and identify
malicious activities. Advanced dynamic malware analysis goes
beyond basic observation by utilising techniques like code and
memory analysis, network traffic monitoring, and behaviour
profiling to gain deeper insights into the malware’s capabil-
ities, evasion techniques, and potential impact on a system

This project was supervised by Masood Mansoori and Lisa Patterson

or network. The efficacy of static analysis has been greatly
reduced over the years due to the proliferation of metamorphic
malware with malware authors using complex techniques such
as anti-analysis to perform detection evasion [4].

Basic dynamic analysis and advanced dynamic analysis also
have drawbacks; namely, the number of samples that need
to be analysed by malware analysts. This puts a burden on
hardware resources used to analyse the samples [4]. Modern
malware can also leverage anti-analysis techniques for dy-
namic analysis. This is done by the detection of monitoring
environments and hiding in unmonitored corners of the system
[4].

Sandboxes are an advanced dynamic analysis method for
running untrusted programs in a safe environment without
fear of harming “real” systems. Sandboxes comprise of vir-
tualised environments that often simulate operating systems
and network services in some fashion to ensure that the
software or malware being tested will function normally [2].
However, they do not offer the opportunity to customise how
the malware samples should be evaluated. This leads to results
being imposed due to restrictions on the choice of operating
systems, installed packages, how long the execution will last,
and many other things.

II. THE PROBLEM

Dynamic malware analysis requires a safe and isolated envi-
ronment to run malware samples. This can be done in a variety
of ways, sandboxes being a very safe way of execution and
analysis [3]. However, sandboxes can be resource intensive,
detectable, and complex to set up and operate [4].

DRAKVUF is an open-source software that provides a
foundation for a malware analysis sandbox [5]. It provides a
platform for stealthy malware analysis as its footprint is nearly
undetectable from the malware’s perspective [5]. DRAKVUF
provides a basic web interface that gives users limited cus-
tomisability on how the sandbox will run the malware samples
and how reports will be delivered to users.

The current web interface for the DRAKVUF sandbox lacks
essential features and functionalities, limiting its usability and
hindering efficient malware analysis. Namely the interface
does not support the selection of multiple virtual environments,
it restricts the duration of malware sample execution, and it
does not have a job management system, which will need
to be implemented for managing submitted jobs. This defi-
ciency inhibits effective management of DRAKVUF instances,
impedes analysis of submitted jobs, and fails to provide a
comprehensive solution for malware analysis.

The aim of this project is to extend the capabilities of
the current DRAKVUF web interface by allowing users to
customise their analysis environment and provide an easy-to-
use interface for managing malware sample submission and



ENGR 489 (ENGINEERING PROJECT) 2023 2

queuing. When the malware sample is launched and evaluated,
there will be functionality added to DRAKVUF to email the
results to the user.

III. PROJECT OBJECTIVES

A successful implementation and solution of DRAKVUF
will meet these functional requirements:

• Be remotely accessible through a web interface.
• The system must show the available virtual machines and

operating system and their respective configurations for
the user to select.

• The system must allow management of multiple instances
of DRAKVUF, including shutting down or restarting the
instances, and managing the submitted jobs.

• Support multiple operating systems and versions such as
Windows 7 and Windows 10.

• The system must allow configuration attributes of
DRAKVUF to be altered and set through the web inter-
face such as: which VM to execute malware on, analysis
time, modules included in analysis.

• The system must allow submission of a file to be anal-
ysed by the operating systems above, through the web
interface.

• The system should allow a user to download the reports
generated by DRAKVUF or view them through the web
interface.

• The system must allow a report to be emailed to a
designated email address provided by the user.

And the following non-functional requirements:
• Efficiency: Concurrency of analysing many malware

samples is to be maximised while performance overhead
for analysing a single sample is to be minimised.

• Stealth: The monitored environment should not be able
to detect the presence of DRAKVUF.

• Isolation: DRAKVUF should be isolated from the anal-
ysis virtual machines to protect against tampering.

IV. BACKGROUND RESEARCH

There are several pieces of literature outlining the capabil-
ities of the DRAKVUF sandbox from reputable sources such
as Intel [4] and the Institute for System Programming of the
Russian Academy of Sciences [6]. Both discuss the challenges
that DRAKVUF solves around the anti-analysis techniques
that malware employs to hide from malware analysis.

DRAKVUF uses the Xen hypervisor to get around the
challenges that modern malwares present with anti-analysis
techniques [4]. The Xen hypervisor offers novel techniques
to eliminate blind-spots created by kernel-mode rootkits by
extending the scope of monitoring to include kernel internal
functions and to monitor file system accesses through the ker-
nel’s heap allocations. It also enables DRAKVUF to improve
stealth by starting the execution of malware samples without
leaving traces in the analysis machine [4]. This is a feature that
other popular sandbox solutions like Cuckoo and CWSandbox
do not possess.

DRAKVUF is implemented using the virtualisation technol-
ogy on Intel Central Processing Units (CPUs). This provides

an avenue to observe malware execution by allowing external
access to the state of the virtualised hardware components.
This technique is commonly referred to as Virtual Machine
Introspection (VMI) [4]. To access the components externally
DRAKVUF uses active VMI through breakpoint injection to
hijack an arbitrary process within the VM to initiate the start
of the malware sample [4]. Breakpoint injection is a technique
used to inject a breakpoint into a running process. When this
is done, the process will stop executing at the breakpoint
and DRAKVUF will be able to modify it and continue the
execution. By using existing processes running within the VM,
DRAKVUF does not introduce any new code or artifact into
the analysis VM, thus greatly improving stealthiness [4]. In
contrast, the Cuckoo sandbox injects a Python script into the
analysis VM which can be detected by malware.

DRAKVUF can also track changes and deletions to files
within the VM [6]. This is done using a technique called
shadow paging to track the changes made to files. Shadow
paging creates a copy of each file in the sandbox and the
copy is called the shadow page [6]. DRAKVUF can read
the contents of the shadow pages and compare them with the
original files to see what changes were made to the files. This
is very helpful for malware analysts to determine how different
types of malware work and help identify and track malware
infections.

V. RELATED WORK

There are a number of open-source sandboxes available to
analyse malware samples. Many popular or defacto malware
sandboxes have been analysed to weigh their pros and cons
compared to DRAKVUF sandbox.

A. Cuckoo

Cuckoo is a sandbox technology that is widely used by
researchers and malware analysts in the industry to carry
out dynamic malware analysis. Cuckoo accomplishes this by
creating a virtual environment like DRAKVUF, however, to
analyse the malware, an in-guest (agent) module is required.
Due to the metamorphic nature of many modern malwares,
they have the potential to hide themselves or act benignly
in the analysis environment if the agent is detected [7].
DRAKVUF solves this problem by utilising the breakpoint
injection technique to execute the dynamic malware analysis
[7].

The architecture diagram of Cuckoo is shown in Fig. 1. It
consists of three main components, the cuckoo host machine,
the virtual network, and the analysis guests. There is also
the analysis manager and agent modules that are passed into
the analysis guests. The user interacts with Cuckoo from
the host machine either through a command-line interface
or through a web interface like DRAKVUF. The analysis
manager is responsible for submitting malware samples and
collecting the reports after the malware analysis is completed
[7]. The Cuckoo host interacts with the analysis virtual
machines though the virtual network and an in-VM Python
agent module is installed within the guest OS to start the
analysis automatically when the malware sample is received.



ENGR 489 (ENGINEERING PROJECT) 2023 3

The Python agent is responsible for receiving the malware
sample, executing it, and sending the analysis report back to
the analysis manager [7].

Fig. 1: Cuckoo Architecture Diagram [7]

Cuckoo and DRAKVUF were compared side by side in
[7], and the superior sandbox solution is determined through
a series of experiments. The criteria for determining which
sandbox solution was best was:

1. Duration and throughput analysis
2. Space analysis

The first experiment that was conducted compared the
duration of time that it took for Cuckoo and DRAKVUF
to analyse malware samples and the throughput of each
sandbox. Throughtput determines how many malware samples
can be analysed by a system in a given amount of time. The
experiment used a set of 40, 100 and 200 malware samples.
These tests illustrated that DRAKVUF took less time than
Cuckoo to analyse them and that DRAKVUF also had a
higher throughput than Cuckoo [7]. Based on the experiment
the authors concluded that DRAKVUF is a faster and more
efficient tool for dynamic malware analysis than Cuckoo
(results shown in the Tables I and II).

40 Samples 100 Samples 200 Samples
DRAKVUF 22 min 34 s 50 min 1 h 41 min 39 s

Cuckoo 32 min 16 s 1 h 5 min 23 s 2 h 8 min 53 s

TABLE I: Duration to carry out malware analysis [7]

Throughput = Total Number of samples analysed success-
fully / Duration (Time taken)

40 Samples 100 Samples 200 Samples
DRAKVUF 0.029542097 0.029666667 0.029185112

Cuckoo 0.020661157 0.022686719 0.023018234

TABLE II: Throughput values [7]

The second experiment that was conducted compared the
disk utilisation of DRAKVUF and Cuckoo during malware
analysis. It used a set of 100 malware samples and found that

Cuckoo consumed more disk space than DRAKVUF when
memory dumping was enabled [7]. However, DRAKVUF used
more disk space when memory dumping was disabled.

100 Samples (memory dump
enabled)

100 Samples (memory dump
disabled)

DRAKVUF 5.96 gigabytes (5.96%) 5.96 gigabytes (5.96%)
Cuckoo 11.01 gigabytes (11.02%) 0.16 gigabytes (0.02%)

TABLE III: Disk space utilisation [7]

Cuckoo was been officially discontinued at the time of
writing this final report, and the project was archived on
GitHub in April 2021 [8].

B. CWSandbox
CWSandbox was one of the first dynamic malware analysis

systems to utilise a sandbox environment for monitoring the
interaction between the OS and the malware [4]. It operates
similarly to Cuckoo where it injects a kernel driver into
Windows OS that hooks all exported APIs to intercept the
system call performed by user-space programs. This is not
as advanced as DRAKVUF as it is vulnerable to detection
and tampering and the interface provided by the sandbox is
insufficient for tracking kernel-mode rootkits [4].

C. Sandbox Solution Comparison
A summary of comparisons is provided in Table IV:

Criteria /
Parameter Cuckoo Sandbox DRAKVUF

Sandbox CWSandbox

Stealth-
iness

X - It uses an
in-guest agent, the
malware may not

exhibit its true
malicious nature.

- It does
not use any in-

guest agent,
the malware
exhibits its

true malicious
nature.

X - It uses an
in-guest agent, the
malware may not

exhibit its true
malicious nature.

System
call

- It can trace
all system calls

initiated by
malware.

- It can trace
all system calls

initiated by
malware.

- It can trace
all system calls

initiated by
malware.

Kernel
function

X - It cannot
trace out kernel

functions.

- It can trace
all kernel
functions.

X - It cannot
trace out kernel

functions.

Autom-
ation

- It supports
the submission of
malware samples

automatically.

- It supports
the submission of
malware samples

automatically.

X - It requires
manual interaction

to upload and
analyse files.

Guest OS
support

- Windows XP/
7/8/10,

Linux 2.6
or above

- Windows 7

- Windows XP/
7/8/10,

Linux 2.6
or above

Isolation
- Isolated

environment for
malware analysis.

- Isolated
environment for

malware analysis.

- Isolated
environment for

malware analysis.

Memory
Snapshot

- It can dump
the main memory

of guest OS.

- It can dump
the main memory

of guest OS.

- It can dump
the main memory

of guest OS.

TABLE IV: Comparison between Cuckoo, DRAKVUF, and
CWSandbox



ENGR 489 (ENGINEERING PROJECT) 2023 4

VI. DESIGN

Prior to the implementation of the DRAKVUF sandbox,
the software and technology stack were researched. The
DRAKVUF sandbox is built on top of a few layers of software
and hardware technologies:

• Intel VT-x and EPT: Extensions to x64 architecture that
allows virtual machines to run natively on a CPU [9].

• Xen: Hypervisor, spawns virtual machines and exposes
interfaces for interaction and introspection [9].

• LibVMI: Abstracts away introspection interfaces, pro-
vides utilities for reading/writing VM memory, parsing
VMs’ kernel and handling notifications about certain
events happening in a VM [9].

• DRAKVUF: Stealthily hooks various parts of a guest
VM and logs interesting events [9].

• DRAKVUF Sandbox: Provides user friendly web inter-
face built using React and high-level analyses.

The DRAKVUF Sandbox is divided into two packages:

• drakcore: It is the system core, provides a web interface,
an internal task queue and object storage [9].

– drakweb: Web interface that allows user to interact
with the sandbox with either REST API or GUI [9].

– draksystem: Internal task management system, used
for dispatching jobs between workers [9].

– drakminio: Built-in object storage in which analysis
results are stored [9].

– drakpostprocess: Responsible for processing raw
analysis logs into a more useable form [9].

• drakrun: It is the sandbox worker, wrapper for
DRAKVUF, responsible for managing VMs, running
analyses and sending results for postprocessing [9].

– drakrun 1..n: Fetches incoming sample [9].
DRAKVUF Sandbox is built around “karton”, which is a

microservice framework created at CERT Poland as a spe-
cialised tool for building flexible malware analysis pipelines.
Its main goal is routing tasks between multiple services [9].

A. DRAKVUF Versions

A large aspect of the design phase involved selecting the
appropriate versions of DRAKVUF and DRAKVUF Sandbox
to be implemented in the project. This decision was instru-
mental in ensuring that the system not only met the technical
requirements but also optimised performance, security, and
reliability.

We initially considered various releases of DRAKVUF and
DRAKVUF Sandbox, evaluating their features, bug fixes, and
improvements. The versions under consideration were sourced
from their official repositories on GitHub [10] [11].

1) DRAKVUF v0.7: This version introduced new plugins
and tools such as procdump, apimon, and REPL. It also added
a new helper library, libusermode, for monitoring usermode
code. However we found that DRAKVUF v1.0 offered more
stability and features that were crucial for our project’s suc-
cess.

2) DRAKVUF v0.8: This version introduced new plugins
like codemon, hidsim and filetracer for Linux. It also saw
major cleanups to libinjector with improvements and bug fixes.
Despite these enhacements, we did not select this version due
to our specific requirements and the compatibility with the
DRAKVUF Sandbox version we were considering.

3) DRAKVUF Sandbox v0.17 Series: The v0.17 series
introduced features like arch-based prefixes to profile names,
rewritten tree generation in postprocess, and support for
various file extensions to be analysed. Despite these en-
hancements, we opted for v0.18.2 due to its more advanced
features and improvements that aligned better with our project
requirements.

4) DRAKVUF Sandbox v0.18.1 and earlier: These versions
were evaluated based on their feature set, stability, and user
feedback. For instance v0.18.1 introduced fixes like silencing
sample errors and fixing process tree generation. However,
v0.18.2 offered more comprehensive improvements and bug
fixes, making it a more attractive option for our project.

Our final decision to go with DRAKVUF v1.0 and
DRAKVUF Sandbox v0.18.2 was influenced by a combination
of factors including feature richness, stability, and compatibil-
ity. DRAKVUF v1.0 offered a stable and reliable platform for
black-box binary analysis. In combination with DRAKVUF
Sandbox v0.18.2, we were confident in achieving an optimal
malware analysis environment.

B. Deployment Approach

Two primary deployment approaches were considered: bare
metal and virtual machine (VM) deployment. In the bare
metal deployment, the DRAKVUF system would be installed
directly on a physical machine, offering direct access to
hardware resources and optimal performance. VM deployment
involves installing the DRAKVUF system on virtual machines
that run on physical machines, offering flexibility and ease of
management at the expense of some performance overhead.

For this project, after careful consideration, VM deployment
was selected as the preferred approach. The decision was
influenced by several critical factors, including the need for
flexibility and the desire for a system that could be easily
scaled and managed. With the VM approach offering features
such as snapshots. These can be used in the case of system
breaking errors where restoring from snapshots would revert
the system back to a stable state.

While bare metal offers performance benefits, the flexibility
of a VM deployment was deemed more critical for the
project’s success. The ability to efficiently manage, scale, and
adapt the system to modifications outweighed the marginal
performance gains of a bare metal setup.

The VM deployment was facilitated on a robust workstation,
equipped with virtualisation-optimised hardware to mitigate
performance overhead. The workstation was capable of hosting
multiple VMs simultaneously, ensuring that the DRAKVUF
system and its auxiliary components could be efficiently
managed and scaled as per the projects needs.

DRAKVUF supports nested virtualisation out of the box
but is limited to only one hypervisor which is VMWare



ENGR 489 (ENGINEERING PROJECT) 2023 5

Workstation Player, this made the choice for which hypervisor
to go with very easy.

C. Hardware

The hardware selection is a critical aspect of our design
process, directly influencing the performance, efficiency, and
effectiveness of the DRAKVUF system for malware analysis.
Our goal was to ensure optimal compatibility, performance,
and reliability.

Table V lists the requirements for DRAKVUF [9]:

CPU Intel with VT-x and
Extended Page Table (EPT) features

Host system

Debian 10 Buster
Ubuntu 18.04 Bionic
Ubuntu 20.04 Focal

with at least 2 Core CPU and 5GB RAM

Guest system Windows 7 (x64)
Windows 10 (x64; experimental support)

TABLE V: DRAKVUF Hardware and OS Requirements

We evaluated several hardware options to determine
the most suitable platform for deploying DRAKVUF and
DRAKVUF Sandbox. The candidates are presented in Tables
VI through IX:

Name Intel NUC

CPU Intel i7-5557U

RAM 16GB RAM

VT-x & EPT Features Equipped with VT-x but lacks
CPU Performance Counters and IOMMU

Limitations

While compact and efficient,
the absence of CPU Performance Counters

and IOMMU was a significant
limitation for DRAKVUFs requirements

TABLE VI: Intel NUC Specifications

Name MSI Leopard Laptop

CPU Intel Core i7-9750H

RAM 16GB RAM

GPU NVIDIA GTX 1660ti

VT-x & EPT Features Equipped with VT-x but lacks
CPU Performance Counters and IOMMU

Limitations

The inclusion of a dedicated GPU
was a plus, but

the lack of EPT features made
it less ideal for our needs.

TABLE VII: MSI Leopard Specifications

Name Home Desktop

CPU Intel Core i7-10700KF

RAM 32GB RAM

GPU NVIDIA RTX 3050

VT-x & EPT Features Equipped with VT-x but lacks
CPU Performance Counters and IOMMU

Limitations
Despite the impressive memory and

graphics capabilities, the absence
of EPT features was a drawback.

TABLE VIII: Home Desktop Specifications

Name Dell Optiplex 7000

CPU Intel Core i7-12700

RAM 16GB RAM

VT-x & EPT Features Equipped with VT-x,
CPU Performance Counters and IOMMU

Limitations
This supports the required

configuration of DRAKVUF
but is low on memory.

TABLE IX: Dell Optiplex 7000 Specifications

After a comprehensive evaluation, we selected the Dell
Optiplex 7000 which was supplied by Victoria University of
Wellington with an Intel Core i7-12700 and 16GB RAM for
our deployment.

The Dell Optiplex emerged as the optimal choice due to
several compelling reasons:

• CPU: The Intel Core i7-12700 processor offers a robust
performance, ensuring that the system can handle com-
plex malware analysis tasks efficiently. With a clock rate
of up to 4.90 GHz and 12 Cores.

• Memory: With 16GB RAM, it provides ample memory to
support the intensive workloads associated with malware
analysis.

• VTx Support: The inclusion of VTx ensures enhanced
virtualisation capabilities, a crucial feature for the effec-
tive deployment of DRAKVUF.

• CPU Performance Counters: The availability of CPU
Performance Counters is pivotal for detailed analysis and
monitoring, offering insights that are instrumental for
comprehensive malware analysis.

• IOMMU: The support for IOMMU (Input-Output Mem-
ory Management Unit) enhances the security and perfor-
mance of the system, especially in virtualised environ-
ments.

The Dell Optiplex’s combination of processing power, mem-
ory capacity, and essential features like VTx and EPT such as
CPU Performance Counters, and IOMMU ensures a balanced,
high-performance platform for DRAKVUF. This hardware
selection aligns with our project requirements, offering optimal
performance, security, and reliability for hypervisor-level mal-
ware analysis. It also meant that we could deploy the sandbox
to a university owned workstation that can be kept within the



ENGR 489 (ENGINEERING PROJECT) 2023 6

university’s network when we had to remotely deploy it to the
network as defined in the project requirements.

D. Operating System (Host and Guests)

The choice of operating systems for both the host and guest
machines is a crucial aspect of the design, directly impact-
ing the efficiency, security, and overall performance of the
malware analysis environment. In this context, we evaluated
various operating systems, considering their compatibility with
the hardware, support for Xen hypervisor, security features,
and ease of use.

We explored a few different operating systems for the
host known for their robustness, security and support for
virtualisation.

1) Windows 10: Windows 10 was considered for its user-
friendly interface, robust security features, and widespread use.
However, the need for a UNIX system to execute specific
commands and scripts efficiently, and the compatibility with
Xen hypervisor, were factors that influenced our decision.

2) Ubuntu 18.04 LTS: Known for its stability and security,
this OS was another strong candidate. However, we were
inclined towards Ubuntu 20.04 LTS due to its enhanced
features, improved security, and extended support, ensuring a
future-proof and reliable host environment.

For the Guest OS, the focus was on Windows operating
systems, given their prevalence in enterprise environments
and the significant volume of malware targeting Windows.
The options were also only limited to Windows due to the
compatibility of DRAKVUF. The only supported versions
were Windows 7 x64 and Windows 10 x64, with the latter
having experimental support.

3) Windows 7 x64: This OS was a primary option due to its
compatibility with a wide range of malware samples, including
those targeting legacy systems. Its inclusion ensures a compre-
hensive analysis of malware variants exploiting vulnerabilities
specific to this OS.

4) Windows 10 x64: This OS was considered for its modern
features and security enhancements. However, its experimental
support posed challenges, necessitating thorough testing to
ensure reliability and effectiveness in the malware analysis
environment.

The considerations of host OS options underscored the
importance of a UNIX-based system, leading to the selection
of Ubuntu 20.04 LTS for its advanced features, security, and
compatibility with Xen. For the guest OS, the supported
options of Windows 7 x64 and Windows 10 x64 were both se-
lected to ensure a diverse and encompassing malware analysis
setup, capable of handling a broad spectrum of malware types
and behaviours. This selection process ensures an optimal
balance of compatibility, performance, and security for the
malware analysis environment.

E. Programming Languages

In the context of programming languages for the
DRAKVUF web UI, the utilisation of ReactJS was predeter-
mined, as it serves as the foundation for the existing codebase.

The project inherited ReactJS, a widely acclaimed JavaScript
library known for enabling the development of highly re-
sponsive and dynamic user interfaces. While the choice of
ReactJS was not a selection per se, its inherent benefits,
such as its component-based structure, efficiency, and robust
ecosystem, were instrumental in continuing the development
process. The existing codebase, built upon ReactJS, facilitated
a seamless continuation of the enhancement and refinement
of the DRAKVUF web UI, ensuring an interactive and user-
friendly interface for efficient malware analysis and data
visualisation.

F. DRAKVUF Architecture

The architecture diagram is illustrated in Fig. 2, based on
the DRAKVUF System, the core of the diagram is a detailed
look at the DRAKVUF system, showcasing different compo-
nents and their interconnections, represented by rectangles and
arrows to indicate data and process flow.

Fig. 2: DRAKVUF Design Architecture Diagram

1) Key Components and Processes:
• DRAKVUF: On the left, the DRAKVUF system is illus-

trated, emphasising the breakpoint injection process as
discussed in the Related Work section.

• Virtual Memory: Various elements and concepts related
to virtualised memory, introspection, and the hypervisor
are highlighted.

• Hardware & Hypervisor: The two boxes at the bottom
serves as a visual representation of a computer system
and the Xen hypervisor sitting on top of it.

2) Labels and Annotations:
• Dom0 - Secure VM: Indicates a secure virtual machine

environment.
• Windows 7 and 10: Specifies the operating system under

analysis or inspection.
• DRAKVUF: The main focus, a tool for malware analysis.
• Kernel Debugging: Indicates processes related to

analysing and inspecting the system kernel.



ENGR 489 (ENGINEERING PROJECT) 2023 7

• Malware Samples: Points to the types of files being
analysed.

• LibVMI: A library for virtual machine introspection.
• System Calls, Analysis, VM, Introspector, User Space,

VMI Memory Acquisition, Kernel Space, Kernel Func-
tions: These labels provide insights into various processes
and areas within the virtual memory and malware analysis
ecosystem.

• Virtualised Memory, Xen, Hypervisor, Hardware: Indi-
cates the underlying infrastructure supporting the virtual
memory system and malware analysis.

G. Submitted Sample Lifecycle

The lifecycle diagram is illustrated in Fig. 3, for the submit-
ted samples on DRAKVUF’s web UI. This outlines what the
DRAKVUF system does once a sample is submitted. It helped
with setting up the email feature where the report would be
retrieved after finishing the analysis. We can see when and
where the sample analysis results are stored.

The lifecycle of the malware analysis consists of five main
parts as seen in Fig. 3:

1. User job submission.
2. Job dispatch to one of the VMs.
3. Malware analysis.
4. Raw result sent back to host machine.
5. Postprocessing of results in readable format.

Fig. 3: Submitted Sample Lifecycle

H. Reporting Emails

One of the identified project requirements was to implement
a feature in the current web UI that would send an email
to a provided email address containing the finished report
from DRAKVUF. This functionality would ensure that users
are promptly informed, allowing for timely review and action
based on the analysis results. We explored several methods
to implement this feature, each evaluated based on reliability,
ease of integration, and user experience.

There were two options that we came up with for what the
email would contain. These were:

• Email the entire report as an attachment
• Email a link to the generated report
Each approach had pros and cons but in the end we chose to

provide a link to the generated report rather than providing an
attachment. This was due to the fact that malicious samples
would be submitted for analysis, email providers could flag
hashes and key details of the email attachment as malicious

and deny them delivery to their email servers. The reports
also vary in size and this could lead to issues when trying
to attach them to emails. Providing the user with a link to
the report would ensure that the emails would reach their
recipients without ending up undelivered or in their junk/spam
folders.

There were also considerations made to what tool was going
to be used to send the emails. The following were the options
that we considered:

• EmailJS
• SendGrid
• ‘mail’ command on Linux
EmailJS facilitates the sending of emails directly from

JavaScript (frontend), eliminating the need for server-side
code. It supports various email services, is easy to setup, and
offered a user-friendly API.

SendGrid is a cloud-based email delivery service that assists
businesses in sending transactional and marketing emails. It
is known for its scalability, reliability, and comprehensive
analytics.

The mail command on Linux is a utility that allows users to
send emails from the command line. It is straightforward but
may require additional configuration and lacks the flexibility
and features provided by dedicated email services.

After a thorough evaluation, we chose EmailJS. EmailJS
offers a straightforward integration process, making it easy to
embed the email sending functionality within the DRAKVUF
web UI. It eliminates the need for server-side code to send
emails, reducing complexity and enhancing the security of the
application. It also supports a wide range of email services and
allows for the customisation of emails templates, ensuring that
users receive well-formatted, informative emails.

The integration of EmailJS into the DRAKVUF web UI
involves utilising its API to trigger emails upon the completion
of malware analysis. Users who provide their email addresses
during the submission of samples for analysis will receive
notifications with a link after the analysis is completed. The
email templates are designed to be informative yet concise,
ensuring users receive relevant data in an easily digestible
format.

Within EmailJS there are options to setup an email address
that the reports are sent from. We created a Gmail account,
owhiti.sandbox@gmail.com, which is a placeholder for an
official Victoria University email address. The setup was
straightforward, it required signing into the Gmail account
through a Google API integration within EmailJS. This was
the only step that was required for EmailJS to send emails as
the Owhiti Sandbox email. The EmailJS tool uses Google’s
mailservers to send the reporting emails.

VII. IMPLEMENTATION

In the subsequent sections of this chapter, DRAKVUF’s
implementation process is discussed, including the configura-
tion of DRAKVUF and DRAKVUF Sandbox. The following
sections provide an overview of the tools used during the
development phase, the deployment process, and the technical
aspects of the implementation.



ENGR 489 (ENGINEERING PROJECT) 2023 8

A. Host Setup

The first step for implementation was deploying a host
environment that the DRAKVUF system would sit on.

During the deployment many challenges were faced includ-
ing hardware compatibility issues and limited log access and
documentation for troubleshooting. The hardware compatibil-
ity issues that we encountered were due to the Xen hypervisor
failing to load because of the onboard GPU driver being too
modern on the Dell computer that contained the deployment.
This issue was resolved by running the DRAKVUF sandbox
in a VM. This fixed the problem with a GPU able to be
virtualised.

A type-2 VM hypervisor was needed to run the host,
VMWare Workstation Player 17 was chosen. This is due to
VMWare being the only supported nested virtualisation option.
The hypervisor has features like snapshots where it is easy to
test different configurations and restore working configurations
of the sandbox in case something were to go wrong. My
supervisor also made me aware of the fact that the Dell
computer that was being used was on a lease by the school.
This meant that having the deployment on a VM would be
very simple to move to another machine if the lease ended on
the computer with the deployment on.

The specifications of the host VM on which DRAKVUF
was deployed on are:

• Intel i7-12700 (All 12 Cores)
– Virtualise Intel VT-x / EPT
– Virtualise CPU Performance Counters
– Virtualise IOMMU

• 12GB RAM
• 400GB Storage
• Ubuntu 20.04
This set the foundation for the DRAKVUF system to be

easily installed and for it to be compatible within the host
environment.

B. DRAKVUF and DRAKVUF Sandbox Deployment

DRAKVUF was implemented using nested virtualisation
using Xen running on the VM host environment that was
deployed on the provided Dell Optiplex 7000. To begin
the DRAKVUF implementation, we first installed both the
identified versions of DRAKVUF and DRAKVUF Sandbox
stack that we would use to submit malware samples to
the analysis engine. Once the underlying components were
installed, DRAKVUF created a local host server instance that
hosts the sandbox interface on port 6300.

1) Guest OS Deployment: DRAKVUF requires a Windows
environment to execute the samples and perform analysis.
Subsequently, the next step in the implementation was to
generate a clean Windows 7 and 10 ISO image that could
use to configure the analysis environment.

We initiated this process with the installation of a Windows
7 ISO. The Windows version we used was Windows 7 x64
Professional SP1 as it provided the Local Security settings
tool by default on install.

This Windows deployment was configured to create a virtual
machine with more than the DRAKVUF documentation’s [9]

recommended specifications. As such, we assigned 2 vCPUs
and a designated RAM of 3072MB to the VM. Using a Virtual
Network Connection (VNC), we connected to the DRAKVUF
VM on localhost:5900 to complete the Windows installation
and setup the environment for sample analysis.

The environment setup required a few steps that were
identified through trial and error. These were:

• Modification of User Account Settings to allow files to
be opened without a prompt for admin rights.

• Modification of Local Security settings to allow binaries
to make modifications to the Windows Registry without
admin approval.

• Installation of the .NET 4.0 binaries and libraries.
• Installation of Microsoft Office 2007 suite for the analysis

of Microsoft Office files.
• Modification of the Registry values for the Microsoft

Office installation to allow for Visual Basic scripts to be
run in the suite from the command line.

• kernel32.dll injected into the System32 folder for ‘drak-
setup postinstall’ command to run properly.

Once the first Guest OS was installed it was time to install
the second one which was Windows 10 x64 v2004.

We encountered many issues during the deployment of the
second guest OS. The most critical of them being that Win-
dows 10 support was still experimental, which was addressed
in the latest release of DRAKVUF Sandbox (v0.19.0). This
version was however, still under development and was unre-
liable due to many scenarios where the installation failed and
where it did not provide analysis results. The main limitation
was that DRAKVUF Sandbox v0.19.0 was not compatible
with DRAKVUF v1.0. It was compatible with DRAKVUF
v1.1 but this has not been released yet and both versions are
still under development as of writing this report. The other
issue was that DRAKVUF Sandbox did not support two guest
OS’s. A university researcher also had issues with multiple
guest OS support and he indicated that through the utilisation
of DRAKVUF’s scaling feature, another operating system is
able to be installed. After testing this approach Windows 10
was able to be installed on the DRAKVUF system but was
not reliable. The scaling feature offers to provide multiple
instances of drakrun workers. If there are multiple users of
the sandbox, scaling can be used to allow all of them to
submit and view analysis reports of samples. By manually
injecting a different OS for the second drakrun worker multiple
guest OS’s can be deployed. Due to issues of experimental
support for Windows 10, system stability and reliability this
option was not implemented in the final deployment. Instead
we implemented multiple instances of the Windows 7 guest
OS which would serve multiple users of the sandbox without
the need to wait for other users to complete their analyses.

Once the Windows 7 guest OS was installed, we scaled
the instance to three which was a number that fit with the
project requirements and allowed the DRAKVUF Sandbox to
run reliably.

We then installed ProcDot which is a tool that creates
behavioural graphs based on the execution of samples and
their interactions within the guest environment. This was



ENGR 489 (ENGINEERING PROJECT) 2023 9

installed and placed in a folder (/opt/procdot/procmon2dot)
where DRAKVUF could access and use it.

After the installation was completed using the ‘draksetup
postinstall’ command provided by the DRAKVUF sandbox
stack, we could navigate to the web UI (http://localhost:6300/)
and upload some samples to ensure the analysis engine was
configured successfully.

C. Web UI Modification Environment

To make modifications to DRAKVUF’s existing web UI a
working DRAKVUF Sandbox instance was required. From the
deployment setup previously, we had downloaded the source
code for the DRAKVUF Sandbox. The code needed to be
linked with the current sandbox deployment, the following
commands were used to do this:

• cd drakcore/drakcore/frontend
• npm install
• export REACT APP API SERVER=http://localhost:6300/
• npm start
After these prerequisites were completed we could begin

with the Web UI modifications with a NodeJS development
server that would demonstrate live changes to the web UI on
the address, http://localhost:3000/

1) Reporting Emails: The implementation of the reporting
emails feature was a critical step in enhancing the user
experience of the DRAKVUF web UI. This feature ensures
that users are promptly notified via email with the results of
the malware analysis.

The EmailJS library was imported into the project, enabling
the direct sending of emails from the client-side application
without the need for a backend server to handle email sending.
The ‘emailjs-com’ library was integrated into the application
as shown below.
import emailjs from `emailjs-com';

The service ID, template ID and public key were configured
to authenticate and enable the email sending process through
EmailJS. These configurations were essential to ensure the
security and integrity of the email sending process.
const serviceID = `service_------';
const templateID = `template_------';
const publicKey = `--------------';

Functions were implemented to set, get, and clear the
recipient’s email address. These functions ensure that the email
address is correctly handled, stored temporarily for sending the
email, and then cleared to maintain privacy and security.
setRecipientEmail(recipientEmailAddress){

this.recipientEmailAddress =
recipientEmailAddress;

},
getRecipientEmail(){

return recipientEmailAddress;
},
clearRecipientEmailAddress(){

this.recipientEmailAddress = null;
},

The ’sendEmail’ function was implemented to send emails
to users containing the results of the malware analysis. If a
recipient email address is provided, an email, complete with

a link to the analysis results, is sent to the user. The email
sending process is handled by EmailJS, ensuring reliability
and security.

sendEmail(link) {
if(this.recipientEmailAddress){
link = webLink + link;
const templateParams = {

to_email:
this.recipientEmailAddress,
message: link

}

emailjs.send(serviceID,
templateID, templateParams,
publicKey)

.then((res) => {
console.log(`res: ', res);
this.clearRecipientEmailAddress();

})
.catch((err) => {

console.log(`err: ', err);
});

}
}

The implementation was thoroughly tested to ensure the
reliability and accuracy of the email notification. Each email
contains a direct link to the specific analysis results on the
DRAKVUF web UI, ensuring users can easily access and
review the findings.

2) Analysis Time: The implementation of an analysis time
slider was a significant feature for the web UI. It provides
users with the ability to specify the analysis time when
uploading a sample for evaluation. This feature ensures that
users have flexibility and control over the duration of the
analysis, allowing for a more customised and user-centric
experience. Malware also does not finish execution within a
set timeframe, having this slider makes it easier for the user
to control how long the analysis is carried out for.

A dedicated ’MinuteSlider’ component was created in React
to facilitate the user’s input for specifying the analysis time.
This component is rendered as a slider input element, allowing
users to easily adjust the analysis time according to their needs.

class MinuteSlider extends Component {
render() {
return (

<input
onInput={this.props.onInput}
className=``custom-range"
type=``range"
name={this.props.name}
min={60 * this.props.min}
max={60 * this.props.max}
step={60}
defaultValue={60 * this.props.default}

/>
);

}
}

The ’MinuteSlider’ component is configured with properties
to set the minimum, maximum, and default values for the
analysis time. The values are calculated in seconds, with the
slider stepping in 60-second intervals to represent minutes.
The onInput event handler is used to capture the user’s input
and update the state accordingly.



ENGR 489 (ENGINEERING PROJECT) 2023 10

<MinuteSlider
min={1}
max={10}
default={10}
name=``analysisTime"
onInput={this.handleInput}

/>

The ’handleInput’ function is implemented to manage the
state updates when the user adjusts the ’MinuteSlider’. The
analysis time, represented in seconds, is stored in the compo-
nent’s state to be used during the sample upload process.

handleInput(event) {
this.setState({ error: null });
const field = event.target.name;
if (field === ``analysisTime") {
this.setState({timeout:
event.target.value});

}
}

The selected analysis time is displayed to the user in
minutes, offering a clear and understandable representation of
the duration for which the analysis will run.

<small>{this.state.timeout/60} min</small>

The implementation was rigorously tested to ensure that
the slider responds accurately to user input and that the
selected analysis time is correctly stored and utilised during the
sample analysis process. The feature was validated to ensure a
seamless user experience, accurately influencing the duration
of the malware analysis.

3) Virtual Machine Configuration: A modification made
to the web UI was the addition of the Virtual Machine
Configuration section. This is a static table that shows the
available configurations of virtual machines. It pulls the details
from Xen and displays them as seen in Fig. 4 below.

Fig. 4: Available Configurations Screenshot

Since only one guest OS was implemented there is only one
configuration available. There are however multiple instances
available of that one guest OS.

4) Instructions: Instructions for the sample upload page
were added. There was ambiguity around what was and was
not needed for the analysis to run and what file types the
system accepted. The instructions pose as a guide to help new
users how to navigate and use the upload sample page.

The instructions can be viewed in Fig. 5 below.

Fig. 5: Submission Instructions Screenshot

They provide clear steps for users on how to submit a file
for analysis and what the different configuration options mean.

D. Building drakcore Package and final deployment

After the web UI modifications were made the system
needed to be built and deployed again as the changes were on a
NodeJS development server and not on the actual DRAKVUF
instance that was deployed. This process ensures that the
updated and enhanced web UI is packaged and ready for
deployment, allowing users to benefit from the new features
and improvements.

During the build process, a significant challenge was en-
countered. The SSL certificates of some external packages
such as Minio and Python had expired, leading to issues
in building the drakcore package. This obstacle required
immediate attention to ensure the successful compilation and
packaging of the updated web UI.

To address this issue, a meticulous review of the build
process was undertaken, and the problematic external package
links were identified. The expired SSL certificates necessitated
the modification of these links to ensure the seamless retrieval
of the required packages. The build process was guided by the
instructions provided in the official documentation for building
the drakcore package [12].

After the package was built we had to deploy the entire
DRAKVUF system again as per the steps outlined in Section
B of the implementation chapter.

Following this implementation and deployment, the
DRAKVUF system on the Dell Optiplex workstation was
transitioned to a more robust and accessible environment.
The deployment was extended to the Engineering and Com-
puter Science (ECS) school servers to enhance accessibility
and performance. The web address for the deployment is
‘http://103.196.108.47:6300/’. This move was instrumental in
elevating the system’s availability, making it remotely acces-
sible to users. The integration into the ECS servers marked
a significant milestone, ensuring that the system’s capabilities
could be leveraged efficiently and securely.

The connection to the network switch was a pivotal aspect of
this deployment, ensuring network integration and data flow.
By being connected to the network switch, the DRAKVUF
system was effectively positioned within the university’s DMZ.
This strategic placement ensured that the system was not
only secure but also benefited from the enhanced network
infrastructure, ensuring high-speed data processing and trans-
mission.

VIII. EVALUATION

The methods used to assess this project’s effectiveness are
presented in this section. This covers the survey’s methodology
and questions. Following the data gathering, this section ad-
dresses the project’s applicability and the solution’s measured
effectiveness.

A. Survey

A survey was undertaken to measure usability and user
satisfaction when performing malware analysis through the



ENGR 489 (ENGINEERING PROJECT) 2023 11

DRAKVUF Sandbox. Eight individuals undertook the survey.
All individuals within the survey pool were associated with
the Owhiti Cyber Security group, which included students and
academic researchers. Participants were emailed the survey
specifications, which included the steps required to gain access
to submission samples if they did not have any on their
computer alongside a link to the DRAKVUF Sandbox web
UI. The subjects were then asked to access the tool and fill
out a web survey provided via a Microsoft Form.

1) Survey Questions: The survey consisted of nine ques-
tions that asked users about their prior knowledge and about
the tool’s usability. It encouraged individuals to use the tool
to perform analysis and extract information which enabled
them to answer specific questions. The questions asked and
the reasoning behind them are summarised below:

1. Have you ever used an online malware sandbox
before? This question targeted an evaluation of the subject’s
prior knowledge on sandboxes and if they were familiar with
how to submit samples and the common configuration settings
on them.

2. Do you know how a malware sandbox works? This
question targeted an evaluation of the subject’s prior knowl-
edge on sandboxes and if they were familiar with the inner-
workings of them.

The following questions were choice questions, they
spanned from Strongly Disagree to Strongly Agree and as-
sessed the usability, effectiveness and feel of the web UI.

3. It was easy and intuitive to submit a file for analysis on
DRAKVUF This question targeted an evaluation of the tool’s
usability to gauge if it was too complicated and required more
explanation or if users could understand the different features
and perform analysis.

4. It was easy to find and select additional configuration
options (eg: Analysis Time, Modules enabled, Email input,
etc.) This question tests a subject’s ability to find and select
additional configuration options on the web UI.

5. It was easy to find and view/download the logs and
reporting artefacts created by the sandbox This question
targets the evaluation of the tool’s reporting feature and if sub-
jects were able to easily find the artefacts and view/download
them.

6. The sandbox ‘look and feel’ was consistent throughout
the whole process This question targets the evaluation of the
tool’s ‘look and feel’ and if the subjects found it consistent
throughout the process.

7. Did you receive an email for the sample file submission
results in your inbox or junk mail? (After inputting your
email in the ‘Customise’ options) This question aims to find
out whether the email was received in the Inbox or Junk folder
(or not received at all), to see if there are any bugs with this
feature.

8. Is there any new functionality you would like to
be added to this system? We can use this information to
provide further features based on the information provided by
the subjects.

9. Is there any other feedback/suggestions you would
like to provide? This question provides space for additional

comments and feedback regarding the proposed system, which
gives insight into possible future developments.

2) Survey Results: Eight individuals completed the survey,
with the overall trend being that they were satisfied with the
tool’s usability and the information it provided.

The subjects’ feedback on usability was generally positive.
A majority expressed that submitting a file for analysis on
DRAKVUF was straightforward, attributing their positive ex-
perience to the intuitive design and user-friendly interface.
The ease of locating and selecting additional configuration
options was also highlighted, with most participants agreeing
or strongly agreeing on its simplicity.

The email notification system received positive feedback.
Five participants received the email notifications in their inbox,
three did not receive any. Upon further inspection however,
it revealed that the users that did not receive a notification
did not enter their email address into the input box, meaning
the system functioned appropriately. However, for any future
surveys, the point to provide an email address should be
emphasised.

Participants provided valuable insights on potential en-
hancements. Suggestions included the incorporation of more
detailed explanations of features and a progress bar to inform
users of the analysis status.

The consistency in the ‘look and feel’ of the sandbox
throughout the process was generally well-received, with most
participants agreeing or strongly agreeing on its consistency.
However, one participant noted that the graphics for the
behavioural graph did not align with the overall UI design,
suggesting an area for aesthetic enhancement.

The feedback from the eight participants provides invaluable
insights for the refinement of the DRAKVUF web UI. The
general satisfaction with the tool’s usability is encouraging,
while the identified areas for improvement offer clear path-
ways for enhancement.

Although the survey had a small pool of participants re-
garding usability testing, eight participants allowed us to find
almost as many usability problems as you’d find using many
more test participants [13].

B. Functional Evaluation

The DRAKVUF web UI, deployed on the ECS servers
on Friday 22nd September 2023, has been tested to ensure
its functionality, reliability, and efficiency. The web UI has
proven to be a robust tool, consistently delivering accurate
and comprehensive results without any failures or significant
issues since deployment.

There have been more than 30 sample submissions to the
web UI since deployment, without failure. Compared to the
Cuckoo system that the Owhiti Cyber Security group currently
uses this is a dramatic increase in reliability. My supervisors
have indicated that the Cuckoo system is notorious for crashing
even while it is not in use. DRAKVUF has been active for
three weeks now on the ECS servers and has not failed nor
crashed.

A detailed examination of one of the sample submission
instances provides a comprehensive insight into the system’s



ENGR 489 (ENGINEERING PROJECT) 2023 12

capabilities. The web UI is structured to offer a user-friendly
experience, ensuring that users can navigate through diverse
sections to access the required information. The sample in
question is a famous ransomware based malware called Wan-
naCry. It is a heavily documented ransomware, when it was
first released, it infected over 230,000 computers across 150
different countries.

The analysis results are presented in a well-organised man-
ner, offering a blend of graphical and textual data. The be-
havioural graph, for instance, provides a visual representation
of the malware’s behaviours. It maps out the interactions and
activities of the malware, offering a clear and concise view of
its operational patterns. For the case of WannaCry, it shows
that a script (cscript.exe) is used to encrypt all of the files in
the analysis environment. Then a program is created called
WannaDecryptor.exe which is the tool the victim is given
access to after the ransom has been paid. Using DRAKVUF
malware analyst’s can locate where the WannaDecryptor.exe
tool is stored and can find and use it without having to pay the
ransom the attackers want. This visual aid is instrumental in
quickly understanding the malware’s behaviour, interactions,
and potential impact on the system.

The detailed logs and reports generated by the system are
another significant asset. They offer a granular view of the
malware’s headers and operations, including metadata (as seen
in Fig. 6, system calls, and file interactions. For malware
analysts, this level of detail is invaluable. For the case of
WannaCry the report provides many Indicators of Compromise
(IoCs) such as its hashes, IP addresses, and specific arguments
passed to Windows DLLs. DRAKVUF not only aids in
understanding the specific characteristics and behaviours of
the malware but also facilitates the development of effective
countermeasures and mitigation strategies.

Fig. 6: DRAKVUF - WannaCry Metadata Results

The system’s capability to provide a detailed analysis of
the memory dumps is another noteworthy feature. Analysts
can delve deep into this aspect, extracting critical information
that can be pivotal in understanding the malware’s infiltra-
tion techniques, propagation mechanisms, and data exfiltration
strategies.

For more information on DRAKVUFs findings on
the ransomware WannaCry, please visit this link:
http://103.196.108.47:6300/analysis/a72d43bf-0994-4eda-
9891-4387acd29187.

Screenshots of the analysis can be viewed in the appendix.

C. Project Requirements Evaluation

The evaluation of the DRAKVUF Malware Sandbox project
is essential to assess the alignment with the initial require-
ments. This section provides an analysis of the met and unmet
requirements.

The project has achieved notable successes. The web in-
terface is remotely accessible and user-friendly - confirmed
by positive user feedback. The email notification system
is operational, ensuring users are informed of the analysis
results in a timely manner. The file submission process is
straightforward, and users have found the instructions clear
and helpful.

However, there remains an unmet requirement pertaining to
the support for multiple operating systems. The initial objec-
tive was to incorporate two operating systems, Windows 7 and
Windows 10, to offer a diverse and adaptable environment for
malware analysis. This diversity was aimed at ensuring that the
tool could be utilised for a comprehensive analysis, catering
to a wide array of malware designed for different operating
systems. However, the current implementation is confined to a
single guest OS type. This limitation is attributed to constraints
related to resource allocation, technical complexities associ-
ated with integrating multiple operating systems, challenges in
ensuring stable and reliable performance across the platforms,
and the lack of support in the official stable release of the
system.

The DRAKVUF Malware Sandbox project has made sig-
nificant progress on the original implementation. The unmet
requirement does not overshadow the achievements but rather
offers an opportunity for growth and enhancement.

IX. CONCLUSION

The DRAKVUF Malware Sandbox project, represents a
significant stride in the field of malware analysis. The project
successfully extended the DRAKVUF sandbox’s web UI, en-
hancing capabilities. The project was designed to be remotely
accessible through a web interface and showed the available
virtual machine and operating system along with their respec-
tive configurations. It allowed the management of multiple
instances of DRAKVUF and supported the submission of
a file to be analysed by the operating systems through the
web interface. Users could download the reports generated
by DRAKVUF or view them through the web interface, and
reports could also be emailed to a designated address provided
by the user.

Despite the project’s achievements, it faced challenges in-
cluding the limitation of supporting only one guest OS type.
However, the accomplishments in enhancing the user interface,
improving the reporting component, and extending the queuing
system are notable milestones that contribute to the project’s
overall success.

In conclusion, the DRAKVUF Malware Sandbox project
shows the potential of continuous innovation and refinement in
malware analysis. While there are areas for improvement, the
achievements made are significant and lay a robust foundation
for future enhancements. The project not only contributes to
the body of knowledge in malware analysis but also offers



ENGR 489 (ENGINEERING PROJECT) 2023 13

practical solutions that can be adopted and adapted in real-
world scenarios to understand and mitigate the impacts of
malware effectively. The collaborative and iterative approach
to the project’s development ensures that it remains responsive
to emerging needs and challenges in the dynamic landscape
of cybersecurity.

X. FUTURE WORK

As the DRAKVUF Malware Sandbox project comes to a
close, several opportunities for future work and enhancement
have been identified to augment its functionality, efficiency,
and user experience.

A. Integration of Multiple Operating Systems

One of the primary areas for future development is the inte-
gration of multiple operating systems. The current limitation
to a single guest OS can be expanded to include a variety
of operating systems, enhancing the sandbox’s versatility and
making it adaptable to a broader range of malware types.

There is currently an issue on the DRAKVUF Sandbox
GitHub [14] that outlines the same problem.

B. Incorporation of Machine Learning and AI

The integration of machine learning and artificial intelli-
gence algorithms can augment the sandbox’s capability to
identify, analyse, and mitigate malware. These technologies
can enhance the accuracy and speed of malware detection and
analysis, offering predictive and prescriptive insights.

C. Integration with Elastic Stack for Comprehensive Visuali-
sations

The integration of DRAKVUF Malware Sandbox with Elas-
tic Stack is a considered step to improve data interpretation and
usability. This integration allows for efficient data management
and real-time processing, enhancing the tool’s responsiveness.
Users can benefit from interactive visualisations, offering a
clear and direct understanding of malware analysis findings.

The use of Elastic Stack enables the creation of custom
dashboards, allowing users to personalise data views and
analytics according to specific needs. The advanced analytics
feature of Elastic Stack provides deeper insights into malware
trends and patterns. Data integration protocols and APIs will
be developed to ensure a smooth transfer of data between
DRAKVUF and Elastic Stack, maintaining data consistency
and reliability.

ACKNOWLEDGMENTS

I would like to thank my two supervisors Masood Man-
soori and Lisa Patterson for providing support throughout the
project. It would not be in the current state without their
help. I would also like to thank Muhammad Shabbir Abbasi
for his support with the multiple OS feature. Although the
implementation was not stable; it provided insights into the
workings of the system.

REFERENCES

[1] S. Megira, A. Pangesti, and F. Wibowo, “Malware analysis and detection
using reverse engineering technique,” in Journal of Physics: Conference
Series, vol. 1140, no. 1. IOP Publishing, 2018, p. 012042.

[2] M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-On
Guide to Dissecting Malicious Software. No Starch Press, 2012.

[3] S. YusirwanS, Y. Prayudi, and I. Riadi, “Implementation of malware
analysis using static and dynamic analysis method,” International Jour-
nal of Computer Applications, vol. 117, no. 6, pp. 11–15, 2015.

[4] T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster, S. Vogl, and
A. Kiayias, “Scalability, fidelity and stealth in the drakvuf dynamic
malware analysis system,” in Proceedings of the 30th Annual Computer
Security Applications Conference. ACM, 2014, pp. 386–395.

[5] “Drakvuf® black-box binary analysis system.” [Online]. Available:
https://drakvuf.com/

[6] S. Kovalev, “Reading the contents of deleted and modified files in
the virtualization based black-box binary analysis system drakvuf,”
Proceedings of the Institute for System Programming of the RAS, vol. 30,
no. 5, pp. 109–122, 2018.

[7] A. A. R. Melvin and G. J. W. Kathrine, “A quest for best: A de-
tailed comparison between drakvuf-vmi-based and cuckoo sandbox-
based technique for dynamic malware analysis,” in Intelligence in Big
Data Technologies—Beyond the Hype: Proceedings of ICBDCC 2019.
Springer, 2021, pp. 275–290.

[8] C. Sandbox, “Cuckoo sandbox is an automated dynamic
malware analysis system,” 2021. [Online]. Available: https:
//github.com/cuckoosandbox/cuckoo

[9] “Understanding the sandbox - drakvuf sandbox v0.18.2 documentation.”
[Online]. Available: https://drakvuf-sandbox.readthedocs.io/en/latest/
understanding sandbox.html

[10] Tklengyel, “Releases · tklengyel/drakvuf,” 2021. [Online]. Available:
https://github.com/tklengyel/drakvuf/releases

[11] CERT-Polska, “Releases · cert-polska/drakvuf-sandbox,” 2021. [Online].
Available: https://github.com/CERT-Polska/drakvuf-sandbox/releases

[12] “Building installation packages - drakvuf sandbox v0.18.2 documen-
tation.” [Online]. Available: https://drakvuf-sandbox.readthedocs.io/en/
latest/building packages.html

[13] J. Nielsen, “How many test users in a usability study?” 2012. [Online].
Available: https://www.nngroup.com/articles/how-many-test-users/

[14] CERT-Polska, “Support for multiple os malware analysis · issue 462
· cert-polska/drakvuf-sandbox.” [Online]. Available: https://github.com/
CERT-Polska/drakvuf-sandbox/issues/462

https://drakvuf.com/
https://github.com/cuckoosandbox/cuckoo
https://github.com/cuckoosandbox/cuckoo
https://drakvuf-sandbox.readthedocs.io/en/latest/understanding_sandbox.html
https://drakvuf-sandbox.readthedocs.io/en/latest/understanding_sandbox.html
https://github.com/tklengyel/drakvuf/releases
https://github.com/CERT-Polska/drakvuf-sandbox/releases
https://drakvuf-sandbox.readthedocs.io/en/latest/building_packages.html
https://drakvuf-sandbox.readthedocs.io/en/latest/building_packages.html
https://www.nngroup.com/articles/how-many-test-users/
https://github.com/CERT-Polska/drakvuf-sandbox/issues/462
https://github.com/CERT-Polska/drakvuf-sandbox/issues/462


ENGR 489 (ENGINEERING PROJECT) 2023 14

APPENDICES

DRAKVUF ANALYSIS - WANNACRY METADATA AND PROCESS TREE OUTPUT

DRAKVUF ANALYSIS - WANNACRY BEHAVIOURAL GRAPH OUTPUT



ENGR 489 (ENGINEERING PROJECT) 2023 15

DRAKVUF ANALYSIS - WANNACRY LOGS OUTPUT

DRAKVUF ANALYSIS - WANNACRY API CALLS OUTPUT


	Introduction
	The Problem
	Project Objectives
	Background Research
	Related Work
	Cuckoo
	CWSandbox
	Sandbox Solution Comparison

	Design
	DRAKVUF Versions
	DRAKVUF v0.7
	DRAKVUF v0.8
	DRAKVUF Sandbox v0.17 Series
	DRAKVUF Sandbox v0.18.1 and earlier

	Deployment Approach
	Hardware
	Operating System (Host and Guests)
	Windows 10
	Ubuntu 18.04 LTS
	Windows 7 x64
	Windows 10 x64

	Programming Languages
	DRAKVUF Architecture
	Key Components and Processes
	Labels and Annotations

	Submitted Sample Lifecycle
	Reporting Emails

	Implementation
	Host Setup
	DRAKVUF and DRAKVUF Sandbox Deployment
	Guest OS Deployment

	Web UI Modification Environment
	Reporting Emails
	Analysis Time
	Virtual Machine Configuration
	Instructions

	Building drakcore Package and final deployment

	Evaluation
	Survey
	Survey Questions
	Survey Results

	Functional Evaluation
	Project Requirements Evaluation

	Conclusion
	Future Work
	Integration of Multiple Operating Systems
	Incorporation of Machine Learning and AI
	Integration with Elastic Stack for Comprehensive Visualisations

	References

