
ENGR 489 (ENGINEERING PROJECT) 2023 1

Surveying .NZ TLS
Lucas Sarten

Abstract—The Internet is a critical platform for exchanging
sensitive information, encompassing businesses such as banks,
online stores, and government agencies that routinely transmit
and receive sensitive personal data over the Internet. Ensuring
the security of this information is of paramount importance.

The security protocols Transport Layer Security (TLS) and
its predecessor, Secure Sockets Layer (SSL), play a vital role
in securing the web. These protocols implement various security
measures to ensure the confidentiality, integrity, and authenticity
of the data exchanged between web browsers and web servers.
Nonetheless, the improper configuration and implementation of
SSL/TLS protocols on web servers can introduce security vul-
nerabilities, potentially compromising user privacy and security.

This report contains the results and conclusions derived from a
comprehensive survey of SSL/TLS configurations among websites
registered under the .nz top-level domain name. We evaluated the
current SSL/TLS configurations in place and compared them
with the latest web security standards and best practices. Our
findings provide valuable insights into the security posture of
websites within the .nz domain and highlight potential risks,
vulnerabilities, and areas of concern. By doing so, we contribute
to the broader understanding of web security best practices and
help businesses, policy-makers, and individuals make informed
decisions to enhance the security of sensitive online data.

I. INTRODUCTION

THE security of sensitive user data on the web is a critical
concern in the digital age. The widespread exchange of

personal information with e-commerce, online banking, and
other sensitive services underscores the urgency of safeguard-
ing this data against cyber threats. However, many websites fail
to implement recommended security standards, jeopardising
user data privacy and security.

This project addresses a pressing issue in web security:
configuring the SSL/TLS protocols on websites within the .nz
domains. TLS and its predecessor SSL are the fundamental
protocols designed to ensure the privacy, integrity, and au-
thenticity of data exchanges between web browsers and web
servers. However, when misconfigured, they can introduce
security vulnerabilities that expose users to risks.

The primary goal of this project is to assess the state of
SSL/TLS configurations across .nz websites and determine
whether they meet or exceed recommended security standards.
We aim to quantitatively evaluate these configurations, setting
clear and measurable specifications that inform every aspect
of our study.

To accomplish this, we will use specialised tools to scan and
collect detailed information on the SSL/TLS configurations
of approximately 200,000 .nz websites. The data will include
details such as supported SSL/TLS protocol versions, cypher
suites, public key certificates, Hypertext Transfer Protocol Se-
cure (HTTPS) adoption, and proper redirections. This analysis

This project was supervised by Dr Arman Khouzani.

must make special considerations to ensure that all network
scans are conducted non-intrusively with explicit bandwidth,
frequency, and concurrency considerations. Furthermore, all
data collected from scanning externally facing web servers
must be public information, ensuring strict adherence to pri-
vacy laws and regulations.

The analysis will identify vulnerabilities and weaknesses
resulting from implementing SSL/TLS on each website. This
project aims to provide website owners, web users, and the
broader community with an in-depth understanding of the
current security posture within the .nz domain.

The project’s deliverables include a summarised database
containing the collected SSL/TLS data, security vulnerability
probe results, and HTTPS adoption statistics.

Key metrics of evaluation will include the strength of
supported cypher suites, which are cryptographic algorithms
responsible for authenticating and encrypting SSL/TLS traffic,
ensuring that websites reject insecure and obsolete cypher
suites. Additionally, we will examine the proper traffic redi-
rection from unsecured Hypertext Transfer Protocol (HTTP)
to secure HTTPS connections. Furthermore, we will explore
common SSL/TLS vulnerabilities that may be present among
.nz websites. This analysis includes vulnerabilities related
to cypher suite support, SSL/TLS versions, and insecure or
invalid certificates.

The scope of this survey includes all websites registered
under the .nz top-level domain, signifying a broad cross-
section of New Zealand’s online entities. This project aims to
assess whether an acceptable security standard is maintained
across websites registered under the .nz top-level domain and
promote web security best practices within New Zealand. The
findings of this project will provide insights into the current
state of web security in New Zealand and serve as a foundation
for recommendations to enhance the security of .nz websites
further.

In summary, this project seeks to clarify the state of
SSL/TLS security configurations in the .nz domain, addressing
a problem that affects both website owners and users alike.
The results of this survey will empower stakeholders with
valuable information to make informed decisions and improve
web security, contributing to the broader effort to ensure the
confidentiality and integrity of sensitive online data.

A. Background

SSL/TLS configurations are the crucial backbone of secure
communication between our web browsers and web servers
[1]. However, individual web servers can have varying and po-
tentially insecure configurations, allowing insecure methods of
communication which pose security risks. Understanding the
SSL/TLS security configurations used by websites registered

ENGR 489 (ENGINEERING PROJECT) 2023 2

in New Zealand is essential for assessing the overall state of
internet security within the country. Newer versions of TLS
provide many security benefits over previous versions, with
TLS 1.3 being the current gold standard for best security prac-
tices. The Internet Engineering Task Force (IETF) officially
deprecated TLS 1.0 and TLS 1.1 in March 2021, highlighting
the vulnerable nature of older protocols [2].

The use and integrity of public key certificates for encryp-
tion is a critical aspect of web security that will also be
analysed. Public key certificates play the vital role of verifying
the identity of websites visited by users [3]. This process
of verifying the identity of a web server uses asymmetric
encryption with public and private keys. Websites verify their
identity by presenting a public key certificate digitally signed
by a trusted Certificate Authority (CA). The user’s browser
will then verify the certificate’s validity with the third party
CA, confirming that the web server is who it claims to be.
Missing or invalid public key certificate configurations, such
as expired certificates, can threaten data confidentiality. One
typical example of a potential security risk posed by an invalid
certificate is a man-in-the-middle attack [4]. Without a valid
public key certificate, the user’s web browser cannot verify the
Web server’s identity, which could allow attackers to “pretend“
to be the web server and intercept and manipulate sensitive
information sent between the two parties.

Furthermore, the use of HTTP and HTTPS protocols for
serving web content is another crucial area of web security.
HTTPS is HTTP over SSL/TLS and is paramount in ensuring
data is transmitted securely between a user and a website.
Lack of support for HTTPS or the usage of HTTP for any
web content may introduce security and privacy concerns. If
a web server uses HTTP instead of HTTPS and the user’s
browser allows this connection, any data sent between the
two parties is unencrypted and unauthenticated [5]. This
communication would allow attackers with access to these
networks to intercept and manipulate any data sent over
the unsecured connection, including potentially private and
sensitive information.

II. RELATED WORK

The security of web communications has been an ongoing
area of research within the cybersecurity community. Numer-
ous studies have examined the configurations of SSL/TLS pro-
tocols with various techniques and methodologies. Moreover,
many tools currently exist in the field of SSL/TLS security
assessment, specifically designed to extract low-level SSL/TLS
configurations from web servers. This section will discuss
some of these works, their main findings, and how they relate
to our study.

A. SSL/TLS Configuration Assessments

1) F5 Labs: A report by cybersecurity company F5 Labs
[6] presents detailed statistics on the current state of TLS
usage across the top one million websites from the Tranco
Top 1 Million list [7]. F5 Labs developed an open-source tool,
Cryptonice, which scans websites and reports basic protocol

and cypher support, HTTP redirects, Domain Name System
(DNS) records, and certificate information [8].

The report, based on data collected as of August 2021,
indicates that TLS version 1.3 is currently the most preferred
TLS protocol with 63% of the one million websites scanned
designating TLS 1.3 as the preferred protocol (Figure 1).
Compare this to two years ago when the same study found that
only 32% of web servers defaulted to TLS 1.3 [6]. The report
continues to outline that 0.4% of websites still prefer TLS
1.0, and 0.002% still prefer SSL 3.0. The study also found no
correlation between website popularity and SSL/TLS protocol
support.

Fig. 1. Availability of SSL/TLS Versions Across the Top Million Sites F5
Labs [6].

Another crucial aspect of SSL/TLS configurations is the
choice of handshake mechanisms. The report reveals that over
99.3% of servers now choose non-Rivest-Shamir-Adleman
(RSA) handshakes when possible. However, the report also
shows that 52% of web servers still allow RSA handshakes
(Table I). RSA handshakes are not inherently insecure, but
they are more susceptible to specific attacks and fail to provide
forward secrecy [9].

TABLE I
THE MOST POPULAR SELECTED CYPHER SUITES ACROSS THE TOP

MILLION SITES F5 LABS [6].

Protocol Portion Cypher Suite Chosen by Web Server
TLS 1.3 56.8% TLS AES 256 GCM SHA384
TLS 1.2 18.4% ECDHE-RSA-AES256-GCM-SHA384
TLS 1.2 12.6% ECDHE-RSA-AES128-GCM-SHA256
TLS 1.3 5.4% TLS AES 128 GCM SHA256
TLS 1.2 1.9% ECDHE-RSA-AES256-SHA384
TLS 1.2 1.4% ECDHE-RSA-CHACHA20-POLY1305
TLS 1.3 0.45% TLS CHACHA20 POLY1305 SHA256
TLS 1.2 0.4% ECDHE-ECDSA-AES256-GCM-SHA384
TLS 1.2 0.4% ECDHE-ECDSA-CHACHA20-POLY1305
TLS 1.2 0.4% DHE-RSA-AES256-GCM-SHA384
TLS 1.2 0.3% ECDHE-ECDSA-AES128-GCM-SHA256
TLS 1.0 0.3% DHE-RSA-AES256-SHA

The study found that 2.8% of websites were vulnerable to
TLS 1.2 session renegotiation denial-of-service (DOS), 1%
of websites were vulnerable to the CRIME exploit due to
supporting TLS compression [10], and 0.2% of websites did
not support session renegotiation [6]. Our study will compare
the presence of these vulnerabilities with the .nz domain and

ENGR 489 (ENGINEERING PROJECT) 2023 3

seek to capture data on additional common vulnerabilities not
part of the original study.

While the F5 Labs study provides quite comprehensive
results, it has limitations. The F5 Labs study concluded in
August 2021, so it no longer accurately depicts the rapidly
evolving web landscape. This historical information will serve
as a comparison for our project, which aims to extend this
research by showing how this data has evolved. Furthermore,
the F5 Labs study only focused on the top one million most
popular websites, which may not accurately represent the
average website. F5 Labs compares the SSL/TLS versions
of a broad sample of countries; however, New Zealand is
not the focus of their study and needs representation in their
findings. Our study solely examines websites with .nz top-level
domains, enabling comparison with New Zealand.

2) SSL Pulse: Another report published monthly by Qualys
SSL Labs [11] examines the state of SSL/TLS implementation
across a dataset of approximately 135,000 of the top websites
based on Alexa’s list of the most popular sites in the world,
which ranks website based on visits [12]. Similar to the F5
Labs study, the SSL Pulse report found that, as of September
3rd 2023, 64.8% of the top 135,000 most popular websites
supported TLS 1.3, as shown in Figure 2. Additionally, the
report found that an overwhelming 99.9% of websites sup-
ported at least TLS 1.2, showing that TLS 1.2 remains the
most widely supported TLS protocol. The report continues
to show that 32.5% of websites still support TLS 1.1, and a
similar proportion, 30.1%, still support the long deprecated
TLS 1.0.

The report also investigated common vulnerabilities of
common SSL/TLS, finding small proportions of websites still
vulnerable to well-known exploits. Specifically, the report
mentions that 85 websites are still vulnerable to the ROBOT
attack, 52 websites are vulnerable to OpenSSL ChangeCipher-
Spec (CCS) attacks, and 18 websites exhibit vulnerabilities
associated with the Heartbleed bug as per Table II. Our re-
search in the .nz domain will establish a basis for comparison,
allowing us to assess the presence of these common SSL/TLS
vulnerabilities compared to the global internet landscape.

Fig. 2. SSL/TLS Protocol Support Across the Top 150,000 Sites SSL Pulse
[11].

TABLE II
COMMON SSL/TLS VULNERABILITIES SSL PULSE [11].

Vulnerability Number of Websites
OpenSSL CCS 52

ROBOT 85
Heartbleed 18

B. Certificates and HTTPS Usage

1) F5 Labs [6]: Regarding certificates, the F5 Labs study
found that 42% of certificates surveyed had a lifespan of 91
days, while 46% of certificates had a lifespan of 361-450 days
(Figure 3). Moreover, the study found that 2.45% of the top
one million websites had expired certificates at the time of
the survey. There is a clear pattern with certificate authorities
issuing certificates with shorter lifespans.

Fig. 3. Certificate Lifespans Across the Top Million Sites F5 Labs [6].

Furthermore, the study found that 25% of certificates are
now signed with the Elliptic Curve Digital Signature Algo-
rithm (ECDSA), while the remaining 75% still use traditional
RSA signatures (Figure 4). ECDSA is considered a robust and
efficient security algorithm, suggesting a growing commitment
towards more secure cryptographic algorithms on the web.

Fig. 4. Certificate Key Type/Size Across the Top Million Sites F5 Labs [6].

C. Existing Solutions

1) SSLyze: SSLyze is an open-source Python module that
provides comprehensive SSL/TLS scanning capabilities [13].

ENGR 489 (ENGINEERING PROJECT) 2023 4

It captures full SSL/TLS configuration details, including com-
plete lists of supported cypher suites, certificate chains, and
susceptibility to a limited number of known security vul-
nerabilities [13]. Vulnerabilities caused by using susceptible
cypher suites can be detected, such as the Heartbleed or
ROBOT vulnerabilities [14], [15]. SSLyze also provides a
script-friendly output and a fully featured Python Application
Programming Interface (API) for simple integration with ex-
ternal tools. SSLyze is freely available under the GNU Affero
General Public License [16], allowing unconditional use of the
software.

The main limitation of SSLyze is the lack of built-in
concurrency [13]. SSLyze does not have native support for
performing multiple scans concurrently, which is a crucial
consideration when working with a large data set. Additionally,
Python imposes significant limitations on concurrency due to
the limitations of the Python Global Interpreter Lock (GIL).
The GIL is a mechanism of the Python interpreter that only
allows one thread to execute at any given time [17]. This
restriction limits the scalability of SSLyze as Python can not
fully utilise multiple CPU cores for parallel execution of CPU-
bound tasks such as this.

SSLyze’s comprehensive analysis and vulnerability scan-
ning make it a good choice for thorough security assessments.
Its Python API provides the flexibility to easily extend the
functionality of the SSLyze and integrate it with external tools,
further adding to its utility.

2) tls-scan: Another existing tool for SSL/TLS scanning is
tls-scan, a command-line tool written in the C programming
language [18]. Like SSLyze, tls-scan can extract SSL/TLS
configurations from web servers. The main advantage of tls-
scan over SSLyze is its ability to scan thousands of servers
concurrently, making it a popular tool for large-scale assess-
ments [18].

However, tls-scan captures significantly less information
than SSLyze, providing a more general snapshot overview
of a server’s SSL/TLS configuration. It is also important to
note that tls-scan does not have built-in security vulnerability
testing, only focusing on capturing and analysing certificates
and SSL/TLS configurations.

tls-scan is an attractive option with its efficient parallel scan-
ning capability, allowing for quick assessment of SSL/TLS
configurations across many servers.

3) crashtest-security: crashtest-security is a comprehensive
web security testing platform designed to detect common
vulnerabilities and assess the overall security of websites [19].
The platform can scan for various SSL/TLS and certificate
vulnerabilities, including weak cypher suites, outdated proto-
cols, and certificate issues. Furthermore, the service includes
web security compliance scanning for various regulations and
standards, such as The Health Insurance Portability and Ac-
countability Act (HIPAA), General Data Protection Regulation
(GDPR), and International Organization for Standardization
(ISO) [20]–[22]. The platform can provide detailed reports on
these findings aimed at commercial users and project-based
web security testing.

While crashtest-security offers valuable features for web
security testing, the platform has limitations which make it

unsuitable for the use case of this study. The basic subscription
level for the platform costs C79.00 per month, limited to two
concurrent scans. This limitation makes the service unusable
to scan the dataset of 200,000 .nz domains within the time
frame for this study.

4) ssl-enum-ciphers: ssl-enum-ciphers is a Command Line
Interface (CLI) tool written in the Lua programming language
designed to collected SSL/TLS configuration information [23].
The tool repeatedly initiates SSL/TLS connections with dif-
fering cypher suites to determine if the web server accepts
each option. The tool rates each cypher suite with a letter
grade from A to F, indicating the cryptographic strength of
the cypher suite. Ratings are based on the Qualys SSL Labs
SSL Server Rating Guide [24].

The tool, however, does not contain any built-in concur-
rency or scalability support for scanning multiple web servers
simultaneously. This is one of the most essential requirements
for assessing a large dataset of domains efficiently, making
this tool unsuitable. ssl-enum-ciphers also describes itself as
“intrusive since it must initiate many connections to a server,
and therefore is quite noisy”, which violates our requirement
that the scanning process must not be intrusive or cause
disruption [23].

5) testssl: testssl is another open-source SSL/TLS config-
uration tool written in Bash capable of capturing SSL/TLS
and certificate information [25]. The scans for SSL/TLS ver-
sions, ciphers, and some simple SSL/TLS vulnerabilities and
misconfigurations.

However, much like ssl-enum-ciphers II-C4, the tool does
not have built-in support for scanning multiple domains simul-
taneously. Therefore, due to the scale of the survey, the tool
would not be suitable for this use case.

6) Cryptonice: Cryptonice is an open-source tool written
in Python developed by the cybersecurity testing company F5
Labs [26]. Cryptonice is a comprehensive tool incorporating
open-source tools such as SSLyze [13]. The tool is capable of
collecting SSL/TLS information similar to SSLyze, and tests
support for additional protocols such as HTTP2 and DNS.
Cryptonice also collects information on certificates and web
application headers.

While Cryptonice does perform additional tests that other
tools do not, the information collected for each scan is limited
compared to alternatives. Cryptonice is targeted at generating
human-readable output for security engineers to test their
web applications and does not include built-in concurrency.
Furthermore, Cryptonice scans take substantially longer to
complete, taking 70x longer on average compared to a single
SSLyze scan. These drawbacks make the Cryptonice unsuit-
able for large-scale scanning, but the tool could still serve a
purpose for in-depth targeted scans.

III. DESIGN

A. Scanning Tools

To assess the security of websites within the .nz top-level
domain, we meticulously designed our data collection process
to extract and refine the relevant data promptly. Our survey
evaluated three key aspects: SSL/TLS configurations, public

ENGR 489 (ENGINEERING PROJECT) 2023 5

key certificate health, and the usage of HTTP protocols. Our
approach aimed to provide an in-depth analysis of these three
critical aspects while addressing the unique challenges of
scanning many websites. When selecting tools and platforms
for this project, we prioritised the depth of data collected and
the extendability and scalability of the data collection tools.
We employed a combination of automated tools, utilising both
preexisting solutions and custom-made tools tailored to our
specific needs.

For collecting SSL/TLS configurations, we used the open-
source tool SSLyze over alternatives such as tls-scan to collect
the relevant configuration from each server [13]. SSLyze
provides more comprehensive data than tools like tls-scan and
F5 Lab’s Cryptonice. SSLyze boasts superior extendability
compared to the alternatives, with a built-in Python API,
making it the most suitable tool for multiprocessing. Mul-
tiprocessing was crucial to enhance efficiency and expedite
data collection. The information SSLyze collects includes
information on the supported versions of SSL/TLS, the cypher
suites supported for each version, susceptibility to known
vulnerabilities, and public key certificate chains, which include
the issuer, expiration date, and cyphers.

For collecting HTTP usage data, custom tools would need
to be created as existing solutions did not meet the cost and
time requirements of the project. This data included identifying
instances of partial HTTP usage for serving content and the
implementation of HTTP-HTTPS redirects. Go was chosen as
the most suitable programming language for this task due to
its inherent support for multiprocessing, aligning with our goal
of creating efficient tools for scanning large datasets.

1) SSLyze vs tls-scan: The choice of scanning tool plays a
pivotal role in the efficacy of our large-scale security scans.
Network performance is a critical aspect to consider when
selecting a tool, as it directly impacts the performance of
the scanning tools and the potential impact of the surveyed
websites. Understanding how potential tools interact with web
servers and their impact on network resources is essential to
ensure efficient data collection and adhere to ethical standards.
The two main tools of interest in this comparison are SSLyze
and tls-scan [13], [18].

Figure 5 shows the network performance of SSLyze in terms
of packets per second. The graph reveals the balanced and
predictable operation of the tool, maintaining a constant rate
of approximately 500 inbound and 500 outbound packets per
second per scan. This steady packet flow aligns well with
ethical considerations as a more distributed bandwidth reduces
strain on surveyed websites. We can gather from this data that
SSLyze makes sequential requests, performing each scan in
sequence rather than parallel.

On the other hand, Figure 6 shows the network perfor-
mance graph for tls-scan, which exhibits distinctly different
behaviour. The network graph indicates an initial spike of
approximately 600 packets, followed by a period of limited
activity, and concludes with an additional spike of inbound
packets. It appears that tls-scan adopts a different approach
to scanning, sending a significant portion of requests at once
before waiting for replies. This may lead to intermittent bursts
of network activity that could potentially impact the websites

being surveyed, with the longer delay in responses potentially
indicating this pattern.

This investigation suggests that SSLyze is a more suitable
tool as it aligns more closely with this study’s efficiency
and ethical requirements. The more balanced and predictable
nature of SSLyze’s scanning process will have a lower impact
on surveyed websites, distinguishing it as the better option for
this use case.

Fig. 5. SSLyze Network Bandwidth over Time.

Fig. 6. tls-scan Network Bandwidth over Time.

B. Cypher Suite Grading

To assess the overall security status of websites within the
.nz domains, we must evaluate the security of cypher suites
utilised in websites SSL/TLS configurations. Cypher suites
are pivotal components of secure SSL/TLS configurations
as they dictate how data is encrypted and decrypted during
transmission.

The data for cypher suite grading was sourced from ci-
phersuite.info, an online open-source dataset that provides
comprehensive information about the cryptographic security
of cypher suites [27]. The database grades cypher suites
from insecure, weak, secure, and recommended based on
their security strength. Strong cypher suites using Advanced
Encryption Standard (AES) are rated secure, while those
utilising deprecated algorithms are rated weak or insecure.

The choice of cypher suite can significantly impact a web-
site’s security. By examining the cypher suites used amongst
.nz websites, we can gain valuable insights into the security
postures of these websites.

ENGR 489 (ENGINEERING PROJECT) 2023 6

C. Data Storage

We chose NoSQL as the base database type to store and
manage large volumes of collected data effectively. A NoSQL
database solution was a natural choice as it can accommodate
unstructured data storage. It is anticipated that database records
may contain missing or unstructured data throughout the data
collection process. The diverse range of tools utilised meant
dealing with multiple data formats and structures. NoSQL’s
flexibility ensured data structure discrepancies were supported,
allowing for a unified platform for data storage from multiple
sources.

IV. IMPLEMENTATION

A. SSL/TLS Scanning

The custom tools for running concurrent SSL/TLS scans
have been developed. These tools have undergone testing
and refinement to ensure their effectiveness, accuracy, and
efficiency in collecting the required data. We built a cus-
tom wrapper using the SSLyze Python API to implement
the multiprocessing functionality of the tool. Our solution
performs numerous SSLyze scans concurrently and saves the
information to the database backend as needed. The program
uses multiple processes which communicate with the main
dispatch process and a monitoring process to manage the
queue of domains for scanning. Our solution performed over
100 concurrent TLS configuration scans simultaneously, with
an average scan length of just 1 second.

1) Architecture: The custom SSL/TLS scanning tools ar-
chitecture is designed to concurrently scan multiple domains
using the SSLyze Python API. The tool’s architecture is based
on the Producer-Consumer pattern for Python multiprocessing.
The Producer-Consumer pattern involves three main threads:
the producer, consumer, and monitoring threads, each with a
specific function.

1) Producer Thread: This thread supplies the Consumer
threads with domains to process. It retrieves a set batch
of domains from the MongoDB database where the
SSL/TLS scans have not been completed. These domains
are then added to the domain queue, accessible to each
Consumer thread. The number of domains retrieved in
each batch is customisable and larger, dependent on the
read performance of the database.

2) Consumer Thread: These threads are the core scan-
ning functionality of the tool. They run in parallel,
independently of the Producer thread. Each consumer
thread continuously retrieves and scans a domain from
the shared queue. The tool uses SSLyze’s Python API
to scan each domain’s SSL/TLS configuration informa-
tion. The scan results are then processed and saved to
the database. The Consumer threads also track their
statistics, including the number of domains scanned and
skipped and the average time taken per scan. These
statistics are updated in a shared progress dictionary,
which all Consumer threads can access.

3) Monitoring Thread: This separate process is respon-
sible for monitoring and reporting on the progress of
the current scanning operations. It periodically updates

and displays the number of domains scanned, domains
skipped, and overall progress towards completing all
scans. The process also calculates the average time
taken per scan and uses this data to estimate the time
remaining for all scans to complete. This monitoring
process is needed to understand the current state of
scanning progress.

The architecture leverages parallel processing to scan mul-
tiple domains concurrently. The process of scanning a batch
of domains involves five steps, each in parallel:

1) The Producer thread retrieves a batch of domains from
the MongoDB database for scanning.

2) Each Consumer thread scans a domain for SSL/TLS
configurations using SSLyze.

3) The scan results are processed and saved to the database.
4) Progress information is updated in the shared progress

dictionary.
5) The monitoring thread displays the progress statistics.

This architecture allows over 100 concurrent SSLyze scans
to be performed independently, with limited performance
overhead. This extension of SSLyze allows for the large .nz
top-level domain dataset to be scanned within the limited
time constraints of this study, as set out in the requirements.
Figure 7 shows the functional Unified Modeling Language
(UML) diagram of the scanning tools system architecture:

Fig. 7. SSL/TLS Scanning Tool System Architecture.

Figure 8 demonstrates the retrieval, processing, and storage
of survey data with the scanner process.

2) Tools, Libraries, And Languages: The development of
the custom SSL/TLS scanning tool leveraged several libraries
and frameworks to implement its functionality.

1) Python: Python is the programming language used
to develop the SSL/TLS scanning tools. Python has
many built-in and third-party libraries for web scanning,
database interactions, and parallel processing.

2) SSLyze: SSLyze is the open-source Python library that
forms the core of the SSL/TLS scanning tool. It provides
an extensive API with the ability to collect SSL/TLS
configuration information such as SSL/TLS versions,
cypher suites, certificate chains, and vulnerability assess-
ments.

ENGR 489 (ENGINEERING PROJECT) 2023 7

Fig. 8. Scanner Process Architecture.

3) MongoDB: MongoDB is the Database Management
System (DBMS) of choice for storing domain infor-
mation and scan results. Its flexibility, scalability, and
ability to handle JavaScript Object Notation (JSON)-
like documents make it suitable for efficiently storing
SSL/TLS configuration data. MongoDB’s integration
with Python via the PyMongo library simplifies the
database operations, allowing for easy programmatic
integration.

4) Multiprocessing: The tool utilises Python’s built-in
multiprocessing capabilities to achieve parallelism dur-
ing scanning. The multiprocessing library allows for
multiple processes to run concurrently, enabling the
simultaneous scanning of SSL/TLS configurations for
multiple domains. This parallelism is crucial in improv-
ing the tool’s speed and efficiency for the large dataset.

5) json: JSON is a lightweight data-interchange format for
defining structured data. Python’s built-in JSON library
is used for parsing and manipulating JSON formatted
data used by SSLyze and MongoDB through the Binary
Javascript Object Notation (BSON) specification.

B. HTTPS Probing

The custom tool developed for HTTPS probing was created
in Go due to Go’s built-in concurrency system. The tool can
scan hundreds of domains per second, completing the entire
dataset of domains in hours. The tool consists of two distinct
checks. The first determines whether a web server will allow
HTTP traffic, while the second evaluates whether a server
automatically upgrades HTTP connections to HTTPS. This is
done by impersonating a standard web browser and requesting
a web page over HTTP. The tool then analyses the web
server’s response, determining if the connection was blocked,
allowed, or requested to be upgraded to the more secure

HTTPS. From this data, we can conclude which websites allow
insecure HTTP connections and which websites will attempt
to upgrade HTTP connections automatically.

Fig. 9. HTTPS Probe System Architecture.

1) Architecture: The custom HTTPS probing tool is respon-
sible for two distinct checks, each serving a specific purpose:

1) HTTP Allowance: The first check assesses whether
a web server permits the usage of HTTP traffic. The
tool initiates an HTTP GET request to the servers Uni-
form Resource Locator (URL). The request simulates
the behaviour of a standard web browser, including
headers such as User-Agent and Accept, that mimic
typical browser user agents. Upon receiving the server’s
response, the tool determines if the server allowed the
HTTP connection or disallowed an HTTPS connection.
This is done by analysing the returned HTTP status code.
HTTP status code 200 Okay indicates that the server
allowed the connection.

2) HTTP to HTTPS Upgrade: The second component
evaluates whether a web server automatically upgrades
HTTP connections to HTTPS. Like the first check,
the tool sends an HTTP GET request to the servers
URL. Upon receiving the server’s response, the tool
determines if the server redirected the request to HTTPS
or requested the connection be upgraded to HTTPS. By
following the redirect chain, the tool can determine if the
final redirection leads to an HTTPS URL, implying an
attempt to automatically upgrade HTTP to HTTPS. The
tool otherwise checks if the server’s response returned
HTTP status codes that indicate redirection. For exam-
ple, HTTP status code 302 Found could be returned,
along with a populated Location header, to inform the
browser to use an HTTPS redirect specified in the
Location header.

The custom HTTPS probing tool utilises Go’s built-in
concurrency features to probe multiple domains in parallel.
Go’s concurrency model is based on lightweight threads
called goroutines, which probe each domain concurrently. This
pattern allows for the concurrent processing of upwards of

ENGR 489 (ENGINEERING PROJECT) 2023 8

1,000 domains, with the main limitation found to be DNS rate
limiting. The process of probing HTTPS usage for a domain
involves four steps, repeated for each batch:

1) A batch of domains is retrieved from the MongoDB
database.

2) Each domain is probed for HTTPS and HTTP to HTTPS
upgrade support in a separate goroutine.

3) The main process waits for all goroutines to finish
execution, with a max request timeout of five seconds.

4) The full batch of results is saved to the database.
2) Tools, Libraries, And Languages: Implementing the

HTTPS probing tool relies on several libraries and packages
in the Go programming language.

1) net/http The net/http package is a built-in Go pack-
age which is essential for marking HTTP and HTTPS
requests to the web servers. The package is used to
create numerous individual HTTPS client instances for
checking HTTP and HTTPS support for domains.

2) go.mongodb.org/mongo-driver The
go.mongodb.org/mongo-driver package provides
Go clients for connecting to the MongoDB database
backend. This package is used for retrieving domains
to scan from the database and updating the database
with scan results.

3) sync The sync package is a built-in Go package which
offers synchronisation primitives for the coordination of
goroutines. The tool used the sync packages WaitGroup
functionality to wait for each batch of goroutines to
finish before resuming the main process.

4) BSON The BSON package is part of the mongo-driver
group and is responsible for encoding and decoding
BSON data used by the MongoDB database. This library
is essential for parsing the BSON data retrieved from the
database and storing the scan results back in a structured
format.

These libraries collectively provide the necessary function-
ality for retrieving domain data, conducting HTTP probing,
and updating the MongoDB database with the results. By
leveraging these libraries, the tool streamlines the process of
scanning a large dataset of domains and efficiently determining
their HTTP and HTTPS support status.

C. Data Storage

For data storage, we chose to use a MongoDB database
backend. MongoDB’s NoSQL capabilities made it an ideal
choice for the project’s needs due to its flexibility and scala-
bility. MongoDB has libraries for Python and Golang, the two
main scanning tools, allowing easy programmatic integration.
MongoDB’s indexing and querying capabilities also allowed
for the efficient retrieval and analysis of the collected data.

MongoDB’s indexing system was critical in optimising data
retrieval and analysis. By creating indexes on fields used
for querying and filtering, we enhanced the performance of
complex operations significantly. For example, we created
indexes for fields such as the website’s domain name, which
substantially increased the performance of a single document
lookup query. This was crucial for locating and updating

existing records with new scanning information from different
sources without causing a bottleneck. This indexing strategy
significantly reduced the time required to access and manipu-
late the data.

The approach to database design was based on the in-
teractive data collection process. We initialised the database
with a core structure consisting of a document (record) for
each domain. As the scans from various tools progressed and
more data was gathered, we incrementally added information
to each domain’s document. This allowed for multiple tools
to concurrently collect data and update the central database
independently and without conflict. Each tool populated a
status field when interacting with the database, marking the
state of each scan. This status field played a pivotal role in
ensuring data integrity.

Using this technique, we ensure that domains were scanned
only once, and the tool could retry the scan if a scan fails.
This approach helped to prevent unnecessary disruptions or
intrusions on the websites being scanned by minimising the
need for repeated scans. By maintaining a structured and
organised database schema and applying efficient indexing,
we handled large-scale data collection while maintaining data
integrity and optimising retrieval for analysis and reporting.

D. Data Collected

The survey included many different data points to assess
the security posture of the .nz top-level domain comprehen-
sively. These data points were pivotal in understanding these
websites’ security configurations and vulnerabilities. The key
elements collected included:

1) Certificates: Detailed information about the SSL/TLS
certificates used by each website. This includes the full
certificate chain, expiration dates, issuers, and subjects.

2) SSL/TLS Versions: Identification of the SSL/TLS ver-
sions supported by each website. This includes versions
accepted and rejected by the website.

3) Cypher suites: Information about the cypher suites
supported by each website for each SSL/TLS, including
accepted and rejected cypher suites. Includes complete
lists of accepted and rejected cypher suites across all
SSL/TLS versions.

4) Elliptic Curves: Data regarding the elliptic curves used
for encryption, including supports and rejected elliptic
curves.

5) TLS Compression: Identification on whether TLS data
compression was enabled on each web server.

6) Session Resumption: Data on session resumption ca-
pabilities, which allow for the reestablishment of secure
connections. This includes full and partial support.

In addition to this, we also probed websites for various
aspects related to their HTTP and HTTPS configurations:

1) HTTP Usage: Identification of whether a web server
allowed HTTP traffic. This means an HTTP connection
was accepted and not upgraded to HTTPS.

2) HTTP Headers: Collection of HTTP headers returned
in a servers response to a HTTP probe.

ENGR 489 (ENGINEERING PROJECT) 2023 9

3) HTTPS Redirect Support: Analysis of whether a web-
site automatically redirected HTTP traffic to HTTPS via
upgrade, redirect, or session renegotiation.

Finally, as part of the security assessment, we also scanned
for specific vulnerabilities present in SSL/TLS implementa-
tions. This includes:

1) Heartbleed: Detection of the Heartbleed vulnerability,
a critical security bug that could lead to data leakage
from a web server’s memory.

2) ROBOT: Detection of the ROBOT vulnerability, a se-
curity issue related to RSA encryption.

3) OpenSSL CCS Injection: Detection of potential vul-
nerabilities related to OpenSSL CCS Injection in the
OpenSSL library commonly used in SSL/TLS imple-
mentations.

4) Session Renegotiation DOS: Detection of vulnerabili-
ties associated with session renegotiation.

E. Infrastructure
In the early stages of implementation, we found that con-

sumer hardware was struggling to meet the intensive pro-
cessing and networking requirements of numerous concurrent
scans. Therefore, infrastructure was designed and established
to support data storage and scanning solutions. To address
our large-scale data storage needs, we deployed a MongoDB
Server instance on Azure’s “always free“ services [28]. Azure
offers a highly scalable and reliable cloud environment with
abundant network bandwidth. It is well-suited for handling
the substantial volume of data involved in the SSL/TLS
scanning and subsequent data storage processes. In addition
to the MongoDB Server instance, a Virtual Machine (VM)
was deployed to provide the computational resources to run
large numbers of concurrent SSL/TLS scans across the entire
dataset.

Our infrastructure’s network security and efficiency were
pivotal in ensuring the speed of security scans while meeting
ethical standards. All infrastructure was established within
private Virtual Network (VNET)s with strict firewall rules.
These rules were configured to grant exclusive access to the
MongoDB database from the scanner server over the Azure
backbone while blocking unauthorised external access. The
scanner process requires open internet access for conducting
scans, while the MongoDB database requires no external
network access. Moreover, additional security measures were
put in place to fortify the overall security of the database.
Secure Shell (SSH) certificates were used to control and
authenticate access to the MongoDB database. We further
mitigated common risks by running externally exposed ser-
vices on non-default, ensuring these services were not easily
discoverable to malicious probing.

The decision to utilise Azure as our infrastructure host
was derived from its exceptional scalability and performance
attributes. Azure’s extensive network infrastructure ensured
low latency and high bandwidth connectivity, crucial for large-
scale scans. The utilisation of VMs for SSL/TLS scanning
allowed us to seamlessly scale the computational resources
available in response to our scanning requirements. Figure 10
illustrates the design of the infrastructure.

Fig. 10. Cloud Infrastructure Design.

F. Data Analysis

We aggregated and refined the collected dataset through
a systematic data analysis approach to derive meaningful
insights from the collected data. One of the fundamental
steps in our data analysis process involves the utilisation of
MongoDB aggregation pipelines. MongoDB offers powerful
data aggregation capabilities through its flexible pipeline im-
plementation. Pipelines can filter, transform, and restructure
raw data programmatically. We utilised MongoDB pipelines
to extract valuable information from the raw data to perform
our analysis.

The aggregation and refinement process involved grouping
data based on various attributes, such as SSL/TLS protocol
versions, cypher suites, and vulnerabilities. By employing
pipeline stages such as ‘$match‘, ‘$group‘, and ‘$project‘, we
created refined datasets that served as the foundation to guide
our analysis. Furthermore, we refactored and restructured
the document tree of each domain record to increase the
conciseness, clarity, and query speed for database lookups.

Data quality is another crucial aspect of our analysis, as
guided by the requirements of this study. Our data underwent
a meticulous data cleanup process to ensure the accuracy and
integrity of our findings. This process involved identifying
missing or incomplete data occurrences and recollecting the
erroneous data where necessary. MongoDB pipelines were
used to find incomplete or inconsistent data points, further
investigated by hand.

V. RESULTS AND EVALUATION

A. Performance Metrics

1) SSL/TLS Scanning: The TLS scans provided valuable
insights into the SSL/TLS configurations of the .nz websites
while conforming to the efficiency and reliability require-
ments of the project. The TLS scans were conducted with
a concurrency of 100 scans, resulting in an average scan time
of just 1.6 seconds. Figure 11 shows the number of scans
completed over time for the default serial SSLyze solution
vs our custom extension running in parallel. Our approach of
extending SSLyze to implement concurrent scanning allowed
for the scanning of a significant number of websites within a

ENGR 489 (ENGINEERING PROJECT) 2023 10

reasonable time frame. This concurrent solution reduced the
scan time significantly compared to the base scan time of 10.2
seconds on average for a single SSLyze scan, as shown in
Figure 12.

Fig. 11. TLS Scanning Performance Default Vs Custom.

Fig. 12. TLS Time Per Scan Default Vs Custom.

2) HTTPS Probing: The custom tool developed in Go for
probing HTTP/HTTPS usage data demonstrated impressive
performance compared to alternative solutions. Our custom
tool could collect the HTTP usage information for 50 web
servers per second, with an average execution time of 20
milliseconds per scan, running 100 concurrent scans. This
significantly reduced the time required for HTTP probing
and showcased our custom’s efficiency in real-world testing
scenarios. The tool performs a minimum of two HTTP/HTTPS
requests, which take on average between 0.1 and 1 second
to perform per request. Our custom tool takes, on average,
400 milliseconds per scan to complete, 200 milliseconds per
request. This is well within the window of an acceptable
HTTPS response time, indicating that the tool adds little
overhead compared to an ordinary HTTP request.

3) Network Performance and Ethical Considerations: The
network performance of the scanning tools is a critical aspect
that directly impacts the efficiency and scalability of our study.
Figure 13 and Figure 14 show the network performance of

Fig. 13. TLS Scanner, Network In (MB/s).

the SSL/TLS scanning processes. These statistics indicate that
the tools reached a maximum network throughput of 200
Megabyte (MB)/s when scanning 100 domains concurrently,
translating to an average network load of 2 MB/s per domain.
This network utilisation level demonstrates our approach’s
scalability, as we can scan many domains in parallel. This
aligns with the core requirement of conducting the scans
within the time frame allocated for this study. The ability
to scan multiple domains concurrently while maintaining a
reasonable network throughput ensures that no disruption is
caused to the websites being scanned.

Ethical considerations are of great concern when conducting
large-scale web security scans. The network performance
statistics show that our scans operated within an acceptable
level of network throughput, preventing any excessive network
activity that could potentially disrupt the surveyed websites.
2 MB/s is well within normal bandwidth usage for a user
requesting a medium to large sized web page from a web
server. It is crucial to maintain a balance between data collec-
tion efficiency and ensuring sustainable, ethical data collection
practices. These results demonstrate that this balance was
achieved.

Our scanning methodology consistently adhered to ethical
standards by only scanning publicly accessible information.
Our scans did not involve intrusive or harmful actions,
demonstrating our commitment to ethical security scanning.
Vulnerability probing was conducted by probing web servers
for externally facing information available to any client. Fur-
thermore, the study’s premise justifies the nature and scale of
our scanning practices, as it aims to enhance web security
by identifying and addressing potential vulnerabilities. In
this way, our study actively contributes to improving online
security practices, ultimately benefiting both website operators
and their users.

B. Survey Findings

1) SSL/TLS Configurations:
1) Strong Adoption of Modern Encryption: Figure 15

shows that a significant number of websites, around
90,000 or just under 50%, have adopted a minimum TLS

ENGR 489 (ENGINEERING PROJECT) 2023 11

Fig. 14. TLS Scanner, Network Out (MB/s).

Fig. 15. Minimum SSL/TLS Version Supported.

version of 1.2. This means that older and less secure
TLS and SSL protocols can not be used to encrypt
connections to these sites. This indicates a commend-
able effort by .nz websites to uphold secure encryption
standards. Users of these websites can reasonably trust
the confidentially and integrity of their data during
transmission when visiting any of these 90,000 websites.

2) Insecure Protocols Remain: Approximately 32,000
websites still continue to support the outdated TLS
1.0 protocol. Interestingly, a lower 6,500 websites still
support TLS 1.1, a newer version of TLS over TLS 1.0.
This indicates an interesting trend that seems to suggest
that websites that use outdated SSL/TLS versions are
intentionally continuing to support these protocols. It
is important to note that TLS 1.1 is in the process of
being actively deprecated on major operating systems
such as Microsoft’s Windows 11 as of September 2023,
making its usage incredibly problematic from a security
standpoint. Furthermore, just over 1,000 websites still
support SSL protocols, which have been deprecated
for several years. The continued use of these insecure
protocols is concerning as it exposes these websites and
their users to unnecessary risks and vulnerabilities.

3) Coexistence of Secure and Insecure Protocols: Fig-

Fig. 16. Maximum SSL/TLS Version Supported.

ure 16 shows the preferred SSL/TLS versions supported
for each website. What is interesting is that some web-
sites which support modern TLS versions, such as TLS
1.2 and 1.3, continue to maintain support for outdated
and insecure TLS versions (TLS 1.0 and 1.1). This is
likely done to maintain compatibility with older devices
and browsers, which may not support newer protocols.
These websites allow these insecure protocols to make
themselves accessible to as many people as possible.
This begs whether this is an acceptable trade-off between
compatibility and security.

Fig. 17. Vulnerabilities Detected.

2) Vulnerabilities:
1) Session Renegotiation DOS: Figure 17 shows that

our scans revealed approximately 4,000 websites which
are vulnerable to Session Renegotiation DOS attacks.
This attack can disrupt websites by overwhelming their
capacity to handle multiple requests simultaneously.
Session Renegotiation is renegotiating the current au-
thentication data of a TLS connection instead of starting
a new one. This could happen, for example, if a user was
visiting an online shopping store without an account and
then chose to log in to buy something. Session Renego-
tiation DOS is a known vulnerability and weakness of

ENGR 489 (ENGINEERING PROJECT) 2023 12

TLS 1.2, which has been fixed in the newest TLS 1.3.
The vulnerability abuses that Session Renegotiation is
far more computationally expensive for the server than
the client (15x more). To overwhelm a website, clients
can send many Session Renegotiation requests, over-
whelming the server and potentially causing disruption.
To mitigate this risk, these vulnerable websites should
upgrade to TLS 1.3.

2) OpenSSL CCS Injections: We discovered 22 instances
of OpenSSL CCS Injection vulnerabilities across the
dataset. OpenSSL CCS Injection is a vulnerability that
affects specific versions of OpenSSL, a library used in
TLS implementations, that can be exploited to perform
a man-in-the-middle (MITM) attack. A MITM attack
allows attackers to decrypt, view, and modify any trans-
missions sent between the client and the server. Any
clients with a vulnerable version of OpenSSL would
be susceptible to this attack when visiting any of these
22 websites. This vulnerability could be fixed if these
websites were to update the version of OpenSSL used
in their TLS implementations.

3) Heartbleed: Our survey also uncovered 12 instances
of the Heartbleed vulnerability. Heartbleed is a famous
security vulnerability stemming from a bug in the
OpenSSL library that can be abused to allow attackers
to read sensitive data from a server’s memory. The
bug is located in the TLS heartbeat extension and was
present in many previous versions of OpenSSL until its
discovery in 2012. As before, affected websites are urged
to update the OpenSSL library versions they are using
on their web servers.

Fig. 18. HTTPS Support.

Fig. 19. HTTPS Redirect Support.

3) HTTP/HTTPS Usage:
1) Lingering HTTPS Adoption: As per Figure 18, alarm-

ingly 6.6% of websites still do not support secure
HTTPS. This means some websites still lack the basic
encryption for securing data transmission. Communica-
tion conducted over HTTP is completely unencrypted
and does not use]SSL or TLS, sending data entirely in
plane text. This exposes users’ data to interception by
malicious actors, posing serious security concerns.

2) Absence of Secure Redirection: Our survey also found
that around 11.2% of websites do not support auto-
matic redirection from HTTP connections to HTTPS
19. This refers to upgrading insecure HTTP connec-
tions to secured HTTPS connections wherever possible.
Secure redirection is fundamental to web security as it
prevents users from using insecure HTTP connections
when accessing websites. The absence of this feature
essentially doubles the number of websites that could be
accessed using completely unsecured connections. These
findings highlight a lack of HTTPS enforcement and
proper redirection practices within the .nz domain. This
calls for immediate action to address these vulnerabil-
ities, upgrade protocols, and ensure web security best
practices to protect users’ data.

4) Certificate Lifespans:
1) Certificates Have Short Lifespans: Figure 20 shows a

prominent trend in the average lifespan of certificates.
Our survey shows that approximately 64,000 certificates
were identified as having a 90-day lifespan. This lifespan
of a certificate indicates how long the certificate is valid
before needing to be renewed. This indicates a trend

ENGR 489 (ENGINEERING PROJECT) 2023 13

Fig. 20. Certificate Lifespans.

Fig. 21. Certificate Subject Matches Hostname.

in web certificate issuers opting for shorter certificate
lifespans, which could be done to encourage the adop-
tion of automated certificate renewal tools. Interestingly,
the survey also found approximately 19,000 websites
with expired certificates. Expired certificates can lead to
significant security issues, as without a certificate, users
can not validate the web server’s identity.

2) Mismatched Host Names: Alarmingly, our investiga-
tion also found that approximately 15.45% of certificates
had subject names which failed to match the name of the
domain presenting the certificate. The subject name on a
certificate refers to the object the certificate is assigned
to, in this case, a website URL. A mismatch between
the websites URL and its certificate subject indicates the
website is using an incorrect or misconfigured certificate
or could even be attempting to impersonate another
website.

C. Comparison

When comparing these results to F5 Lab’s findings, our
study is more recent and tailored to the .nz domain. F5 Labs
revealed that 63% of websites designated TLS 1.3 as the
preferred protocol [8]. In contrast, our results show that only
42.48% of websites in the .nz top-level domain prefer TLS
1.3. This is a similar result to the SSL Pulse report, which
found that 64.8% of the top 135,000 most popular websites
preferred TLS 1.3 [11]. This strongly suggestions that TLS
1.3 adoption in the .nz domain lags behind the global web
landscape. However, it is important to note that the F5 Labs
study focused on the top one million websites, which may be
biased towards better security due to their popularity.

In addition, F5 Labs found that 0.4% of websites still
preferred TLS 1.0 and 0.002% still preferred SSL 3.0 [8].
In contrast, our results show that an incredibly low 0.07% of
websites in the .nz domain prefer TLS 1.0 and no websites
were found to prefer SSL 3.0. This demonstrates a positive
trend in the .nz domain, with a significantly lower presence of
severely deprecated and insecure SSL/TLS versions compared
to the broader web landscape. These results indicate that
.nz websites are more willing to discontinue using severely
outdated SSL/TLS protocols but less ready to upgrade to the
latest and most secure TLS 1.3.

Similar to the SSL Pulse report, which reported 99.9%
of websites support at least TLS 1.2, our results show that
99.8% of .nz websites also support at least TLS 1.2 [11]. The
SSL Pulse report also highlighted the presence of websites
supporting outdated TLS versions, including 32.5% supporting
TLS 1.1 and 30.1% supporting TLS 1.0. Our results show
that 28.5% of .nz websites support TLS 1.1 and 23.62% still
support TLS 1.0. This indicates that .nz websites, on average,
support less deprecated SSL/TLS versions than the most pop-
ular websites. SSL Pulse is a monthly survey that accurately
reflects the current state of the web with a comparable time
frame to our investigation.

Regarding vulnerabilities, F5 Labs identified that 2.8% of
websites were vulnerable to TLS 1,2 session renegotiation
DOS. Our results show that a comparable 2.5% of .nz websites
are vulnerable to the same session renegotiation vulnerability.
On certificates, our results agree with those of F5 Labs,
indicating that most certificates for .nz domains also have a
90-day expiry period. Certificates are generally assigned by
a CA, so changes to CA policies would impact all regions
equally.

VI. CONCLUSIONS AND FUTURE WORK

The extensive survey of SSL/TLS and HTTPS configura-
tions in the .nz domain has provided valuable insights into
the state of web security and encryption practices within
New Zealand. Our findings have important implications and
demonstrate clear opportunities for improvement within the .nz
domain. Based on our results, we recommend the following
best practices for enhancing web security within the .nz
domain.

Website administrators are encouraged to upgrade their web
servers to modern and secure TLS protocols, with a minimum

ENGR 489 (ENGINEERING PROJECT) 2023 14

of TLS 1.2 supported. Support for protocols older than TLS
1.2 should be phased out, and SSL should not be supported at
any version. Discontinuing support for these older and insecure
protocols is critical to ensure the safety of both the web servers
and their users.

Adopting certificates with shorter 90-day lifespans is a pos-
itive trend, encouraging automatic certificate renewal, which
prevents certificates from expiring unintentionally. Website
administrators are encouraged to remain diligent and employ
automated certificate renewal processes to minimise the impact
of expiring certificates.

All websites should prioritise the adoption of HTTPS to
ensure secure data transmission. HTTPS is a fundamental
security feature for data security and integrity. Website owners
are strongly encouraged to obtain and install valid SSL/TLS
certificates to enable secure HTTPS communication. Further-
more, the absence of secure HTTPS redirection should be ad-
dressed, as it leaves users vulnerable to accessing websites via
HTTP connections. Implementing secure HTTPS redirection
ensures traffic is automatically directed to HTTPS connections,
enhancing security with limited implementation complexity.

Website administrators should actively monitor for and ad-
dress vulnerabilities such as Heartbleed, Session Renegotiation
DOS, and OpenSSL CCS Injection. Upgrading to secure
protocols and maintaining up-to-date security libraries and
dependencies is the simplest way to mitigate these vulner-
abilities. These vulnerabilities have been well-known to the
public for years and should be addressed soon. The steps
for prevention and mitigation of each vulnerability identified
have been extensively studied and should be implemented.
We recommend that all organisations or individuals with the
resources implement continuous security monitoring for the
web applications. Regular security scans and assessments can
help maintain and improve security standards, finding vulner-
abilities early. Organisations, individuals, and other entities
should follow the best practices, standards, and guidelines for
web security. Initiatives aimed at educating website owners
and administrators about the importance of these best practices
are essential.

The findings of our study serve as a reference point for web
security within New Zealand, against which future research
can be measured. Our survey tools and methodology can be
extended to assess security within other domains, such as
websites in the Australian top-level domain. Our study extends
beyond the .nz domain, providing insights that can benefit web
security standards on a global scale. Future work may involve
extending our tools and methodology to monitor and assess
web security on an ongoing basis, providing valuable data to
the broader cybersecurity community.

Our study contributes valuable insights into the web security
practices within the .nz top-level domain. It highlights the
progress made in adopting secure protocols while identifying
areas for improvement that require attention. The ongoing
commitment to security, education, and increased awareness
are essential for maintaining a safe and secure web landscape
within New Zealand.

REFERENCES

[1] R. Oppliger, SSL and TLS: Theory and practice, Second edition. Artech
House, 2016.

[2] K. Moriarty and S. Farrell, “RFC 8996: Deprecating TLS 1.0 and TLS
1.1.” https://datatracker.ietf.org/doc/rfc8996/. accessed 11-10-2023.

[3] C. Adams and S. Lloyd, Understanding PKI: Concepts, standards, and
deployment considerations. Addison-Wesley, 2010.

[4] R. E. Klima and N. Sigmon, Cryptology: Classical and modern. Chap-
man &; Hall/CRC, 2018.

[5] C. Wong, HTTP pocket reference. O’Reilly, 2000.
[6] D. Warburton, “The 2021 TLS telemetry report.” https://www.f5.com/

labs/articles/threat-intelligence/the-2021-tls-telemetry-report.
[7] V. L. Pochat, “A Research-Oriented Top Sites Ranking Hardened

Against Manipulation.” https://tranco-list.eu/. accessed 11-10-2023.
[8] D. Warburton, “Introducing the cryptonice HTTPS scanner.” https:

//www.f5.com/labs/articles/threat-intelligence/cryptonice. accessed 11-
10-2023.

[9] B. Lokhande, “SSL Labs Grading Update: Forward Secrecy,
Authenticated Encryption and ROBOT.” https://blog.qualys.com/
product-tech/2018/02/02/forward-secrecy-authenticated-encryption-
and-robot-grading-update. accessed 18-10-2023.

[10] D. Fisher, “CRIME attack uses compression ratio of
TLS requests as side channel to Hijack Secure Sessions.”
https://threatpost.com/crime-attack-uses-compression-ratio-tls-
requests-side-channel-hijack-secure-sessions-091312/77006/. accessed
11-10-2023.

[11] Qualys, “Qualys SSL Labs - SSL Pulse.” https://www.ssllabs.com/ssl-
pulse/. accessed 14-10-2023.

[12] web.archive.org, “The top 500 sites on the web the sites in the top
sites lists are ordered by their 1 month Alexa Traffic rank.” https://
web.archive.org/web/20220101025437/alexa.com/topsites. accessed 18-
10-2023.

[13] nabla c0d3, “Nabla-C0D3/sslyze: Fast and powerful SSL/TLS Scanning
Library..” https://github.com/nabla-c0d3/sslyze. accessed 20-05-2023.

[14] D. A. Wheeler, “Preventing Heartbleed,” Computer, vol. 47, no. 8,
pp. 80–83, 2014.

[15] H. Böck, Return Of Bleichenbacher’s Oracle Threat (ROBOT). 27th
USENIX Security Symposium, 2018.

[16] Free Software Foundation, “GNU Affero General Public License Ver-
sion 3 (AGPL-3.0).” accessed 30-05-2023.

[17] Q. Nguyen, Mastering concurrency in python: Create faster programs
using concurrency, asynchronous, multithreading, and Parallel Program-
ming. Packt Publishing Ltd, 2018.

[18] Prbinu, “Prbinu/TLS-scan: An internet scale, Blazing Fast SSL/TLS
scanner (non-blocking, event-driven).” https://github.com/prbinu/tls-
scan. accessed 20-04-2023.

[19] Veracode, “Crashtest Security.” https://crashtest-security.com/. accessed
14-10-2023.

[20] “Health Insurance Portability and Accountability Act of 1996 (HIPAA).”
https://www.cdc.gov/phlp/publications/topic/hipaa.html. accessed 14-
10-2023.

[21] “General Data Protection Regulation (GDPR).” https://gdpr-info.eu/.
accessed 14-10-2023.

[22] I. Consulting, “International Organization for Standardization.” https:
//www.iso.org/home.html.

[23] M. Kolybabi, “ssl-enum-ciphers NSE script - Nmap Scripting Engine
documentation.” https://nmap.org/nsedoc/scripts/ssl-enum-ciphers.html.
accessed 16-10-2023.

[24] Qualys, “Qualys SSL Labs - Projects / SSL Server Rating Guide.”
https://www.ssllabs.com/projects/rating-guide/index.html. accessed 16-
10-2023.

[25] Drwetter, “Drwetter/testssl.sh: Testing TLS/SSL encryption anywhere on
Any Port.” https://github.com/drwetter/testssl.sh. accessed 16-10-2023.

[26] F5-Labs, “F5-Labs/Cryptonice: Cryptonice is both a command line
tool and library which provides the ability to scan and report on the
configuration of SSL/TLS for your internet or internal facing web
services..” https://github.com/F5-Labs/cryptonice. accessed 16-10-2023.

[27] H. C. Rudolph, “TLS ciphersuite search.” https://ciphersuite.info/. ac-
cessed 16-10-2023.

[28] Microsoft, “Microsoft Azure Free Service.” https://azure.microsoft.com/
en-us/pricing/free-services. accessed 12-06-2023.

https://datatracker.ietf.org/doc/rfc8996/
https://www.f5.com/labs/articles/threat-intelligence/the-2021-tls-telemetry-report
https://www.f5.com/labs/articles/threat-intelligence/the-2021-tls-telemetry-report
https://tranco-list.eu/
https://www.f5.com/labs/articles/threat-intelligence/cryptonice
https://www.f5.com/labs/articles/threat-intelligence/cryptonice
https://blog.qualys.com/product-tech/2018/02/02/forward-secrecy-authenticated-encryption-and-robot-grading-update
https://blog.qualys.com/product-tech/2018/02/02/forward-secrecy-authenticated-encryption-and-robot-grading-update
https://blog.qualys.com/product-tech/2018/02/02/forward-secrecy-authenticated-encryption-and-robot-grading-update
https://threatpost.com/crime-attack-uses-compression-ratio-tls-requests-side-channel-hijack-secure-sessions-091312/77006/
https://threatpost.com/crime-attack-uses-compression-ratio-tls-requests-side-channel-hijack-secure-sessions-091312/77006/
https://www.ssllabs.com/ssl-pulse/
https://www.ssllabs.com/ssl-pulse/
https://web.archive.org/web/20220101025437/alexa.com/topsites
https://web.archive.org/web/20220101025437/alexa.com/topsites
https://github.com/nabla-c0d3/sslyze
https://www.gnu.org/licenses/agpl-3.0.en.html
https://www.gnu.org/licenses/agpl-3.0.en.html
https://github.com/prbinu/tls-scan
https://github.com/prbinu/tls-scan
https://crashtest-security.com/
https://www.cdc.gov/phlp/publications/topic/hipaa.html
https://gdpr-info.eu/
https://www.iso.org/home.html
https://www.iso.org/home.html
https://nmap.org/nsedoc/scripts/ssl-enum-ciphers.html
https://www.ssllabs.com/projects/rating-guide/index.html
https://github.com/drwetter/testssl.sh
https://github.com/F5-Labs/cryptonice
https://ciphersuite.info/
https://azure.microsoft.com/en-us/pricing/free-services
https://azure.microsoft.com/en-us/pricing/free-services

	Introduction
	Background

	Related Work
	ssl-tls Configuration Assessments
	F5 Labs
	SSL Pulse

	Certificates and https Usage
	F5 Labs Warburton2021

	Existing Solutions
	SSLyze
	tls-scan
	crashtest-security
	ssl-enum-ciphers
	testssl
	Cryptonice

	Design
	Scanning Tools
	SSLyze vs tls-scan

	Cypher Suite Grading
	Data Storage

	Implementation
	ssl-tls Scanning
	Architecture
	Tools, Libraries, And Languages

	https Probing
	Architecture
	Tools, Libraries, And Languages

	Data Storage
	Data Collected
	Infrastructure
	Data Analysis

	Results and Evaluation
	Performance Metrics
	ssl-tls Scanning
	https Probing
	Network Performance and Ethical Considerations

	Survey Findings
	ssl-tls Configurations
	Vulnerabilities
	http/https Usage
	Certificate Lifespans

	Comparison

	Conclusions and Future Work
	References

