
ENGR 489 (ENGINEERING PROJECT) 2023 1

New Zealand Wide Internet Scanning Data Analysis
for Interesting Trends

Shruti Raja

Abstract—In our increasingly digital society, understanding
cyber behaviour and trends in New Zealand is vital for individ-
uals and organisations to enhance their cybersecurity practices
and protect themselves effectively. However, there is currently a
limited amount of publicly available information regarding cyber
behaviour and trends specific to New Zealand. This project aims
to address this issue by developing an effective tool that will
visualise the data to facilitate identifying interesting trends found
in the data collected by ZX Security. Given the size of the dataset,
we conducted research to identify the most effective data handling
and processing methods, and ultimately chose indexing and
projection for efficiency. The tool extracts relevant information
from the data and generates results in the form of graphs, which
will be analysed and compiled into a publicly accessible report. By
providing insights into New Zealand’s cybersecurity landscape,
this project seeks to contribute to a safer digital society, promote
better cyber practices, and bridge data gaps, ultimately fostering
a more secure online environment.

I. INTRODUCTION

IN today’s interconnected world, cybersecurity has emerged
as a critical concern for organisations and individuals. The

widespread use of devices and the increasing presence of indi-
viduals online have heightened the importance of safeguarding
digital systems and personal information. In New Zealand,
there is a lack of easily accessible data and statistics on cy-
bersecurity behaviour and trends. This shortage of information
is problematic because, without clear data on cybersecurity
behaviour and trends, individuals may remain unaware of
the importance of their online habits, potentially engaging in
practices that inadvertently expose them to cyber threats. This
lack of awareness can lead to an increase in breaches that
could otherwise be avoided. When people know more about
cybersecurity specifically in the New Zealand context, they’re
more likely to pay attention, share what they’ve learned, and
take steps to protect themselves and others. By addressing
the problem of limited accessibility to cybersecurity data and
statistics, this project aims to raise awareness and provide
insights into cyber behaviour, promoting safer practices in
New Zealand. The importance of this project stems from
the potential implications of cybersecurity breaches and in-
cidents, which can disrupt businesses, compromise personal
information, and undermine trust in digital systems. The
project will address this issue by using a dataset collected
by ZX Security. This dataset, in JavaScript Object Notation
(JSON) format, contains details from various New Zealand
devices such as HTTP content, open ports, server software,
and internet service providers (ISPs). Access to this data
is vital for understanding the cybersecurity landscape and
developing effective risk mitigation strategies. The overall

goal of this project is to utilise the available dataset to gain
insights that can improve cyber behaviour and ultimately help
contribute to a safer digital society. Currently, while there
are numerous data analysis tools available, they fall short
in handling the extensive dataset provided by ZX Security,
as its size exceeds their processing capabilities. Additionally,
accessing all the features of these existing tools is often locked
behind paywalls. To overcome these limitations, I will be
developing a tool specifically for extracting and visualising
information from the ZX dataset. This custom tool will have
the capacity to manage the data’s size and will also avoid
the financial barriers associated with existing approaches. The
visualisations generated by this tool will assist in identifying
cybersecurity trends within the New Zealand digital landscape.
These insights will then be consolidated and presented in an
in-depth report that will be made available to the public. By
doing so, the project will not only raise awareness but also
educate the wider community about common cybersecurity
habits and why it’s important to practice strong online safety.

To achieve the goals mentioned, the project aims to produce
two deliverables: 1. A tool that efficiently extracts information
from the dataset and visualises the results. 2. A report that uses
the results of the tool to visualise trends found in the data and
areas for improving cyber behaviour.

By achieving this goal, the project aligns with Goal 4
of the United Nations’ 17 Sustainable Development Goals,
which aims to ensure inclusive and equitable quality education
and promote lifelong learning opportunities for all [1]. The
project’s deliverables will make valuable educational resources
accessible to the public. This accessibility promotes lifelong
learning by providing individuals with the opportunity to
enhance their knowledge and understanding of cybersecurity,
fostering a culture of digital security and responsible online
practices among all users.

One of the main challenges involved in the process of
making this project successful is effectively handling the
substantial amount of data. The dataset is extensive, requiring
the tool to efficiently search and extract the correct informa-
tion requested by the user. By implementing efficient data
searching and extraction methods, the tool will overcome
this challenge and enable meaningful analysis of the dataset.
Specifically, to evaluate the efficiency of our proposed method,
we considered performance metrics, with one metric being
the system’s response time to user requests. In particular,
we focused on the time it takes for the system to generate
a graph based on user input, such as when they click the
button to plot the graph. Through the incorporation of query
optimisation techniques, we were able to enhance efficiency.

ENGR 489 (ENGINEERING PROJECT) 2023 2

Our optimisations have successfully reduced the time, allowing
us to retrieve a years worth of data in just 4-5 minutes. This
achievement demonstrates and effectiveness of our approach in
efficiently handling and processing the extensive dataset from
ZX Security.

To ensure the accuracy and correctness of the graphs gen-
erated by the tool, an essential aspect of our project involved
functionality testing. Functionality testing is a performance
metric we used to verify whether the tool performs its intended
functions correctly. In our case, it was important to confirm
that the graphs accurately represented the data they were
intended to visualise. Functionality testing was conducted by
comparing the results of the graphs generated with the raw
data from the database. The process involved querying the
MongoDB database to extract the same data that the tool
used to generate graphs. By ensuring that both sets of results
aligned, we could confidently confirm that the tool effectively
achieves its objective of providing accurate and meaningful
visualisations.

Throughout the project, considerations for environmental
sustainability and resource optimisation will be taken into
account to minimise resource consumption and enhance com-
putational efficiency. Additionally, we recognise the sensitivity
of the dataset, which contains information related to real
individuals in New Zealand. Therefore, measures have been
implemented to safeguard their privacy and protect other
confidential details.

The remainder of this report is organised as follows. Section
2 covers the literature review, and discusses existing tools with
similar functionality. Section 3 looks at the different tools
and methods tried and used throughout the project. Section 4
presents the conceptual design and implementation of the pro-
posed method and also discusses sustainability aspects. Section
5 covers the different performance metrics used to evaluate the
effectiveness and efficiency of the proposed method. Section
6 presents the results and parts of the report produced for ZX
Security. Section 7 discusses the limitations of the proposed
method. Lastly, sections 8 and 9 will conclude the report and
suggest possible next steps for continuing this project in the
future.

II. LITERATURE REVIEW

To ensure that the tool developed as a result of this project
is unique and provides advantages over existing tools, research
has been conducted to analyse the features and functionality
offered by current tools. There are numerous other tools
available in the market that offer similar functionality to the
tool being developed in this project, with slight differences
and purposes. While it is impractical to provide a review of
every tool, this literature review will focus on key popular tools
that are widely recognised in the field of data visualisation
and analysis. Each of these tools brings its own strengths and
limitations. Tableau, Excel, and Elastic Stack are just a few
examples of the tools analysed.

A. Tableau
Tableau is a widely recognised data visualisation tool known

for its powerful data exploration and interactive visualisations

[2]. It offers a user-friendly drag-and-drop interface, allowing
users to create visually appealing charts, graphs, and dash-
boards. Tableau supports a wide range of data sources and
provides advanced analytics capabilities. However, the main
limitation of Tableau is its pricing model, as it requires a
monthly subscription cost for full access to its features, which
can pose a barrier for some users.

B. Excel

Excel is another popular tool. Though its primary purpose is
to create and manage spreadsheets, it also allows users to input
JSON data. This data is then organised neatly into columns
and rows. [3]. Additionally, Excel provides the capability to
create graphs directly from this organised data. Excel uses its
built-in engine to create graphs and charts from data. This
engine is an integral part of Microsoft Excel itself and does
not rely on external software. Excel is designed to handle a
wide range of chart types and customisation options, allowing
users to visualise data directly within the Excel application.
Excel, while a versatile tool, comes with its set of limitations.
Firstly, the graphs and charts it produces are static and lack
interactivity, which can be a drawback because they limit the
depth of understanding that can be gained from them. On the
other hand, dynamic graphs offer a more engaging experience,
allowing users easier access to details like exact values at
specific points in time. These details will be beneficial when
compiling the report that analyses the trends found. Being able
to interact with the data and see precise values at particular
moments will help to trace patterns back to their origins,
identify correlations, or spot anomalies. This will help improve
the analysis and ensure the conclusions in the report are
accurate. Another constraint of Excel is that it has maximum
row limit of 1,048,576 rows per worksheet. While this capacity
suffices for most purposes, users dealing with large datasets
will encounter performance issues and might need to explore
alternatives. Additionally, Excel’s ability to import and process
JSON data relies on the data being well-structured and clean;
if the JSON data contains intricate nested structures, it may
not be parsed correctly. Furthermore, Excel is not a free
software, and licensing fees are required for its use. These
limitations underscore the importance of considering specific
data requirements and constraints when choosing Excel as a
data analysis tool, as it may not always be the most suitable
choice for tasks involving interactivity, very large datasets, or
complex data structures.

C. Elastic Stack

Elastic Stack is a powerful suite of open-source tools
designed for searching, analysing, and visualising data in
real-time [4]. While the primary use case of Elastic Stack
revolves around log and data analytics, its capabilities extend
beyond this core function. It allows users to ingest and
index data from various sources, making it accessible for
search and analysis. Elastic Stack provides fast search and
querying capabilities. Kibana, another component of Elastic
Stack, offers a user-friendly interface for creating interactive
visualisations from the indexed data. Elasticsearch differs

ENGR 489 (ENGINEERING PROJECT) 2023 3

from relational databases by using a schema-less approach.
Instead of SQL, it employs a Query DSL (Domain Specific
Language) based on JSON syntax for querying. The Query
DSL allows users to create versatile queries for full-text
search, filtering, and aggregations [5]. It is important to
note that Elasticsearch does have a maximum document size
limitation of 100MB. Elastic Stack’s scalability and versatility
make it a valuable tool for security analytics, and business
intelligence however, it can also be complex to set up and
configure, which adds extra time to get past the learning curve.
Effective deployment often requires a good understanding of
the various components and their interactions. Elasticsearch
also has limitations when it comes to handling certain data
types, such as nested arrays or deeply nested JSON structures.
Users may need to flatten or preprocess data to fit the schema.

While these tools share common features and functions, they
have their respective strengths and limitations as discussed
above. One key advantage of the tool developed as part of this
project is that it will be made open source, ensuring costless
accessibility to analyse the data. Additionally, by focusing
specifically on analysing New Zealand-wide internet scanning
data, the tool will help in producing a report that will address a
gap in the existing landscape, as no publicly available reports
analysing such data currently exist. Additionally, the report
will be made publicly available on the ZX Security website,
promoting the open sharing of insights derived from the New
Zealand context.

III. TOOLS AND METHODOLGY

To ensure the successful development of the proposed solu-
tion, critical factors were evaluated to address the challenges
related to the process of accessing and displaying the data.
Key considerations involved identifying suitable tools and
methods for data access and storage, selecting an appropriate
programming language for tool development, researching effi-
cient strategies for data processing, and determining effective
display methods for the graphical user interface (GUI) of the
tool, graphs, and report

A. Data Access and Storage

The data collected by ZX Security consists of approximately
370 million JSON documents in a file that is 142 GB. To
access this data, we had the option of either storing the data
locally via a USB drive containing the file or accessing it
remotely through secure shell (SSH). After consideration, SSH
was chosen as the preferred option due to its benefits compared
to using a USB drive. SSH provides secure remote access
to the server hosting the data. This ensures data integrity
and confidentiality during the transfer and retrieval processes.
Using a USB drive introduces potential risks such as data
loss, theft, or unauthorised access if the drive is misplaced.
With SSH, I can remotely interact with the server’s command-
line interface, allowing for easy data retrieval and subsequent
processing. This eliminates the risk of physical damage or
possible loss of the USB device. For data storage, the decision
was made to use MongoDB by installing it on the ZX Security

server. This choice proved to be advantageous for several
reasons. Firstly, MongoDB is well-suited for handling JSON
data, this simplifies the data storage process, allowing for
transformation and compatibility with JSON-based data [6].
Another benefit of using MongoDB is its ease of access
and flexibility in data retrieval. MongoDB provides a wide
range of query capabilities, allowing for efficient searching,
filtering, and extraction of information from the stored data.
Its query language and indexing mechanisms enable quick data
retrieval based on various criteria, enhancing the overall data
analysis process. Additionally, MongoDB offers a scalable
and distributed architecture, making it suitable for handling
large volumes of data. Since this project involves an extensive
dataset, the scalability of MongoDB ensures that the system
can accommodate the growing dataset without sacrificing per-
formance. While MongoDB was chosen as the preferred option
for data storage, there are alternative solutions available. One
option is traditional relational databases such as MySQL [7] or
PostgreSQL [8]. These databases offer structured data storage
and have robust querying capabilities. However, they require
additional effort and schema definition to accommodate Binary
Javascript Object Notation data (BSON). Additionally, there
are other NoSQL that are designed for handling large datasets
and distributed systems. These databases excel in scalability
and fault tolerance, making them suitable for large-scale data
storage and processing. While these databases offer their own
unique features and strengths, MongoDB was chosen as the
preferred option for this project. One key factor in selecting
MongoDB was its extensive documentation and community
support. Having prior experience and familiarity with Mon-
goDB allowed for a smoother and more efficient development
process, as it eliminated the need to invest time in learning
and adapting to a different database technology.

B. Programming language

When selecting the programming language for developing
the proposed method, Python was chosen as the preferred
option. Python provides a range of useful libraries and
frameworks that can facilitate the development process,
particularly in the domain of data analysis and visualisation
[9]. One notable library is Pygal, which offers a set of tools
for creating various types of graphs and visualisations [10].
Python has support for interacting with different database
systems, including MongoDB, through libraries such as
PyMongo. This compatibility allows for easy integration
between the tool and the MongoDB database used for storing
the collected data.

While there are alternative programming languages avail-
able for this project, Python seemed more advantageous due
to these specific benefits. Other languages, such as Java, also
offer data analysis capabilities and visualisation libraries, but
Python stood out for its simplicity, readability, and extensive
community support. Additionally, my familiarity and profi-
ciency with Python further contributed to the decision, as it
allowed for faster development and reduced the learning curve
associated with a new language.

ENGR 489 (ENGINEERING PROJECT) 2023 4

C. Agile Methodology

For this project, we will be adopting an Agile methodology
to ensure flexibility, adaptability, and continuous improve-
ment. Agile methodology emphasises iterative development,
collaboration, and frequent feedback from stakeholders. By
incorporating weekly iterations, we will be able to gather
regular feedback from clients and stakeholders, allowing for
the incorporation of improvements and addressing any unfore-
seen changes or requirements. Unlike the traditional Waterfall
method, where changes are difficult to accommodate once a
phase is completed, Agile methodology embraces changes as
an inherent part of the development process. This iterative
approach allows for more responsive and dynamic project
management, enabling us to deliver a solution that can handle
changes and ensure a higher level of client satisfaction.

D. Methods of handling large datasets

One of the main challenges encountered during this project
is effectively handling the large volume of data. The dataset
provided is very large in size, presenting difficulties in
efficiently retrieving and processing the data. Working with
large files requires special considerations to ensure optimal
performance and resource utilisation. It has been observed
that traditional approaches are not suitable for handling such
data due to limitations in memory capacity and processing
capabilities. As a result, different techniques and methods
have been explored to tackle this challenge effectively. The
following sections cover the several different approaches that
were explored and evaluated to identify the most effective
method for obtaining this information.

1) Hashing: One of the methods considered to handle the
large amounts of data involved using hashing. This approach
includes reading the BSON data from a file, processing it
using a hash function, and then performing further analysis on
the hashed representation. The hashing method proved to be
fast and efficient, requiring only a small amount of memory
to store the hash table and individual documents. However,
hashing does not provide the original data but rather a hashed
representation of it. To make the output human-readable, a
lookup table would need to be created to map each hash to
its corresponding original data. Given the massive size of
the BSON file, managing and creating such a lookup table
could pose challenges and potentially become too difficult to
handle. Considering the complexities associated with hashing
and managing a lookup table, it was determined that this
method was not the most suitable for the project’s objectives
and timeline.

2) Grep: Next, we explored the Grep command-line tool,
which is commonly used to search for specific text patterns
in files. However, while experimenting with Grep, we quickly
observed that Grep operates by reading and processing one
line at a time, resulting in slower performance and increased
memory usage. The inefficiency of this method can hinder
the progress of the project because it is not suitable for
extracting meaningful insights from the extensive dataset.

Due to these limitations, grep was not deemed suitable for
the project as it was not efficient, and an alternative approach
will be needed to ensure efficient data processing and analysis.

3) Sharding: Another potential method for handling
large datasets in MongoDB is sharding. Sharding is a
horizontal scaling technique that distributes data across
multiple servers or shards [11]. Each shard is responsible
for managing a subset of the data, allowing the database to
handle larger volumes of information and higher throughput
compared to traditional, non-sharded databases that might
struggle with performance and scalability issues under
heavy loads. Sharding works by partitioning data based
on a shard key, which determines how data is distributed
across shards. While sharding can largely enhance database
performance and capacity, it was not a feasible option for
this project. The project’s infrastructure provided by ZX
Security consisted of a single server, which lacked the
necessary multiple servers required for sharding. Therefore,
sharding as a solution was not viable in this particular context.

4) Lazy loading: Another method explored for handling
large datasets was lazy loading. Lazy loading is an approach
that involves retrieving and processing data in small, more
manageable chunks as needed, rather than loading the entire
dataset into memory at once. This technique leverages
the cursor object in MongoDB, which allows for efficient
iteration through large result sets without loading everything
into memory simultaneously. With lazy loading, data is
fetched and processed incrementally, reducing memory and
enhancing performance. To test its effectiveness, we used this
method to identify the most common HTTP proxy versions
in the data as an example. The lazy loading approach was
able to retrieve and process the results in seven minutes,
which was an improvement in response time compared to
the other methods. While this performance was okay, further
optimisations could potentially enhance it even further,
demonstrating the effectiveness of the lazy loading technique
for managing large datasets.

5) Indexing and projection: To enhance the performance
of the proposed method, we combined multiple techniques
to handle the substantial dataset efficiently. Alongside imple-
menting lazy loading, MongoDB’s indexing and projection
features were also integrated into the Python code. Indexing
involves the creation of optimised data structures within the
database engine, efficiently creating a roadmap for swift data
retrieval, and largely speeding up query processes. Projection,
on the other hand, is a query optimisation technique that allows
specifying the exact data fields you wish to retrieve, reducing
data transfer and resource consumption. By combining index-
ing, projection, and lazy loading, we streamlined data retrieval
and minimised resource usage, resulting in improvements in
query execution speed. Testing this on the same previous
example of fetching the most common HTTP proxies, we
were able to retrieve results in two minutes which is a 71%
improvement in performance compared to lazy loading. This
optimisation was essential in enhancing the functionality of

ENGR 489 (ENGINEERING PROJECT) 2023 5

the proposed method.

E. Methods of Displaying Graphs
One of the requirements of this project was to create a report

that visualises trends found in the data. To achieve this, we
had several options for selecting a tool to create informative
and visually appealing graphs. Among the tools considered
were Matplotlib [12], Vega [13], and Pygal [10]. Matplotlib, a
widely used Python library, is known for its graphing capabil-
ities [12]. While Matplotlib produced satisfactory graphs, they
lacked interactivity. Since the primary purpose of developing
this tool was to analyse the graphed data, interactivity became
crucial as it can be challenging to make accurate claims
when dealing with large datasets without the ability to inspect
specific data points on a graph. Consequently, we explored
Vega, a powerful visualisation tool. However, we found it
challenging and time-consuming to set up [13]. Pygal is a user-
friendly Python library for creating interactive and visually
appealing graphs, we found that it met the requirements for
generating graphs [10]. Pygal’s ease of use, combined with its
visually appealing and interactive graph features, made it the
ideal choice for closely examining the data and highlighting
the interesting insights in the report.

F. GUI Libraries
The tool required a GUI with its purpose being to query

the database by letting the user specify the variables to be
graphed. The selected variables will later be passed to Pygal
to graph. We aimed for a straightforward GUI design as it is
a component part of the pipeline to generate the graphs. To
create this GUI, the libraries considered were Tkinter [14],
PyQt [15], and WxPython [16].

1) Tkinter: Tkinter is known for its simplicity and user-
friendly interface [14]. It excels at creating straightforward
GUIs, which makes it a good choice for the requirements of
this study. Tkinter offers a variety of widgets like sliders, list
boxes, check boxes, and radio buttons, which are well-suited
for variable selection tasks. With basic styling options, Tkinter
allows creating a plain and simple GUI that aligns with the
project’s needs. Additionally, Tkinter easily integrates with
Python, allowing for efficient workflow.

2) PyQt: PyQt, on the other hand, provides a rich set of
widgets and controls, which can be advantageous for creating
sophisticated GUIs [15]. However, for this project’s, simple
variable selection and data visualisation needs, these features
will be too much. PyQt does offer extensive customisation
options, enabling users to create highly tailored and visually
appealing interfaces, but this would introduce complexity
that is unnecessary for this project. One notable complexity
when working with PyQt is its signal and slot mechanism for
event handling. While this approach offers a powerful way
to handle user-interface events and customize behavior, for a
simple project that only requires basic variable selection and
button-click functionalities, setting up and managing these
connections can be overkill.

3) WxPython: WxPython is another option we considered.
It offers a diverse range of widgets and native controls,
including those suitable for variable selection tasks [16]. Much
like Tkinter, it provides a native look to different platforms,
which can make the GUI feel familiar to users on Windows,
Mac OS, and Linux. WxPython has an active community and
extensive documentation, which can be a valuable resource for
assistance or additional information.
In conclusion, for a simple and plain GUI primarily focused
on variable selection and data visualisation, Tkinter was a
suitable choice. Its simplicity, ease of use, and straightforward
approach aligned well with this project’s requirements. Tkinter
ensures that we can quickly and easily create a user interface
that will allow us to select variables to query and graph
without introducing unnecessary complexity. While PyQt and
WxPython are powerful for more complex GUI applications,
they weren’t the most efficient choices for this project. Fig.
1 shows the end result of the GUI made with Tkinter and its
visual components.

Fig. 1. The interface of the proposed method.

G. Report Display

In terms of the creation of the report, including its for-
matting and visual aspects, the initial plan was to write
and design it using Google Docs. However, as we began
working on it, it was quickly realised that the resulting
document appeared plain, and lacked elements that could
capture the reader’s attention effectively. Needing a more
visually appealing approach, we considered Canva. Canva is an
online design tool that offers a wide selection of eye-catching
report templates, enabling the selection of a layout that best
suits the project’s needs. Canva’s user-friendly interface and
customisation options made it easy to design the report, from
formatting to selecting fonts and creating attention-grabbing
visual elements [17]. Ultimately, Canva’s design capabilities
helped in transforming the report into a visually engaging and
professional document that effectively conveyed the project’s
findings.

ENGR 489 (ENGINEERING PROJECT) 2023 6

IV. DESIGN AND IMPLEMENTATION

A. Conceptual Design

For the system architecture, the Model-View-Controller
(MVC) design is used to create a well-structured and efficient
framework, where each component plays a different role in
the system’s functionality. The Model represents the database
which acts as the central storage for the data that the system
retrieves and uses from the database. This includes managing
the relevant information and making it readily accessible for
manipulation. The Controller component is responsible for the
GUI. Users interact with the system through this interface,
allowing them to select which variables they want to visualise
in graphs. The Controller takes user inputs and constructs
queries based on the user’s selections and passes them to
the Model (database) for data retrieval. The View component
corresponds to the graphical representation of data. Once the
Controller has retrieved the data from the Model, it is passed
to the View, which then transforms the data into graphical
representations for the user to interpret. The interfaces and
interactions between these components are key to the sys-
tem’s functionality. The Controller communicates with both
the Model and the View, serving as the intermediary. The
controller sends requests and data to the Model for database
operations and receives results that it subsequently passes to
the View for visualisation.

The choice of the Model-View-Controller architectural
pattern for this project is appropriate for several reasons.
MVC offers a clear and organised structure that aligns
well with the specific objectives of the tool developed. The
following section highlights reasons why MVC was the right
choice for this project and an alternative structure.

1) Separation of concerns: MVC enforces a clear
separation of concerns, dividing the application into three
distinct components: Model, View, and Controller. This
separation allows for modular development and maintenance.
In the context of this project, where data retrieval, user
interface, and data visualisation are distinct functionalities,
MVC’s separation of concerns is highly beneficial. It ensures
that changes or updates to one component can be made
without affecting the others, leading to more straightforward
code maintenance.

2) User-centric Interface: The Controller component
in MVC is responsible for handling user interactions and
providing a user-friendly interface. Given the primary
function of the proposed method is to allow users to
query and visualise data, the Controller’s role in managing
the GUI is crucial. It enables users to interact with the
system intuitively, select variables of interest, and trigger
data retrieval and visualisation processes. MVC’s emphasis
on user-centric design aligns perfectly with this tool’s purpose.

3) Flexibility and Maintainability: MVC architecture offers
flexibility in terms of adapting to evolving requirements. As
data visualisation needs or user interface enhancements arise,
the MVC structure can accommodate these changes without

major disruptions to the existing codebase. This adaptability
is valuable in ensuring the tool remains relevant over time.

4) Efficient Data Flow: In MVC, data flows seamlessly
between the Model, View, and Controller components. This
efficient data flow is critical for a tool that retrieves data
from a MongoDB database, processes it, and presents it as
graphical representations. The Controller collects the GUI
state, constructs queries, and interacts with the Model to
retrieve data, which is then efficiently passed to the View for
rendering. This streamlined data flow minimises bottlenecks
and ensures a smoother user experience.

5) Alternative architecture: While the architecture was
a suitable choice for this project, an alternative structure I
considered was Model-View-ViewModel (MVVM). MVVM
is an architectural pattern that is similar to MVC but is often
associated with applications that have rich and dynamic user
interfaces. In MVVM, the ViewModel is responsible for
preparing the data that is presented in the View. While MVVM
can be beneficial for complex user interfaces with extensive
interactivity, it might introduce redundant complexity for a
tool with a primary focus on data visualisation. Since the GUI
requirements for this project were relatively simple, the MVC
pattern provided a more straightforward and manageable
solution. Fig. 2 illustrates the system architecture and the
flow of each component functioning.

Fig. 2. MVC System Architecture of the proposed method.

B. Implementation

The implementation revolves around creating an interface
for querying and visualising data from a MongoDB database.
The system integrates three key components: the GUI, the
database, and the graph visualisation functions.

ENGR 489 (ENGINEERING PROJECT) 2023 7

1) Graphical User Interface (GUI) with Tkinter: The
Tkinter library is used to create a simple GUI that provides
users with options to select the variables they would like to
see graphed. Users can select these variables by clicking the
checkboxes which will be dynamically updated by the GUI
and stored in memory. To select the date range of the data
users want to see, two sliders are provided, as an interactive
way to define the start and end period of data retrieval. The
graphing process is triggered when the “Plot Graph” button
is pressed, this will fetch data from the database and generate
a graphical representation.

2) Database Interaction: The system is designed to
interact with the MongoDB database that stores the required
data. The Database class is responsible for establishing and
maintaining this connection. Key functions of this module
include connection setup, query building, and data processing.
First, the connect method initialises the connection to the
MongoDB database and the specific collection. It takes user-
defined host, database, and collection parameters, providing
flexibility in working with different database setups. Next,
the query method constructs database queries based on
user selections, translating their choices from the Tkinter
GUI into precise queries for data retrieval. Once data is
retrieved, the query method processes it so that the results
can be stored. The data retrieval results in numerous JSON
documents, each containing the variables selected by the
user. In this processing step, the documents are gathered by
aggregating and summarising the data. This includes tasks
such as counting occurrences, calculating percentages, and
transforming the raw data into a structured format. The
processed data is then organised and stored in a dictionary,
simplifying the subsequent graphing process.

3) Graph Visualisation Functions: Graphing is the final
component of the system and it presents the data in a visual
and understandable format. The Pygal library is used to create
informative line graphs, pie charts, stacked bar graphs, and
time series graphs. Each type of graph has its own function
that will be used when a variable that uses that graph type is
chosen. The generated graphs are saved as Scalable Vector
Graphics (SVG) files so they can be easily viewed and
embedded in reports.

In conclusion, the implementation of the system was guided
by several key considerations, including the choice of Tkinter
for GUI development due to its simplicity and Python com-
patibility, the use of MongoDB for efficient data storage and
retrieval, and the selection of Pygal for creating informative
and visually appealing graphs. These implementation choices
were made to ensure a user-centric, efficient, and effective tool
for querying and from a MongoDB database. The system’s
implementation ensures an efficient flow from user interactions
through the Tkinter-based GUI to data retrieval from the
database and finally to graph visualisation. Fig. 3 shows a
flow chart that outlines the key methods used in each MVC
component in order of their functionality.

Fig. 3. Implementation flowchart of the proposed method.

C. Sustainability Consideration

In terms of sustainability considerations, this project up-
holds social sustainability by specifically safeguarding users’
right to privacy. Recognising the sensitive nature of user data,
our proposed method has been designed with data protection
measures to uphold privacy rights of people whose data is
being represented in this study. While the intention behind
the proposed method is to strengthen cybersecurity practices
in New Zealand, it’s important to acknowledge the potential
risks associated with making such information publicly ac-
cessible. Providing too much information can inadvertently
aid malicious actors in understanding the digital landscape of

ENGR 489 (ENGINEERING PROJECT) 2023 8

New Zealand, including potential vulnerabilities and common
trends. Attackers often seek out detailed data about systems,
prevalent security protocols, or common weaknesses within a
specific demographic or geographical location. If the proposed
method were to provide insights that are too detailed without
proper access control, it could potentially serve as a roadmap
for bad actors. Measures have been implemented for this
project to address the inherent risks of sensitive data exposure.
Firstly, all data presented in the report has been anonymised;
specific details such as actual IP addresses, host names, and
other potentially sensitive information are not disclosed. This
approach ensures that while the information remains valuable
for understanding cybersecurity patterns, it does not provide
exploitable details to potential malicious actors. Furthermore,
although the code for the tool will be made open source
to promote transparency and collaboration, it’s designed to
operate as a standalone application without any embedded
data. The code is structured to connect to a database, but
access to the actual database is strictly controlled and lim-
ited to specific authorised team members. This approach to
data access further safeguards sensitive information while
still supporting the proposed methods objective to enhance
cybersecurity awareness and practices.

V. EVALUATION

A. Efficiency

One of the performance metrics used to evaluate the pro-
posed method was efficiency. Efficiency refers to the duration
it takes for the system to react to users requests, specifically
in the context of generating a graph based on user input after
they click plot graph. Efficiency enhances the user experience
and reduces the response time of the system. Initially, without
any query optimisation techniques in place, this process of
querying the data and transforming it into a graph was time-
consuming due to the substantial amount of data the system
needed to process to retrieve relevant information. However,
by implementing optimisation techniques like indexing, pro-
jection, and aggregation, The system was largely improved
in terms of response time. The actual response time depends
on two factors. First, it depends on the time period, i.e. date
range, chosen by the user as longer time periods result in more
data to process and therefore longer response times. Secondly,
it relies on the specific months selected for the query. Some
months contain a high volume of documents, potentially up to
50,000, while others may have as few as 1,000 or even fewer
documents. For example, in a scenario where a user wants to
analyse SSH versions used in the year 2021 and determine
the percentage of users for each version, with optimisation
techniques in place, this task takes approximately 5 minutes to
query the database, compile the relevant documents, and create
a graph. This estimate assumes a stable internet connection.
However, without the benefits of indexing and projection, the
response time would be much longer, up to two hours.

B. Functionality Testing

Another important performance metric employed to assess
the proposed method was functionality testing. Functionality

testing verifies whether the proposed method is operating as
intended. Specifically, it involves confirming that the graphs
generated by the tool are accurate and correct. Functionality
testing is important for this project as the results of the pro-
posed tool directly influence the reliability and trustworthiness
of the information presented to users. To test the functionality
of the system, the MongoDB database was queried using
Mongosh, a MongoDB shell, to retrieve the raw data. Next,
the results obtained from these direct database queries are
compared to the data presented in the generated graphs. If the
data extracted via Mongosh queries matches the data depicted
in the graphs, it signifies that the proposed method accurately
represents the dataset. MongoDB queries via Mongosh are
inherently accurate because Mongosh allows direct access to
the MongoDB database, ensuring that the data retrieved is
an accurate representation of the database contents without
intermediaries or potential data transformation issues such
as data format alterations or unintended modifications. The
subsequent figures show how the database was queried for
functionality testing. Fig. 4 presents the specific query used
to determine the top six most commonly used HTTP proxy
versions within the dataset. It additionally showcases the
counts associated with each of these versions. The query
results display the following:

• ’F5 BIG-IP load balancer http proxy’: 776
• ’HAProxy http proxy 1.3.1 or later’: 244
• ’EZproxy web proxy’: 62
• ’SonicWALL SSL-VPN http proxy’: 21
• ’Squid http proxy’: 14
• ’bad gateway’: 9

Fig. 5 shows a pie chart representation of the data derived
from fig. 4. By comparing the percentages and counts dis-
played on the pie chart with the results from the query, it’s
evident that they match. This alignment between the query
results and the graphical representation assures that the tool
is extracting, processing, and presenting data in the intended
manner, highlighting its effectiveness in functionality testing.

Fig. 4. Query and results for the top six HTTP proxy versions used.

VI. RESULTS

After implementing the proposed method and using its ca-
pabilities, we put together a report for ZX Security; this is the
project’s final outcome. In the report, the focus was on various
key aspects that are crucial for understanding the security
and configuration trends. These categories include Microsoft
IIS web server patching rates over time, monitoring the web
server versions in use, and how they have changed. This
information is useful to know because outdated or unsupported

ENGR 489 (ENGINEERING PROJECT) 2023 9

Fig. 5. Pie chart generated by the proposed method of the top six HTTP
proxy versions used.

versions may contain vulnerabilities that could be exploited
by malicious actors. Additionally, the report includes the
frequency of users relying on certificates signed by Certificate
Authorities (CAs) as opposed to self-signed certificates. It also
highlights the popular CAs in use and the ratio of expired to
valid certificates. The report explores open ports on devices
including what those ports are used for, vulnerabilities asso-
ciated with them, and how they have changed over time, this
information can help in uncovering potential entry points for
cyberattacks. Another section included in the report is about
the adoption of firewalls and IP cameras during different time
periods and how they contribute to security. Adoption trends
of firewalls and IP cameras across different time periods is
important for assessing network security infrastructure because
their presence or absence can impact the network’s strength
against threats and unauthorised access. Lastly, the report
looks into the different versions of SSH being used. Analysing
the versions of SSH in use helps in assessing adherence to
the latest security standards as outdated SSH versions may
expose the network to known vulnerabilities. By examining
these areas, the report helps to gain insights into potential
vulnerabilities, security practices, and technology adoption
patterns of people in New Zealand. The following sections,
derived from the report, demonstrate the insights obtained
using the graphs produced by the proposed method.

A. Self-signed and CA-signed certificates in 2020 and 2022

Fig. 6 presents a stacked bar chart produced by the tool
developed in this study, depicting the percentage of certificates
that were self-signed and CA-signed in 2020 and 2022. Of
those that were CA-signed, it shows which certificate authority
signed it. From these graphs, we can observe that in 2022,
there has been an increase in the use of self-signed certificates
compared to 2020. Self-signed certificates lack the validation
provided by trusted authorities, leading to warning messages
for users and potentially eroding site security confidence.
These certificates are also vulnerable to man-in-the-middle

Fig. 6. Self signed and CA-signed certificates in 2020 and 2022.

attacks, where attackers exploit the absence of validation.
While self-signed certificates offer quick encryption, the shift
emphasises the trade-off between ease, cost, and security.
Organisations should use them cautiously, as obtaining cer-
tificates from reputable authorities remains a safer choice for
ensuring user trust and strong security. In both 2020 and 2022,
Let’s Encrypt stood out as the predominant certificate au-
thority, reflecting its wide acceptance and favor among users.
This preference can largely be attributed to its popularity, as
well as the distinctive nature of Let’s Encrypt as a nonprofit
organisation with a mission rooted in enhancing web security
and privacy [18]. By advocating for the widespread adoption of
HTTPS, Let’s Encrypt aims to foster a more secure and private
online environment. Their services are characterised by acces-
sibility, being both free and user-friendly, allowing websites
of all sizes to effortlessly implement HTTPS and strengthen
their security protocols. Digicert emerges as the next popular
choice, despite its relatively high cost of around $300 annually
[19]. This popularity can be attributed to its exceptional
offerings, including 24/7 customer support, which has earned it
the reputation of being the highest-rated Certificate Authority
for customer service globally [20]. Digicert’s provision of free
reissues and replacements for the entire certificate’s lifespan
adds to its popularity. Though pricier than other options,

ENGR 489 (ENGINEERING PROJECT) 2023 10

organisations prioritising data protection might find Digicert
appealing for its comprehensive support and assurance. The
increase in self-signed certificates in 2022 compared to 2020
can be attributed to factors such as cost considerations and
ease of implementation. Obtaining certificates from trusted
authorities often comes with a cost. In an effort to reduce
expenses, some organisations and individuals may opt for self-
signed certificates, especially if their websites are primarily for
internal use or testing. Self-signed certificates are relatively
easy to create and implement, making them a quick solution
for securing web traffic. This convenience may have led to
their increased use, especially among smaller websites and
personal projects.

B. Microsoft IIS Updates

Fig. 7. Percentage of Microsoft IIS Updates in 2020.

Fig. 7 provides insight into the different versions of Mi-
crosoft IIS being used by hosts in New Zealand in 2020.
From the graph, we can see the majority of users are adopting
more recent versions, specifically 7.5, 8.5, and 10, and the
usage for these versions shows an upward trajectory over
time. This indicates a positive response to security updates and
improvements. In late June, there was a notable increase in the
number of hosts updating to version 10. This spike coincided
with Microsoft issuing an urgent alert about a vulnerability
within the Internet Information Service (IIS) and recommend-
ing immediate server patching due to a surge in cyberattacks
exploiting this vulnerability. The updates during this period
could be attributed to heightened awareness and the immediate
need to address potential security vulnerabilities. However, a
small subset of users continues to employ versions below 7.5.
This practice is problematic as Microsoft has discontinued
support for these older versions, leaving them vulnerable to
known security issues. In light of these findings, it’s important
for organisations to prioritise migrating to supported and more
secure IIS versions to safeguard their systems from potential
vulnerabilities.

VII. LIMITATIONS

The project had certain limitations in the dataset collected
by ZX Security. Firstly, the scans conducted to gather doc-
uments lacked consistency. These scans were not performed
at regular time intervals, making it challenging to establish
a uniform baseline for analysis. Additionally, the number
of documents scanned during each session exhibited large
variability, ranging from as few as 1,000 documents per
month to over 50,000 documents per month. A notable gap
in the dataset occurred in May 2020 when ZX’s server was
temporarily switched off, resulting in the absence of any data
representing activities during that month. These limitations
can largely affect the reliability and interpretability of the
data. Inconsistencies in the timing and volume of document
scans introduce uncertainty into the dataset. For instance,
the lack of consistent time intervals between scans makes
it challenging to track changes or trends over specific time
frames accurately. Additionally, the wide variability in the
number of documents collected in each scan session can skew
the data and potentially lead to misinterpretations. To address
these challenges, converting the data into percentages helped
make it more comparable and useful. Although converting
data into percentages helps in making comparisons more
consistent, it cannot completely mitigate the effects of irregular
data collection practices. The underlying inconsistencies in
timing and document counts remain, which can still introduce
potential biases into the analysis. Therefore, while percentage-
based representation improves data comparability, it is still
important to acknowledge that the dataset’s limitations exist
and are taken into account when interpreting the findings in
the report.

VIII. CONCLUSION

In conclusion, this project aimed to develop a tool to visu-
alise trends from ZX Security’s data and analyse these trends
in a report. The project involved several key components,
including query optimisation, data processing and aggregation,
graph generation, and a report containing the findings. The
proposed method successfully met all its objectives, providing
valuable insights into various aspects of network security.
Through the use of graph visualisations, the proposed method
allowed users to analyse trends in Microsoft IIS web server
patching rates and certificate usage. These insights are critical
for identifying potential vulnerabilities and areas needing im-
provement. The tool’s performance was evaluated in terms of
efficiency and functionality. Optimisation techniques, such as
indexing and projection, largely improved efficiency, reducing
the time required to generate graphs. Functionality testing
confirmed that the proposed method accurately represented the
dataset, enhancing its reliability and trustworthiness. Despite
the limitations of the dataset, the method provided valuable
insights and contributed to a comprehensive report that high-
lighted trends in various areas of cyber security from the
dataset provided by ZX Security.

ENGR 489 (ENGINEERING PROJECT) 2023 11

IX. FUTURE WORK

A. Enhanced GUI

Introducing a feature to save and load queries could save
users’ time when revisiting past graphs. This feature would
allow users to store their preferred query configurations for
future use.
Enabling users to export graph data in various formats (e.g.,
CSV, Excel) can facilitate further analysis or reporting outside
of the proposed method.
By providing the capability to display multiple graphs simul-
taneously, users can compare trends across different variables
or time periods, allowing for more comprehensive insights.
Creating a customisable dashboard where users can arrange
and view multiple graphs, charts, and data tables in a single
layout. This feature simplifies data interpretation and trend
analysis.

B. Predictive Analytics and Machine Learning

Combining predictive analytics and machine learning into
the tool can unlock powerful capabilities for understanding and
addressing cyber trends. Predictive analytics can help forecast
future trends based on historical data, while machine learning
can detect anomalies and patterns that may not be apparent
through traditional analysis methods. Predictive analytics can
foresee the next surge in patching activity or forecast new se-
curity technology adoption rates. Machine learning algorithms
can detect unusual patterns in network behaviour that might
indicate a security breach or the presence of malware. For
example, machine learning can identify patterns of unusual
network traffic. Additionally, machine learning models can
be trained to classify security events and incidents, allowing
for automated alerting and response. For instance, a machine
learning model could classify network events in the data as
normal, suspicious, or malicious, helping to prioritise response
efforts. By combining these techniques, the tool can offer a
proactive approach to network security, it can help organ-
isations stay ahead of emerging threats and vulnerabilities.
Additionally, it can provide valuable insights into network
performance, and user behaviour.
In summary, an enhanced GUI and the integration of predictive
analytics and machine learning can make the proposed method
more user-friendly, insightful, and proactive.

ACKNOWLEDGMENTS

I want to express my thanks to Harith Al-Sahaf, Tomais
Williamson, and Stephen Shkardoon for their support and
guidance throughout the year on this project.

REFERENCES

[1] Goal 4 — Department of Economic and Social Affairs. United Nations,
2022. [Online]. Available: https://sdgs.un.org/goals/goal4 (accessed May
24, 2023).

[2] Tableau Software Review: Pros and Cons of a BI Solution for
Data Visualization. SAM Solutions. 2019, July 30. Retrieved
March 25, 2023, from https://www.samsolutions.com/blog/
tableau-software-review-pros-and-cons-of-a-bi-solution-for-data-visualization/

[3] JSON Connector Documentation. Microsoft. Retrieved March 25, 2023,
from https://learn.microsoft.com/en-us/power-query/connectors/json

[4] Elasticsearch Query DSL Documentation. Elastic. Retrieved March
25, 2023, from https://www.elastic.co/guide/en/elasticsearch/reference/
current/query-dsl.html

[5] Elasticsearch Features. Elasticsearch Features. Retrieved October 13,
2023, from https://www.elastic.co/elasticsearch/features

[6] JSON and BSON. MongoDB. Retrieved March 25, 2023, from https:
//www.mongodb.com/json-and-bson

[7] mysql. MySQL Development. MySQL Development. Retrieved October
13, 2023, from https://dev.mysql.com/

[8] postgressql. PostgreSQL. PostgreSQL. Retrieved October 13, 2023, from
https://www.postgresql.org/

[9] Python. Python.org. Retrieved March 25, 2023, from https://www.
python.org/

[10] Pygal Documentation. Pygal Documentation. Retrieved March 25, 2023,
from https://www.pygal.org/en/stable/documentation/index.html

[11] Sharding: A Database Optimization Technique. TechTalks by Anvita.
Retrieved March 29, 2023, from https://www.techtalksbyanvita.com/
post/sharding-a-database-optimization-technique

[12] Matplotlib. Matplotlib.org. Retrieved March 25, 2023, from https://
matplotlib.org/

[13] Vega. Vega GitHub Pages. Retrieved June 28, 2023, from https://vega.
github.io/vega/

[14] Python Tkinter Documentation. Python Tkinter Documentation. Re-
trieved July 18, 2023, from https://docs.python.org/3/library/tkinter.html

[15] Qt for Python Quick Start Guide. Qt for Python Quick Start Guide.
Retrieved July 18, 2023, from https://doc.qt.io/qtforpython-6/quickstart.
html#quick-start

[16] wxPython Documentation. wxPython Documentation. Retrieved July 18,
2023, from https://docs.wxpython.org/

[17] Canva. Canva. Retrieved August 1, 2023, from https://www.canva.com/
[18] Let’s encrypt. Let’s Encrypt FAQ. Let’s Encrypt FAQ. Retrieved October

13, 2023, from https://letsencrypt.org/docs/faq/
[19] Digicert price. DigiCert Order. DigiCert Order. Retrieved October 13,

2023, from https://order.digicert.com/
[20] Digicert support. DigiCert Contact Us. DigiCert Contact Us. Retrieved

October 13, 2023, from https://www.digicert.com/contact-us

