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Opcodes to Images: A Framework for Early
Detection of Ransomware by Utilising Machine
Learning Techniques

Grace Forsyth

Abstract—Ransomware is a type of malware that is used by
attackers to encrypt data on a victim’s system and demand
a ransom for the key. Ransomware is a devastating problem
for individuals and businesses worldwide. The evolving world
of technology opens the gates for information to be stolen and
destroyed by ransomware, causing massive financial and personal
data loss. To mitigate the harmful impact of ransomware, it is
crucial to develop solutions that can prevent attacks by detecting
them early. The problem with ransomware is that it is often not
discovered on a system until it has executed. By then, it is too late
to prevent all the damage it causes. This project aims to tackle
this problem by developing a Convolutional Neural Network
(CNN) trained on images created out of ransomware binaries.
The model will be able to classify a file as ransomware, detecting
it on its way into a system. The balanced accuracy, classification
accuracy and training time was used for benchmarking. We
compared this method to another state-of-the-art solution, where
the training time was significantly smaller and the accuracy was
effectively competitive.

I. INTRODUCTION

ANSOMWARE is a type of malware that is executed on

a system and controlled by attackers. When executed, the
ransomware traverses the system and encrypts files it finds and
demands a ransom for the key [1]. This means that people lose
access to data and disrupts business operations. Furthermore,
some ransomware will lock down machines, obstructing access
until the ransom is paid. However, even if the ransom is paid,
the attackers may still have exfiltrated the files they found, and
will often sell the information on the dark web. Ransomware is
a prominent problem today with the rise of technology, causing
devastation to businesses and individuals. To truly grasp the
impact of a ransomware attack, one must witness firsthand the
aftermath it leaves behind. Every year, millions of people find
their personal information up for sale on the dark web as a
result of double-tap ransomware. Businesses suffer irreparable
damage to their reputation due to ransomware attacks. The
financial and personal lives of unsuspecting victims are often
shattered, and the effects can be long-lasting.

One of the most challenging aspects of ransomware is
its stealthy nature, frequently catching its targets off guard.
Without warning or early detection mechanisms in place,
victims find themselves at the mercy of ransomware attacks,
with limited options for recourse. The relevance of this project
to society cannot be overstated. Ransomware attacks have
emerged as threat, impacting individuals, businesses, and even
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critical infrastructure. CERT NZ released that in just three
months ransomware reports increased by 500% at the end of
2022 [2]. A ransomware attack on a small IT company at the
end of 2022 in New Zealand gave attackers access to a large
amount of data from different organisations the company had
worked for. Thousands of people’s health insurance, business
and personal data was found being sold on the dark web for up
to $1.58 million, even though the company had paid the very
expensive ransom [3]. A recent attack on Latitude resulted in
over 7 million Australia and New Zealand customers having
to replace drivers licenses and look out for suspicious activity
around credit card applications [4]. The two methods for
malware analysis are static and dynamic. Dynamic analysis re-
quires the malware to be executed whereas static analysis gains
file information without execution. Most existing ransomware
detection utilises a form of machine learning to predict ma-
licious activity based upon various aspects of ransomware.
These aspects are; signatures of the file, functions the file uses
e.g. system API calls, dynamic behaviour observed in a secure
environment and the instructions the ransomware gives to the
computer - operational codes or opcodes. Dynamic analysis is
dangerous because it requires the ransomware to be run and
signature analysis requires the ransomware to be known. By
utilising static analysis of opcodes, the project seeks to provide
a proactive defence against ransomware attacks. To accomplish
this goal, the project involves constructing a comprehensive
dataset comprised of images generated from the opcodes of
both ransomware and benignware (or goodware). Benignware,
also referred to as goodware, describes files that are not ma-
licious. By feeding these images into a Convolutional Neural
Network (CNN) model, the system should learn to differentiate
between benignware and ransomware. This was measured
based on a high balanced accuracy, expected to be above 80%,
which would show the CNN'’s ability to use these images
for detecting ransomware. The CNN model achieved a high
average balanced accuracy of 84.17%, effectively competing
with other existing state-of-the-art solutions.

By providing an early detection mechanism, this project
offers the potential to minimise the devastating consequences
of ransomware. Timely identification of ransomware can allow
for prompt action, mitigating the spread of the ransomware
and limiting the damage inflicted on victims. Furthermore, it
is important to consider the environmental and sustainability
aspects related to the problem and the proposed solution.
Ransomware attacks not only cause direct harm to individuals
and businesses, but also have broader implications to the
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environment.

A. Goals

The overall aim of this project is to develop a static-
based malware analysis method for the early detection of
ransomware through converting file binaries to images and
utilising a CNN for binary classification.

The main contributions of this project are:

o Extracting opcodes from ransomware and goodware files

to transform into an image.

e Perform preprocessing to enable optimisation for the

CNN.

o Construct a CNN that is able to differentiate between the

ransomware and goodware files.

o Evaluate the performance against existing methods and

analyse the results to provide insights into the model.

B. Benchmarking

We compared the results of this project with another state-
of-the-art ransomware classification method; A few-shot meta-
learning based Siamese neural network using entropy features
[5]. We compared results in terms of balanced accuracy
and training times. We used the exact same dataset as this
study, therefore the comparisons are more suitable. However,
a difference in terms of performance measure is that in this
project we performed binary classification, and in the study,
they performed multi-class classification.

C. Organisation

The following is an overview of the report’s organisation:
Section II discusses related work along with existing solutions
and also introduces a background on ransomware analysis
and machine learning techniques. Section III discusses the
design and implementation of this project’s proposed solution
of using a CNN to classify images as ransomware. Section [V
discusses the experimental settings and Section V discusses the
results from the project’s implemented solution, including the
performance metrics mentioned above in I-B. Then, limitations
of this paper are discussed in Section VIII and sustainability
considerations relating to this project are addressed in Section
VIL

II. BACKGROUND AND RELATED WORK

This section will introduce a background in ransomware
analysis and machine learning techniques. Then, related works
with relevance to this project will be listed and discussed in
detail.

A. Related Work

The most widely used ransomware detection for businesses
is CrowdStrike [6]. CrowdStrike is an industry-leading cyber-
security company that provides a range of services. The most
relevant to this report is the malware (including ransomware)
detection and prevention service. This utilises multi-level
machine learning which combines file analysis, behavioural

analysis, and indicators of attack to detect malware and
ransomware [7]. Therefore, the method for detection is very
large, complicated, and powerful. CrowdStrike released that
their models achieved 99.4% malware detection rate in the
AV-Comparatives Malware Protection Test with zero false
positives [8]. With an accuracy that high, it is clear why they
are industry-leading. A downside to the use of CrowdStrike is
the cost. CrowdStrike is an expensive service to run, designed
for relatively large organisations, and requires constant updates
and large databases to keep up with the rapidly evolving new
versions of malware.

Researchers have developed several machine learning mod-
els based solely on file analysis. Khan et al. proposed DNAact-
Ran which involves the selection of important features from
preprocessed ransomware and benignware file data using
Multi-Objective Grey Wolf Optimisation (MOGWO) and Bi-
nary Cuckoo Search (BCS) algorithms [9]. These selected
features are then utilised to generate a digital DNA sequence.
To train the model, an active learning classification algorithm
was employed alongside a linear regression machine learning
algorithm to detect the ransomware family, enabling multi-
class classification into different ransomware families. The
proposed approach demonstrates promising results, with an
accuracy rate of 87.9% achieved [9]. The main limitation
of this algorithm is the expensive processes used to process,
select, and create the DNA sequenced data which is convoluted
compared to other processes such as focusing just on opcode
frequencies or signatures.

Baldwin and Dehghantanha [10] performed classification
of crypto-ransomware and benignware using static analysis.
They extracted opcodes from the executables, and repre-
sented these as density histograms. They then used Sequential
Minimal Optimisation (SMO) training for a support-vector
machine learning algorithm implemented with a polynomial
kernel to classify opcode data into ransomware or benignware.
They achieved 100% accuracy with binary classification and
96.7% accuracy with multi-class classification into crypto-
ransomware families. This method of relying on the opcodes
required more preprocessing as opcodes like MOV and PUSH
are extremely common in both ransomware and benignware
[10].

Another study performed by Khammas [11] focuses on
extracting hierarchical features from ransomware families,
since each family shares common features. Byte-level static
analysis is performed by extracting features directly from
raw executable file bytes, using N-gram features. Feature
selection is performed using the Gain Ratio method to reduce
feature dimensionality and select the most important features.
The random forest classifier is used for classification. The
classifier combines predictions from multiple decision trees
through majority voting. The experiments demonstrate a high
accuracy of 97.74%. Overall, the framework achieves effective
ransomware attack detection by leveraging static analysis,
feature extraction, feature selection, and the random forest
classifier [11]. While an effective technique, the preprocessing
process of extracting hierarchical features is relatively lengthy.

Zhang et al. [12] collected 1,787 ransomware samples
from eight different families as well as 100 benignware
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samples. They transformed the opcode sequences into N-gram
sequences and selected important N-grams based on Term
Frequency —Inverse Document Frequency (TF-IDF) ranking
[12]. Using these N-grams, they built classification models
using five machine learning algorithms. The experiments in-
volved different N-gram lengths (1, 3, and 4) and varied
feature dimensions. The Random Forest algorithm yielded
the best results, achieving an accuracy of 91.43%. The F1-
measure for the “Wannacry” ransomware family remained
consistently high at 99.0%. The binary classification between
ransomware and benignware reached an accuracy of 99.3%.
The study highlights the effectiveness of using the Random
Forest algorithm for accurately classifying ransomware based
on opcodes and achieving high detection performance for
specific ransomware families [12]. However, there is a high
imbalance in the ransomware vs benignware class samples.

In a similar study, Zhang et al. [13] collected a dataset
of ransomware samples from different families and trusted
software samples. They extracted features from the opcode
sequences of the ransomware samples using static analysis.
The features are also ranked using TF-IDF, and selected N-
grams are used to build classification models using machine
learning algorithms such as SA-CNN, Naive Bayes and k-
Nearest Neighbour (k-NN). To address the challenges of han-
dling long opcode sequences, the authors propose a framework
based on deep learning and self-attention mechanisms. The
opcode sequences are partitioned, and a Self-Attention based
Convolutional Neural Network (SA-CNN) is constructed to
capture long-range dependencies. The outputs of SA-CNNs are
concatenated to form sequential intermediate features, which
are further processed using a bi-directional self-attention net-
work for classification. The average Fl-score, which was
used to measure the model, was 0.873. This was the highest
compared to other machine learning algorithms such as Naive
Bayes and k-NN [13].

Another paper proposed a state-of-the-art solution for ran-
somware classification using entropy features [5]. The paper
proposes the approach of using deep learning techniques
to detect and classify different ransomware classes. A key
obstacle they tackle involves the complexity of crafting a
proficient deep-learning solution, primarily arising from the
scarcity of training samples and the bias inherent in models
trained with limited data. Therefore, the paper proposes a
few-shot-meta-learning based Siamese Neural Network, which
utilises the entropy feature directly obtained from ransomware
files for classification in comparison to images. The proposed
approach generates significantly more accurate weight factors
as compared to a model with a limited number of training
values. The authors evaluate their proposed model on a ran-
somware dataset containing 11 different classes and bench-
mark it with various deep learning models. Their experimental
results show that their proposed model is highly effective,
providing a weighted F1-score of over 86 percent. The authors
acknowledge, however, that their model is significantly more
complex than other models and therefore in this project we
had to consider the limitations this imposed such as training
times and higher computational costs [5].

B. Ransomware Analysis

As mentioned previously, the two types of malware and
ransomware analysis are static and dynamic. Static analysis
of ransomware involves examining the ransomware without
actively running it. This is the safest and easiest type of
ransomware analysis. Using tools, analysts can examine the
imports, strings and APIs malware uses, which hints at the
functionality. Like any executable file, ransomware at a low
level is constructed from a set of instructions telling the
system what to do when it is run. These instructions are
known as operational codes or opcodes. Static analysis enables
us to examine these opcodes and from there, we can make
an informed decision of what the ransomware does without
running it. Dynamic analysis of ransomware involves the
examination and observation of its behaviour in a controlled
environment. It typically involves running the ransomware
sample in a secure and isolated environment, such as a
virtual machine, to analyse its interaction with the system, file
modifications, network communications, encryption processes,
and any other malicious activities. Dynamic analysis often
requires more resources, time, and expertise to set up and
conduct experiments in a controlled environment.

This project aims to address the challenge of detecting
ransomware, by developing a machine learning model that can
detect ransomware at an early stage, by using static analysis
techniques before it has a chance to run on a system. The idea
of using machine learning to detect ransomware early in this
project stems from the fact that many ransomwares perform
similar tasks such as traversing through file systems and
encrypting files, so they will also have similar opcodes. Using
these opcodes gained from static analysis, we can effectively
create a deep learning model that will be able to classify a file
as ransomware or benignware (free of ransomware).

C. Machine Learning Techniques

There are many Machine Learning (ML) techniques that
are designed for different purposes and datasets. Supervised
learning is where the ML model learns from labelled training
data. It is well known for specific tasks such as classifica-
tion and regression where the target output is known during
training. Unsupervised learning involves training a model on
unlabelled data to discover patterns, structures or relationships.
Clustering algorithms such as K-Means or DBSCAN are often
used in unsupervised learning of sequential data. Sequential
data has dependencies or relationships within the data, such as
text and speech. Semi-supervised learning combines labelled
and unlabelled data to train an ML model. This aims to
use the unlablled data to improve the model’s performance.
RNN/LSTM as well as Multilayer Perceptron (MLP) neural
networks can be used in semi-supervised learning. A Mul-
tilayer Perceptron (MLP) is a type of feedforward artificial
neural network (ANN) that consists of multiple layers of inter-
connected nodes, also known as neurons. MLPs are versatile
and can be applied to various tasks including classification,
regression, pattern recognition, and function approximation.
Reinforcement learning involves learning through interactions
with an environment and receiving feedback in the form of
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Fig. 1. Illustration of max pooling and average pooling [14].
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Fig. 2. CNN basic visualisation [15].

rewards or penalties. This technique is useful for training
autonomous vehicles to make decisions, such as lane changes
for example.

The algorithm chosen to classify opcode images in this
project is based on utilising CNNs for image classification.
A CNN is best for image data due to the layers and filters
it uses to detect edges as well as its ability to perform well
with large amounts of data. The key components of a CNN
include convolutional layers, pooling layers, fully connected
layers, and activation functions. Commonly, the input image
is preprocessed and then passed through a convolutional layer.
This layer is responsible for applying filters, or kernels, to the
image to extract features by using elemental-wise multipli-
cation and summing. An activation function ReLU (Rectified
Linear Unit) is applied elementwise to introduce non-linearity
into the network. Afterwards, it is passed through a pooling
layer. The pooling layer downsizes the data by performing
average or maximum calculations on it, as represented in Fig.
1.

This process is repeated however many times suitable for
the feature extraction before the image data is “flattened”. This
fully connects the layers by performing a matrix multiplication
between the flattened input and a set of learnable weights,
followed by the ReL.U activation function again. Next, it is
passed to an output layer, which uses the Sigmoid activation
function to classify the image. The network is then trained us-
ing gradient descent optimisation methods, where the weights
of the network are adjusted based on the calculated gradients,
therefore minimising a defined loss function. A basic visual
overview of the steps is presented in Fig. 2.
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Fig. 3. The overall algorithm of the proposed method.

III. DESIGN AND IMPLEMENTATION

Fig. 3 shows the overall process of the proposed method
in this project. Ransomware and goodware binaries are taken
and transformed into images. This creates the dataset, which
is then split into training, validation and test sets. They are
subsequently passed through a CNN, with the classification
results being outputted where they can then be analysed. Refer
to the below sections for an in-depth explanation of each step
in this process.

A. Dataset Creation

The dataset for the early detection of ransomware CNN
model was comprised of images generated from the opcodes of
a collection of ransomware and goodware samples. There were
756 ransomware files and 337 goodware files. By extracting
the binaries of the files, each byte can be assigned a value
between 0 and 255. These are then transformed into pixel
intensities to form an image representation. This process
enables the conversion of each ransomware and benignware
sample into an image, forming the foundation of the dataset.
Originally, the project involved the creation of four types of
images that could be used for the model. To craft the images,
Python was employed with standard file reading and image
creation libraries. Opcodes were read as the file binaries, and
each byte converted to a pixel value between 0 and 255. The
first type of image generated was a Portable Grey Map (pgm)
image where each pixel is created out of the average of every.
This process is represented in Fig. 4.

Averaging three values gives decimal points. To fix this
issue, the values are rounded to the nearest integer. Fig. 5
contains an image created by averaging every three bytes of a
benignware sample to form pixels.

The next three images created from the file samples are multi-
channel pgm images based on the equation of binary-to-pixel
conversion below.

Assume the binary values are: ala2a3b1b2b3clc2c3d1d2d3
Image 1: alblcldl
Image 2: a2b2c2d2
Image 3: a3b3c3d3
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Fig. 5. Average of every three bytes image.

These three images serve as three channels of an RGB image.
An example of these images created from a benignware sample
can be found in Fig. 6.

We chose to use the average of every three bytes to construct
the dataset for the CNN as this can be a good representation
of opcodes. Opcodes have different number of bytes per
operation, so ensuring proper representation of each opcode
is impossible.

An interesting issue encountered when creating the images
occurred when the code was initially not reading enough data,
and seemed to predominantly pick up on resource sections of
the file. This made the images pick up on the file icons stored
in the file’s resource section and display the icons. An example
of this is provided in Fig. 7, where a Compact Disk (CD) logo
can be clearly seen across the bottom of the image.

Fig. 6. Image types 1, 2 & 3 of multi-channel images.
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Fig. 7. Image showing CD icon.

This highlights the importance of reading a large enough
amount of data so that the header is not the only part of the file
included in the image. An obfuscation technique of malware
is displaying itself as a common file type such as MP3. Other
standard benign executable files will also store icons within
the resource section of a file so this is not a relevant feature
for the distinction between ransomware and benign files.

The script for this file-to-image conversion process was
constructed using Python. Python was chosen because of its
built-in file-reading capabilities and ease of use.

1) Environment: Because ransomware is a malicious
program, safety measures had to be considered during the
creation of the images. A safe environment was constructed by
transferring the zipped and password-protected ransomware
samples onto a Windows 7 Virtual Machine (VM). The VM
was then disconnected from the network, air gapping it as
per the project’s safety plan. This precautionary measure
guaranteed that the ransomware was unable to cause any
damage once unzipped and can be seen in the system
overview in Fig. 3. Windows Defender had to be disabled on
the VM as it would quarantine the ransomware files during
the conversion to images. Consequently, the dataset of images
was then deemed safe for use on the ECS machines. The
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goodware images did not need to be created in an air gapped
environment as they were not malicious.

2) Preprocessing: To preprocess the images, the main
challenged encountered was the difference in ransomware and
goodware file sizes. The CNN model, which will be discussed
in the next section, requires images of the same sizes. To
achieve this, the lowest file size of 70KB was considered.
Therefore we read that amount of data for every file to create
the pgm images. This meant that every image was constructed
out of the same amount of pixels (and therefore bytes). The
average file sizes can be seen documented in Fig. 8.

We also chose to scale the pixel values to a range between
[0-63] for the images. While scaling pixel values to a range
of [0-1] is a common practice, in this specific context, it
was not preferred. This was driven by the assumption that
using a [0-1] range may not effectively capture the variation
in the data. The idea of the pixel scaling was to help in
reducing the computational requirements, as well as memory
usage, during training and inference. Some neural networks
may converge faster or perform better when dealing with
data in a smaller range. Scaling the values to 0-63 helps the
network’s weights and biases adjust more efficiently during
training [16], [17]. This is advantageous when working with
limited computational resources or memory constraints. A
smaller range can also lead to a simpler model, which can
be beneficial in situations where model complexity needs to
be managed. It can also help reduce overfitting, especially in
cases where the original data may contain more details than
necessary (e.g. standard operational codes like MOV and JMP
that are very frequent in most executable files) [16], [17].

B. CNN Model

For the model, the dataset is partitioned into three sets for
training, validation, and testing purposes. The training and
validation datasets are employed during model training, with
supervised learning utilising the labelled images (ransomware
and benignware) to evaluate the model’s performance. The
validation dataset enables the selection of the final model and
provides an assessment of when to stop early if the model
is overfitting. The test dataset is used to evaluate the trained
model’s performance. The 60:20:20 split is a commonly used
ratio because it strikes a balance between having enough
data for training (which is essential for building a robust

model) and having sufficient data for validation and testing
(which is necessary for reliable model evaluation). This ratio
is especially suitable for datasets of moderate size [18].

Python along with the TensorFlow and Keras libraries are
used to construct the CNN. TensorFlow, as an open-source
machine learning framework, provides a robust backend for
efficient computation and network optimization [19]. Keras, a
high-level neural network API, offers a user-friendly interface
to define and train the CNN model. Leveraging TensorFlow’s
extensive operations and Keras’ abstraction layers, the CNN
architecture can be customised to include convolutional layers,
pooling layers, and fully connected layers for feature extrac-
tion [20]. The libraries also provide diverse pre-processing
utilities, such as image augmentation and normalisation, to
enhance the network’s robustness and generalisation.

The CNN model was comprised of a chosen amount of
layers, as depicted in Fig. 3. The layers in a CNN are
responsible for feature extraction through a process called
convolution and pooling. The convolutional layers apply a set
of learnable filters (also called kernels) to the input data. These
filters are small, spatially localised grids. As the filters slide
(convolve) across the input data, they perform element-wise
multiplications and product-sum the results. This operation
captures local patterns or features within the data. Each filter
produces a feature map that highlights a specific pattern de-
tected in the input. Multiple filters are applied simultaneously,
producing multiple feature maps. These feature maps capture
different patterns and gradually become more complex. After
the convolution operation, the activation function ReLU is
applied to the feature maps. This introduces non-linearity
into the network, enabling it to learn complex relationships
between features by replacing negative values with zero while
leaving positive values unchanged. Next, a max-pooling layer
is applied. Pooling reduces the spatial dimensions of the fea-
ture maps while retaining essential information. Max-pooling
involves selecting the maximum value within a small window
(e.g. 2x2 or 3x3) and discarding the rest. This down-sampling
helps make the network more robust to variations in the input.
After three convolutional and pooling layers, the feature maps
are flattened into a 1D vector. This prepares the data for input
into the fully connected layers. The choice of three layers
here stems from the observation made in related work of
keeping the model as simple as possible to explore efficient
training times [5]. In the fully connected “Dense” layers,
the network learns global patterns and relationships from the
features extracted in the earlier layers. Each neuron in these
layers is connected to every neuron in the previous layer.
These layers perform complex transformations to map the
representation between the input and output (classification).
The CNN model constructed in this project has a “Dropout”
layer between the final two “Dense” layers. The Dropout
layer helps prevent overfitting by randomly deactivating units
during training, making the network more robust [21]. The
final Dense layer employs the Sigmoid activation is used to
squash the output value between 0 and 1, representing the
probability of the input being in the positive “ransomware”
class for binary classification [22].

Increasing the number of convolutional and pooling layers



ENGR 489 (ENGINEERING PROJECT) 2023

TABLE I
HYPERPARAMETERS [5]

Parameter Value
Epoch 50
Batch Size 24
Learning Rate le-4

Rescaling Factor 1/255

allows the CNN to develop a deeper hierarchy of features.
Lower layers tend to capture low-level image details such
as edges or textures, while higher layers learn more abstract
and semantic representations. As the images are complex and
indistinguishable to the human eye, more than two layers was
preferable. Three layers is a shallow network, but suitable to
the amount of training samples we have. A larger network
would require more training samples. This feature extraction
process enables the CNN network to progressively learn and
comprehend complex concepts. This contributes to its ability
to generalise and make accurate predictions. The hyperparam-
eters used can be found in Table 1.

These hyperparameters are taken from a state-of-the-art
research paper [5], which applied machine learning to entropy
features of ransomware and goodware. Due to their success,
and the fact that the datasets used are the same, we decided
to incorporate their hyperparameters into this project to keep
them consistent.

IV. EXPERIMENTAL SETTINGS

As mentioned in Section I-B, we used the same dataset as
the authors used in [5]. This dataset was comprised of 785
ransomware samples and 328 goodware samples converted
into images. The images for the experiment were constructed
from the average of every 3 bytes, as mentioned in Section
III-A. In [5], they performed multi-class classification on
entropy features taken from the file samples. They used a
siamese neural network, two CNNs that had shared weights.

We evaluate our method’s performance based on classifi-
cation accuracy, balanced accuracy and training times. The
experiment consisted of 30 runs of our CNN where it was
trained, validated and tested on the same datasets. The machine
used for this experiment was the same each time, model Dell
Optiplex 7060 PC.

V. RESULTS AND PERFORMANCE METRICS

The proposed model is evaluated using the balanced accu-
racy and training time analysis.

Balanced accuracy provides a balanced assessment of the
model’s performance because it considers the ability of the
model to correctly classify instances of both the positive and
negative classes. It is calculated as below:

correct;

1
total; ’ M)

1 Nl

Balanced Accuracy = i Z

=0

where NN is the number of classes, correct; is the correctly

classified instances and total; is the total number of instances,
for the ith class, respectively.

TABLE 11
COMPARISON OF OUR MODEL AND STATE-OF-THE-ART SOLUTION.

Metric Solution [5] Our Model
Average Balanced Accuracy 95.92 84.70
Highest Balanced Accuracy 100.0 92.10

When the class distribution is imbalanced, a high overall
accuracy can be misleading, as the model may be primarily
predicting the majority class. Balanced accuracy helps account
for this issue, providing a more equitable evaluation of the
model’s effectiveness. As illustrated in Table II, the CNN
model achieved an average balanced accuracy of 84.7%.
The highest balanced accuracy reached was a very promis-
ing 92.1%. These results underscore the model’s ability to
differentiate effectively between ransomware and goodware,
even in scenarios where the class distribution is imbalanced
thereby making reliable predictions for both classes. The
benchmark solution method [5] achieved a higher average and
best balanced accuracy, as seen in Table II, but out model
remains competitive.

One notable advantage of the proposed approach is the
significantly reduced training time in comparison to a state-
of-the-art solution [5]. The state-of-the-art proposed solution
is significantly more complex and therefore has a much higher
training time compared to that of the proposed method in
this project, as depicted in Fig. 9. Training time is a critical
factor in the practical implementation of machine learning
models, especially in scenarios where time-sensitive decision-
making or real-time analysis is required. This scenario is
especially applicable to ransomware detection due to the
high stakes. As ransomware attacks continue to evolve, the
ability to quickly adapt and retrain models with updated threat
data is crucial. The efficient training process facilitates this
adaptability, allowing for the incorporation of the latest threat
intelligence and ability to stay ahead of the threat landscape.

The efficiency of our training process stems from a com-
bination of factors, including the simple model architecture
and data preprocessing. By streamlining these elements, the
model has achieved a huge reduction in training time while
maintaining competitive performance.

VI. FURTHER ANALYSIS

TensorFlow’s CNN capability outputs the classification ac-
curacy which can be calculated as:

Number of Correct Classifications

Accuracy =

2

The classification accuracy was used during training to
monitor the training accuracy over the epochs, forming a
convergence graph. Fig. 10 shows the convergence graph of the
average classification accuracies over 30 different experiments
at each epoch. The whiskers show the range of accuracies at
each epoch. Smaller whiskers imply a more consistent model,
one that tends to converge to the same local minimum of
the search space across different runs or experiments. This
consistency suggests that the model’s training is stable, and
it reliably finds the same or very similar solutions when

Total Number of Classifications
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Fig. 9. Training time comparison of the proposed method and the benchmark
method.

Fig. 10. The convergence graph for the proposed method.

trained multiple times. Conversely, larger whiskers indicate
that the model is exploring different local minima within
the search space during different runs or experiments. Fig. 9
demonstrates that the training accuracy reaches approximately
84% at epoch 50. The whiskers do not decrease in size as
training progresses. This observation suggests that the model
may be less consistent. However, as the whiskers are not
changing in size, this reflects the model’s consistency across
all runs. While larger whiskers may indicate some variability,
it also shows that the model is exploring various areas of
the problem space in each experiment. Also in Fig. 9, it is
apparent where the model is in the exploration phase and
exploitation phase. In the context of reinforcement learning,
a model must first explore new actions to learn about its
environment (exploration) and then exploit known actions to
maximise its rewards (exploitation). Exploration is shown by
the model making large jumps in terms of the steeper increase
in accuracy as shown in Fig. 9. Then the model makes smaller
movements to exploit the information it has gained. This is
picture in the smaller increases in accuracy towards the later
epochs on the graph, ultimately leading to convergence.

VII. SUSTAINABILITY CONSIDERATIONS

This project, by focusing on early detection of ransomware
through a machine learning model, presents notable implica-

tions for sustainability considerations, namely encompassing
environmental, social, economic and technical aspects.

A. Environmental Sustainability

Despite this project not impacting the environment directly,
the indirect contributions due to the nature of cybersecurity are
considerable. Swiftly detecting ransomware with CNN-based
analysis can potentially reduce the environmental footprint
associated with recovery efforts of ransomware attacks. With
diligent cybersecurity, individuals and organisations alike can
significantly minimize resource wastage.

B. Social Sustainability

Privacy is one of the potentially most pressing social sus-
tainability issues, valued unequivocally by both individuals
and organisations. In terms of privacy, this project directly
addresses ransomware attacks that compromise sensitive in-
formation. By developing a proactive defense mechanism, the
project absolutely aids in protecting the privacy, and thus
security of not just individuals but potentially communities.
This ultimately enhances social well-being and fosters a sense
of much needed security in the digital realm, ultimately
contributing to social sustainability.

C. Economic Sustainability

Economic implications of ransomware are obvious and sub-
stantial, and often why solutions are first considered. Ranging
from directly paying ransoms to other economic effects such
as recovery and reputation damage. A focus on cybersecurity
can secure digital assets for individuals and organisations,
as well as increase financial trust in existing systems and
services alike. Therefore, the early detection system that my
project delivers offers potential direct cost savings, as swift
identification can reduce economic burden of recovering from
a ransomware attack as well as direct ransom attempts, thereby
supporting economic sustainability in both short and long-term
solutions.

D. Technical Sustainability

The project aligns directly with technical sustainability by
utilising appropriate technologies, specifically using a simple
CNN for efficient and effective detection of ransomware.
The choice of my project to use a CNN demonstrates clear
application of cutting-edge technology that supports functional
and maintenance requirements of technology over a sustained
time period. The use of this specific technology ensures that
the project stays relevant and effective, therefore technically
sustainable, in the ever-evolving landscape of technology,
especially cybersecurity.

VIII. LIMITATIONS AND FUTURE WORK

A constraint identified during the development of the
project’s system is the absence of a preemptive check for
packed ransomware files before the transformation into im-
ages. In future applications, a careful consideration should
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be made to ensure the dataset’s validity and integrity by
unpacking the packed ransomware samples before they are
converted into images. The purpose of packing is to obfuscate
the code and make it more challenging to analyse or detect
by security analysts and antivirus software. By employing
packing techniques, ransomware authors aim to evade detec-
tion, prolong their malware’s lifespan, and increase its chances
of successfully infecting systems. Unpacking the ransomware
before the image creation would show the true instructions or
opcodes it gives the system, adding to the data’s validity and
integrity.

Another constraint identified was the loss of information
during converting the binaries to images. Representing files
as images inherently leads to the loss of data because this
process took the first 70KB of all files, missing the rest.
This data could contain crucial characteristics of the files,
potentially impacting the model’s ability to discern certain
ransomware patterns. In future, the header of the files could be
skipped as that data is not as highly correlated to ransomware
classification.

Another limitation identified was the dataset size. The
dataset is relatively small and imbalanced compared to that
of other studies. A larger dataset would provide the model
with more training data so the model can learn to differen-
tiate between subtle variations in ransomware and goodware
behaviour. Expanding the dataset can help address the issue
of class imbalance, creating a more equal representation of
ransomware and goodware instances. This, in turn, could lead
to a model that is less biased toward the majority class,
ultimately reducing the likelihood of false negatives.

To further evaluate this model’s performance, we aimed to
perform a statistical significance “T” test against the compared
solution, [5]. However, this required performance metrics that
were not available. Future work could focus on determining
whether any observed differences between the model’s per-
formance and the solution presented in [5] are statistically
significant. This would offer valuable insights for researchers
and practitioners looking to build upon or utilise the model in
real-world applications, as well as contribute to the ongoing
development of ransomware detection.

Another direction this research could take, is to combine
this static analysis technique with behaviour-based analysis.
This aims to compete with real-world state-of-the-art existing
defenses against ransomware attacks, as mentioned in [6],
where Crowdstrike uses static and dynamic analysis techniques
to detect ransomware.

IX. CONCLUSION

In conclusion, this project presents a novel approach to
address the challenging task of early ransomware detection.
By creating a comprehensive dataset of images generated
from the operational codes (opcodes) of both ransomware and
benignware, this project aimed to provide an early detection
mechanism for ransomware attacks. The CNN model demon-
strated its ability to differentiate between these types of files,
achieving an average balanced accuracy of 84.17%, competing
with existing state-of-the-art solutions. This promising result

suggests that the CNN model can be an effective tool for
detecting ransomware, potentially minimising the devastating
consequences of such attacks. While various approaches have
been proposed for this problem, the image analysis technique
offers a unique perspective that holds promising potential.
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