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Longitudinal Analysis of SSH Honeypot Logs

Jasmine Dong

Abstract—Visualising attacks and attack patterns from Cowrie
secure shell (SSH) honeypots can be challenging when working
and handling vast amounts of data over a long period of time.
Gathering and capturing information over an extended timeline
can help identify changes in attackers’ behaviour for specific
periods, adding additional information to those already accessible
aggregated data. The project aims to apply captured data logs
from multiple instances of Cowrie honeypots deployed by the
Victoria University of Wellington (VUW) cybersecurity team and
use them to integrate a longitudinal analysis to visualise attack
and attack patterns over a period of a couple of months.

I. INTRODUCTION

HONEYPOT serves as a security measure that entices

potential cyber attackers by disguising itself as a
potential target. By creating an open or otherwise deliberately
vulnerable decoy, honeypots can lead attackers a stray and
deter them away from critical IT systems [1]. Security
analysts can acquire crucial data, including the identities of
attackers and the specific techniques and tools utilised to
attack and target vulnerable systems, by monitoring the influx
of traffic into deployed honeypot systems. This information
enables them to identify weaknesses and vulnerabilities in
their systems and devise strategies to enhance their security
measures.

The value of captured honeypot logs lies in their effective
utilisation of extracting meaningful information and creating
a visual representation that will facilitate learning and
knowledge acquisition. Analysing and extracting large
amounts of log data over an extended duration lacks a
standardised method. One approach involves conducting a
longitudinal analysis of honeypot log files between highly
aggregated honeypot log data on one hand and detailed session
playbacks on the other hand.

A significant challenge in analysing honeypot data is the
examination and visualisation of log data collection from
multiple honeypots over a prolonged period. This process is
vital for identifying vulnerabilities in honeypot configurations
and understanding the attackers’ methodologies and attack
campaigns. By employing a proficient longitudinal analysis
and visualisation technique for honeypot log data, it becomes
more feasible to detect trends and patterns in the attackers’
behaviour that may extend over a specific timeframe.

The project aims to further extract valuable and meaningful
information by employing and enhancing existing tools.
Analysing the information gathered over time identifies
changes in attacker behaviours for specific dates, providing
a richer understanding beyond the insights from the current
aggregated data. Furthermore, deploying honeypots in two
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different geographical locations, Los Angeles and London, by
the VUW cybersecurity team will generate large text-based
datasets, which may pose challenges for analysis and
visualisation. Consequently, the objective is to extract and
reduce the data into a more readable format. Additionally,
detailed longitudinal visualisations are also intended to be
generated, and these findings are planned to be integrated
into the established threat map managed by the VUW cyber
security team.

In order to handle large datasets effectively, with an emphasis
on data reduction, it was crucial to seek out preexisting
solutions designed for reducing longitudinal data and then
extend them to include longitudinal visualisations. MapReduce
programming offered a solution for further reducing the
collected honeypot log data, and the discovered command
tool encompassed all the essential features required for
extraction. The primary challenge was identifying a method
to enhance the visualisation of the extracted data using a
longitudinal approach. Through the exploration of various
graphs, inspiration was found, and subsequently, Python
scripts were created to extract the data further, enabling the
visualisation of data to align with specific graphs.

By utilising multiple programming languages, including
Javascript, Cascading Style Sheets (CSS), HyperText
Markup Language (HTML), and Python, along with various
visualisation libraries for inspiration, interactive maps and
arc diagrams were developed to illustrate honeypot data
from Los Angeles and London over three months. Insights
into attacker behaviours were uncovered, such as most-used
commands, prevalent usernames and passwords, and the
proportion of human to robot attackers. Displaying this data
visually improves our understanding of attacker strategies and
assists in strengthening our systems to prevent future attacks.

Honeypots often capture and store duplicate or redundant
data, especially after an extended timeframe. Therefore, the
cybersecurity team at VUW may be maintaining unnecessary
data duplicates that can consume significant storage space
and computing resources, providing no additional value to the
study. Reducing data redundancy of the SSH Cowrie honeypot
logs will result in lower energy consumption and a smaller
environmental footprint.

Whether it is a dedicated server or a virtual machine in a
data centre, the physical honeypot will eventually wear out,
becoming electronic waste (e-waste). Handling old honeypot
hardware responsibly is crucial, either by reusing or recycling
it. Multiple virtual honeypots can be simulated on a single
system using virtualisation or containerisation technologies,
so this should be considered when efficiently configuring
honeypots to reduce costs and potential e-waste [2].
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II. BACKGROUND

There are two types of server honeypots, physical and virtual.
Physical honeypots are often complex and time-intensive to set
up and deploy as specialised hardware and its own physical
system is required to deploy. A virtual honeypot, on the
other hand, runs on virtualised environments that simulate the
behaviour of real systems and networks [2]. Honeypots are
also categorised based on their interaction level. Interaction
level refers to the level of capabilities offered to the attacker.

A low-interaction honeypot offers limited capabilities for an
attacker to exploit and use, providing a limited virtualisation
environment. A low-interaction honeypot, for instance, may
limit the attacker to a predetermined set of supported software,
packages and libraries. This could translate to restricting the
installation of new packages, access to privileged accounts and
support for a predetermined set of commands. The honeypot
may also limit the amount of traffic and number of outgoing
connections it generates to minimise the likelihood that the
honeypot system may be used as a base to attack other hosts
and networks. A downside of a low-interaction honeypot is
its limited logging capability due to limited virtualisation and
support for various features and commands.

On the other hand, a high-interaction honeypot provides a fully
functional operating system for an attacker to use, with limited
to no restrictions. This research uses a popular and highly
capable medium interaction honeypot with extensive logging
capabilities. This ensures a sufficient level of functionalities
for attackers to use while ensuring detailed logging of
the attackers’ interaction with the system and ensuring the
honeypot cannot be used to attack other systems.

Cowrie is a medium to high interaction SSH and Telnet
honeypot to capture and log information about brute force
attacks and shell interactions performed by attackers. Cowrie
emulates a UNIX system using Python when operating in
medium interaction mode (shell). On the other hand, when
running in high interaction mode (proxy), it serves as an SSH
and Telnet proxy that allows observation of attacker behaviour
on a separate system [3].

III. RELATED WORK

Due to its comprehensive logging capabilities, the Cowrie
honeypot has been extensively used in literature to capture
and analyse attacks. In this section, several publications will
be discussed based on the analysis of Cowrie honeypot data.

Dominic Rudigier [4] completed and published his bachelor’s
thesis on the longitudinal analysis of SSH honeypot logs. An
extensive analysis was done on honeypots, with Cowrie in
particular. A command-line tool was developed, and several
functionalities were created to assist in the longitudinal
analysis of SSH honeypot logs and to reduce, analyse,
and visualise changes over time in JavaScript object
notation (JSON) log files generated by Cowrie instances.
The command-line tool uses a MapReduce programming
model to process large amounts of log data efficiently and
in an acceptable timeframe. Utilising MapReduce enables

the aggregation of results by dividing the processing into
two steps: map and reduce [4]. Using a MapReduce
programming model can assist in incrementally analysing
all log files across multiple honeypots and allows parallel
processing. The command-line tool contains two workflows;
analyse-local and analyse-remote. analyse-local is a command
to MapReduce all log files in a local folder by searching for
the format cowrie.json.YYYY-MM-DD in it and creating a
reduced.json file. Whereas analyse-remote is a command used
to MapReduce all log files on a remote Cowrie node and
generate a reduced.json file again.

Rudigier [4] utilised Sankey plot diagrams, a data visualisation
depicting the flow of quantities between different entities. In
the context of the thesis, they were used to visualise the
flow of commands and connections between attackers and
honeypots over time. The generated Sankey plots illustrated
the relationships between internet protocol (IP) addresses,
usernames, and commands performed by attackers over time.
By these visualisations, we could determine the attackers’
patterns and behaviours over time, enhancing honeypot
security and the detection of novel exploits. Rudigier’s system
architecture and capabilities will be later discussed as this
project aims to extend the capabilities of the currently
developed tool by identifying and implementing additional
analysis and visualisation components on several honeypots
deployed globally by the cybersecurity team at VUW. The
findings in his study will be applied to data collected over
the past several months in London and Los Angeles, with the
aim to identify potential features and patterns, which will be
visualised accordingly in the research.

Rich [5] performed a six-year longitudinal analysis from
October 2016 to September 2022 using data obtained from
a deception network. The overall objective was to track the
evolution of threat actors’ tactics and strategies over this
period. This study aimed to enhance the current literature by
offering an in-depth understanding of cybersecurity challenges
and closely examining the evolving cyberattack patterns and
trends. In terms of methodology, the team incorporated
several techniques, such as data preprocessing, exploratory
analysis, clustering, and anomaly detection, all based on
understanding patterns over time. Validating the derived results
was necessary; hence, a thorough validation process was done,
which ultimately testified to the reliability of their findings.
During the initial phases of the study, the team focused on
cleaning up the data from the honeypot. This involved the
careful task of eliminating redundant information, patching
any gaps in data, and systematically arranging it for subsequent
evaluation. Central to their analysis were critical indicators like
the time of the event, the source, and its intended target.

Additionally, they executed a thorough data normalisation
process to ensure consistency among diverse data formats,
establishing a solid foundation for a streamlined subsequent
analysis. The study’s geographical evaluation showed
cyberattacks spanning six continents and 188 countries, with
North America, Europe, and Asia leading in attack origins,
particularly from the United States, Russia, and China.
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Several attacks were identified from specific IP addresses
from over 100 million collected IP address entries, hinting at
potential botnet or centralised attack strategies. Despite the
study’s focus on numerical data, future work could benefit
from incorporating qualitative insights, like expert feedback,
to gain a broader understanding of network threats.

Ikuomenisan et al. [6] performed a comprehensive analysis
of visualisation techniques used to interpret and convey
attack patterns from honeypot network traffic data. Using
the preferred reporting items for systematic reviews and
meta-analyses (PRISMA) methodology, the aim was to
carefully examine the range and intricacy of graphical methods
featured in influential publications and, therefore, identify
dominant trends in the representation of honeypot-related data.

The results indicated that from the initial 218 papers reviewed,
only 37 were closely examined due to their importance.
Predominantly, these studies relied heavily on traditional
visualisation techniques, majorly utilising line, bar, and pie
charts for statistical summaries. An issue was raised as these
simplistic representations often masked deeper, more intricate
insights into the data. In contrast, advanced visualisation
methods such as box plots and histograms were rarely used,
even though they offer a more detailed understanding. The
consistent reliance on conventional visualisation methods,
such as bar charts, line charts, and pie charts, indicated
a ubiquitous trend in the literature, even though current
advancements advocate for visuals with enhanced data density
and precision. A key insight highlighted the unintended
creation of confusion or misrepresentation stemming from
poor visualisation decisions. This illustrates the need for
clear visuals, minimal distractions, and easily understandable
metrics in presenting data. The study emphasises the critical
importance of effective data visualisation in cybersecurity
research and points out the benefits of exploring visualisation
methods beyond conventional approaches.

Valli [7] explored alternative methods for interpreting
honeypot data, specifically using Graphviz and AfterGlow to
visualise and better understand the data through visualisations.
Graphviz is an open-source visualisation tool that offers varied
graph layouts through other tools like Neato, Twopo, and
Circo, interpreting files described with the DOT language.
AfterGlow is a series of PERL scripts designed to generate
link graphs from comma-separated values formatted files,
transforming raw input files into normalised data sets for
visualisations and analysis. The article highlighted that
utilising DOT graphs from Graphviz offers a strategy to
consistently highlight specific entities as the central focus of
analysis visually intuitively for human analysts. However, it
also discussed that generating bitmap Graphviz dot graphs
can be processor-intensive, as evidenced by substantial central
processing unit usage even on a high-specification machine
during research trials. This processing demand notably hinders
real-time graphical data creation from network security
mechanisms like honeypots and firewalls, particularly as the
data processed during initial tests was relatively minimal
compared to potential larger-scale deployments. Implementing

a structured query language (SQL) system to manage and
process honeypot data instead of reprocessing log files
marks a substantial advancement in analytical efficiency.
Connecting with the Surfnet intrusion detection system, which
integrates data into a preexisting SQL structure, effectively
backs SQL functionalities with a Graphviz/afterglow engine
to create visuals. Improving Surfnet allows the production
of near-real-time graphical data and establishes a method
for in-depth, long-term analysis of patterns and trends in
honeypot data. This strategy mitigates specific temporal and
spatial challenges identified in traditional textual analysis
engines, enables the retrieval and review of specific data
from the database, and provides temporary storage within a
database framework, assisting in buffering and stabilising data
transmission fluctuations.

Junaid et al. [8] analysed captured Internet of Things (IoT)
attacks over four months using a medium-interaction server
honeypot, Cowrie, on a public network. They chose Cowrie
for this research paper because it simulates IoT services,
including SSH and Telnet protocols, emulating a fake file
system and allowing file manipulation. It can also effectively
mimic low-powered IoT hardware without risking full system
compromise. The authors engineered a new feature-based set
on three feature groups: the depth of attacker interaction,
attacker and behaviours, and utilised resources. This analysis
led to a new set of 20 features that provided broader traffic
coverage compared to previous models. The feature extraction
process was performed in two stages, where they identified
52 distinct attack patterns representing 30,335 attack sessions.
They employed automated machine learning analysis to tackle
the complexity of manually comparing 52 attack patterns
across 20 features. Specifically, unsupervised learning through
clustering and a random tree classifier to group similar attacks
and determine key characteristics. The authors identified that
the work could be further extended by extracting new features
to classify IoT attacks according to humans and botnet
attackers, and they could focus on extracting more features
such as mistyping, typing speed, and spelling mistakes. The
study also advocated for developing preventative measures
based on the early detection of attack patterns.

Junaid et al. [9] utilised Cowrie’s data for feature
identification and study of human attackers. They discussed
the characteristics that differentiate human attackers from
bots, such as adaptability, variability in attack processes, and
different responses to failed attack actions. Human attackers
can think outside the box and brainstorm ways to exploit
system vulnerabilities. Over two months, the author deployed
15 Cowrie honeypots in five geographical locations, including
North America, Australia, Singapore, Amsterdam, and New
Zealand, to capture and analyse attacks. The study identified
numerous features to help identify human attacks, such as
instruction patterns, usage of modifier keys, cursor control
keys, and other keys such as backspace, tab, enter, space
bar, delete, and shortcut keys for copy, paste, exit and
enter. Upon successful login, it was observed that human
attackers made typographical errors and spent considerable
time gathering information about the devices. Five case studies
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of attackers were examined to identify the characteristics of
human attackers and examine and analyse their skills, ability
to exploit devices, and potential intentions. The attackers’
behaviour and intentions varied broadly, from obtaining basic
information by looking at the system information, central
processing unit information and available free memory to the
user’s command history, downloading and installing malware
files, and deleting cookies and history to remove any traces of
malicious activity.

Junaid et al. [9] also found that deploying honeypots at
various locations with improved deception resulted in longer
engagements from attackers. In contrast, custom honeypots
that were more loT-oriented received fewer successful login
attacks. Their findings suggest that strategically deploying
honeypots in various locations and improving their level of
deception can lead to increased engagement from attackers.
They established that custom honeypots for IoT-specific
attacks could be particularly effective in attracting targeted
attacks. Furthermore, enhancing the deception within these
custom honeypots can prolong the duration of their
interactions.

Melike, Ebu Yusuf, and Muhammed [10] deployed an SSH
Telnet honeypot using Cowrie software to understand the
threats targeting these types of honeypots and record the
activities of attackers who attempted to gain access to
them. The paper further analysed the three classifications
based on interaction: low interaction, medium interaction, and
high interaction. Then, it identified the two classifications
based on installation: production and research honeypots. The
decision to use Cowrie was its ability to track effectively
and analyse SSH and Telnet attacks and automatically record
login credentials such as their username or password and
instructions, outputs and timestamps of the whole shell session
when the attacker successfully logs in. Additionally, Cowrie
facilitates integration with various applications, such as the
Elasticsearch, Logstash, and Kibana (ELK) stack tools, which
can simplify the records analysis. Beats transfer logs to the
server, Logstash organises them, Elasticsearch makes the data
searchable, and Kibana provides visualisation. The project
recorded and evaluated attacks over 47 days, and protocol,
usernames, passwords, IP addresses, and countries were
chosen as the headers for analysis from the log records. Results
showed a high degree of commonality in the passwords used in
attacks across honeypots. To conclude, the experiment lasted
approximately 47 days, utilising an SSH and Telnet honeypot
system, yielding a substantial amount of data exceeding 3.5
million.

Zachary [11] enhanced the analysis and visualisation
capabilities of Cowrie, an open-source medium interaction
server honeypot. It aimed to provide a modular threat map
capable of visualising attacks on multiple Cowrie honeypots
in near real-time. The solution was developed using the ELK
stack framework, allowing for an extensible and scalable
solution to support the growth and changes in requirements
of the cybersecurity group at VUW. The delivered solution
provides a Kibana canvas interface with various visualisations,

including a visually engaging threat map and various metrics
that form an attack map. The client can customise the existing
canvas, create new visualisations, and generate multiple
dashboards and canvases. This enables the client to tailor
the information they want to share with different target
audiences, offering infinite granularity in presenting the data.
Despite its flexibility and comprehensiveness, the current
system is very complicated for clients’ needs and faces
reliability issues due to the many components, packages and
libraries it uses, such as Log stash, Elastic Search and Kibana.
According to the client, the system components fail regularly.
Throughout the research conducted for this project, Zachary
observed that most established threat maps were proprietary
and closed-source. These solutions are often developed by
commercial organisations that consider threat intelligence as
a valuable asset for their business.

Consequently, the inner workings and details of these solutions
remain private. As a result, there is limited visibility into the
specific sensors used for attack data collection, including the
level of interaction they offer.

Additionally, direct access to their live data feeds is not
available. The existing system lacks a MapReduce-like
mechanism, accumulating unnecessary data and the inability
to effectively handle large volumes of data from multiple
instances of Cowrie honeypots over time. Therefore, it
becomes necessary for the system to periodically flush
all records to ensure that only meaningful information is
extracted.

Table I summarises the literature mentioned above on Cowrie
honeypot’s log analysis, visualisation and attack patterns.

IV. DESIGN
A. MapReduce programming model
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Fig. 1: MapReduce Diagram [4]

Rudigier [4] utilised the MapReduce programming model to
process and analyse information from honeypots in parallel
using multiprocessing. In his thesis, he illustrated his intended
workflow, shown in Figure 1, which included multiple local
Cowrie log files and the events contained within these were
mapped based on their occurrence count.
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TABLE I: Summary of Literature on Cowrie Honeypot’s Log Analysis, Visualisation, and Attack Patterns

[ Author | Date | Area of Research | Findings
Dominic Rudigier | 2021 SSH Honeypot Logs
[4] o Longitudinal analysis of SSH honeypots
o Command line tool
o Utilises MapReduce
e Visualised using Sankey plot diagrams
Marshall S. Rich | 2023 | Cyber Tactics and Techniques
[5] o Longitudinal Analysis of six years using a deception network
o An exhaustive exploration of the tactics and strategies utilised by
cybercriminals to understand their modus operandi
e Understanding how these tactics and techniques have matured in
sophistication and target specificity over time
Gbenga 2022 | Visual Methods in Honeypot Attack
Ikuomenisan et data o Analysed honeypot data visualisation in key papers using PRISMA
al. [6] o Of 218 papers, 37 were crucial, predominantly using traditional
charts such as line, bar, and pie charts
o Highlighted the need for better visualisation in cybersecurity research
Craig Valli [7] 2009 | Visualisation of Honeypot data
o Utilising Graphviz and AfterGlow for enhanced visualisation and
interpretation of honeypot data
o Generating Graphviz dot graphs is processor-intensive, challenging
real-time data visualisation
o Implementing SQL systems improves analytical efficiency and
facilitates in-depth analysis of honeypot data trends
Junaid Haseeb et | 2021 | IoT Attacks
al. [8] o Used Cowrie to simulate IoT services
e Created a new set of 20 features that provided broader traffic
coverage
o Identified 52 distinct attack patterns representing 30,335 attack
sessions
Junaid Haseeb et | 2023 | Deception-Based Security
al. [9] o Discussed the characteristics that differentiate human attackers from
bots
e Deployed 15 Cowrie honeypots in five geographical locations
o The attacker’s behaviour and intentions varied broadly
Melike Bage et al. | 2021 | SSH and Telnet Protocols
[10] o Analysed the three interaction classifications
o Discussed the ELK stack
o There was a high degree of commonality in the passwords
Zachary Scott [11] 2022 | Super V. Cowrie
e Provided a modular threat map capable of visualising attacks on
multiple Cowrie honeypots
e The solution provided a Kibana canvas interface with a variety of
visualisations

Initial steps involved implementing existing solutions to
understand the underlying structure of their system. The
project began by cloning Rudigier’s repository [4] and
configuring and installing the necessary tools to ensure it
ran successfully. Before executing any commands, a virtual
Python environment created an isolated environment with
its own Python libraries, dependencies, and configurations,
preventing conflicts with other projects. Various commands
were then explored [4] to MapReduce ("Python3 cowralyze.py
map ..” and “Python3 cowralyze.py reduce ..”), analyse
("Python3 cowralyze.py statistics ...”) and visualise ("Python3
cowralyze.py visualize...”) changes over time in JSON log
files generated by Cowrie instances, acquiring a more
comprehensive understanding of their functionality. After
successfully configuring the commands as intended, Cowrie
honeypot data logs captured by the cybersecurity team

at VUW were obtained. These logs originated from the
honeypots deployed in Singapore and London. Subsequently,
the analysis of the logs proceeded.

1) Map: The initiation of the MapReduce programming
paradigm involves the utilisation of a map function. The
map function processes individual log files and associates
each event with its corresponding count within that file for a
particular day, illustrated in Figure 2 [4]. This helps extract
meaningful information from the log files and create an
intermediary map result.
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cafe-du-parc% python3 cowralyze.py map -T logs/London/cowrie.json.2823-88-23
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Fig. 2: Mapping individual London honeypot logs

2) Reduce: Subsequently, the reduce function comes into play,
illustrated in Figure 3, which aggregates the count for the
specific day and provides a reduced file with the aggregated
counts per event per day [4]. This aggregation is performed
based on the honeypot or host instance, known as a sensor.
Furthermore, the reduction process assists a longitudinal
analysis approach by combining one or more mapped files,
each representing different days, into a reduced.json file. This
step is crucial as it takes the intermediate results from the map
phase and performs the necessary aggregation to produce the
final output. Additionally, the reduced.json file serves as the
foundation for visualisation and additional analysis.
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Fig. 3: Reducing mapped files into reduced.json

3) Visualisations - Graphs and Tables: After consolidating
multiple Cowrie log files in a singular file called reduced.json,
the next step was to produce statistics and graphs to
understand the growth rate of event occurrences within a
specific timeframe. Executing a straightforward command on
reduced.json with parameters ’-t’ set at 20.0 and *-n’ at 7
illustrates percentage shifts over the past seven days exceeding
a 20 percent change. An HTML file, shown in Figure 4, is
subsequently created, including a table detailing the attack’s
date, event type, command executed by the attacker, and the
percentual change over the previously defined days. Through
a deeper examination of attacker tactics, it is possible to
discover new malware or vulnerabilities being exploited. For
example, a recurrent unauthorised access attempt targets the
“root” username and default password, especially during
worm campaigns. Additionally, attackers often use the “chattr”
command, which stands for “change attributes”, to alter file
properties, potentially to avoid detection, ensure sustained
presence, or disrupt normal system functions.

% increase over time across all honeypots (n=7, Thresh=20.0%)

Date Event Command Counts %% Overall % change n days

2023-04-02 Login r00t:3245855662d34 402 5113 8218
2023-04-02 Login 45g55662d34:345235662d! 400 4939 78,84
20230402 cmd cd~ £& rmrf ssh && 404 504 6206
mkdir ssh &8 echo
‘ssh-rsa.
2023-04-02 cmd el i 404 4894 77.97
lockr -ia ssh
2023-04-02 cmd O L %0 3235 4835
recognized eurl: try
“curl ~help'or ‘curl
~manual’for more
information
2023-04-02 cmd 90 3235 95.65
aw githubusereontent.com,
2023.04-02 Prediscamd Ry T a0z 4965 6126
mkdir ssh && echo
2023-04-02 Pre-discamd AT 90 235 4835
recognized curl: try
‘curl ~helpor ‘curl
~manual’for more
information
2023-04-02 Pre-disc-cmd uname -5 v -n -r -m 5 73.68 80.77
2023.04-02 Prediscamd df-h | head-n 2 | awk 2 69.23 75

'FNR == 2 {print $2;}

Fig. 4: Generated stats.html file

Fig. 5: Generated results.html file

The existing solution also created visualisations representing
the changes over time on different honeypots for different
events, such as password combinations, number of
connections, connection frequency, number of downloads, and
number of uploads. Extracting and analysing this information
becomes meaningful as it enables the identification of trends
and patterns performed by attackers over a specified period.
A simple command generates an HTML file containing
several plot graphs illustrated in Figure 5. The Sankey plot
graphs are created using a Python library called Plotly. The
tool’s advantages are that it can analyse Cowrie events and
create 2D plots to visualise data aggregated over all honeypot
instances and 3D plots to split the specific event by sensor.
However, the disadvantage is that it only illustrates the data
in a plot-like format, making it very complicated to read
when there are large amounts of data.

B. Alternative designs and systems - Elastic Stack

In the literature review, the ELK stack, a comprehensive
software stack designed for log management and analytics,
was utilised. As illustrated in Figure 6, the stack employs
a three-tiered approach for proficient log analysis. Initially,
Logstash is used to identify and collect log sources, structuring
them methodically. These refined logs are subsequently
forwarded to Elasticsearch, the second stage, where they
are assembled, facilitating users to identify and understand
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data trends and patterns. To conclude the process, Kibana
offers tools to produce visual representations and interactive
dashboards, optimising data interpretation and review [12].
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Fig. 6: ELK stack diagram [12]

C. Comparison

MapReduce and ELK stack are great systems that can analyse
many Cowrie log files. Each has its strengths and limitations,
including the complexity of the data, the type of analysis that
wants to be performed, and the available resources. Comparing
the two, MapReduce is more suitable for processing and
generating large datasets in a distributed and parallel manner.
It can handle large files efficiently and process various types
of data. However, it is more complex and time-consuming
than setting up an ELK stack, and it does not have the
capabilities to produce visualisations. Whereas ELK stack is
specifically designed for log and event data analysis and is
well-suited for situations where you need to search, analyse,
and visualise log data in near real-time. It is easy to set up
and has built-in visualisation tools like Kibana. However, even
though Elasticsearch can handle large volumes of data, it might
not scale as efficiently as MapReduce for very large datasets.
It is designed more for search and simple aggregations than
complex ones.

As the primary goal for my project is a longitudinal analysis
of SSH honeypot logs where we will be using a large amount
of data to identify attackers’ behaviours, using the MapReduce
approach is more appropriate. After comparing the capabilities
of the ELK stack and MapReduce programming, the decision
was made to utilise MapReduce for several reasons.

» Powerful Data Processing: MapReduce processes extensive
datasets, making it ideal for handling new Cowrie log files that
require transformation and aggregation to extract meaningful
information, such as trends in attacker behaviour.

* Simplified Implementation: The design is straightforward,
and with existing open-source script files provided by
Rodigier, the implementation process becomes simplified
through copying, pasting, and subsequent modifications for
integration into the new system.

* Efficiency and System Enhancement: MapReduce exhibits
higher efficiency in processing large datasets than the ELK
stack, potentially reducing processing power requirements
and promoting better energy consumption. Despite the ELK
stack’s graphing capabilities via Kibana, enhancements within
Rudigier’s system will focus on long-term, valuable data
representation.

D. Sustainability and Environmental Considerations

Both MapReduce and ELK stack can handle vast volumes of
data, but this efficiency comes at the cost of substantial energy
consumption. Therefore, it becomes crucial to employ effective
energy management techniques and optimise the MapReduce
algorithms to minimise energy usage and consumption time
[13]. One possible solution to reduce energy is reducing the
size of the Cowrie log files before employing MapReduce
or ELK stack. This can be accomplished by eliminating
redundant data or compressing the log files before processing,
reducing the overall energy consumption when deploying such
techniques.

When examining the integration of efficient data processing
techniques, such as MapReduce and the ELK stack, with
methods to minimise Cowrie log files, there are clear
implications aligned with the United Nations (UN) Sustainable
Development Goals [14]. Emphasising energy efficiency by
reducing data size and optimising algorithms supports Goal
7, which focuses on Affordable and Clean Energy” [15].
This approach reduces the energy requirements of data
processing and advocates for a more energy-efficient digital
infrastructure. Furthermore, such advancements contribute to
Goal 9, “Industry, Innovation, and Infrastructure” [16] by
establishing the foundation for sustainable industrialisation
and resilient infrastructure development. Equally relevant
is Goal 12, ”Responsible Consumption and Production,”
where reducing computational resources through optimising
data processing exemplifies resource efficiency within the
tech sector. Finally, by reducing the energy requirements of
large-scale data centres, we contribute to achieving Goal 13,
”Climate Action,” [17] as these centres are substantial sources
of global carbon emissions. By adjusting our tech approaches
to prioritise energy efficiency, we naturally align our strategies
with the fundamental principles and aims of multiple UN
Sustainable Development Goals.

V. IMPLEMENTATION
A. Reducing and Extracting Honeypot log files

After the design phase, the decision was made to utilise
MapReduce to process Cowrie honeypot logs obtained from
the cybersecurity team at VUW. The reason for choosing
MapReduce was the idea of its simplicity to deploy and
adaptability for extracting meaningful information. One
limitation, however, was its capability for visualisation, but
this was addressed and extended as part of the project. The
collected logs originated from honeypots deployed in Los
Angeles and London and were presented in JSON format, as
shown in Figure 7. This project utilised a dataset covering
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three months, specifically from June to August, with logs
recorded daily. As a result, 92 logs from Los Angeles and
an equal number from London, totalling 184 log files, needed
to be condensed, extracted, and subsequently visualised.

. conrie 500 2023-08-08

2023-08-08 X [u]

Ln31,Col 44 Spaces:4 UTF-8 LF PlanTet &2 O

Fig. 7: 08-08-23 Los Angeles honeypot log file

The first step was to analyse the log files to identify what
meaningful information could be extracted and what would
be valuable visualised in a longitudinal approach to identify
the attackers’ trends and behaviours. The current Sankey plots
illustrated the relationships between IP addresses, usernames,
and commands performed by attackers over time. Rich’s
article on a longitudinal analysis of cyber adversarial tactics
and techniques [5] discussed how such indicators served as
effective in revealing potential threat actors. Additionally,
assessing the attackers’ geographical origin, the incident’s
timing and the nature of commands executed within specific
periods can also help identify potential botnet activities. The
log files, as shown in Figure 8, were reviewed using this
data. Specific elements, such as successful and unsuccessful
username and password attempts, the originating IP address of
the attacker, and commands executed on the honeypots, were
highlighted.

1535221

Fig. 8: Highlighting meaningful information

From examining the log files and reviewing related research,
insights were obtained regarding the types of data that are
valuable when visualised longitudinally to identify attacker
patterns and techniques. The key features that can be extracted
and their significance will be discussed next.

1) Commands: Examining the top commands and their
patterns over time offers insights into attacker behaviours.
Patterns that repeat may suggest an organised attack by
a particular group, potentially allowing for attribution.
Observing how these patterns change over time can help

provide insights into attack evolution and the adaptability
of attackers. This knowledge will enable organisations to
prioritise defences based on common sequences, ensuring
timely preventive actions. Additionally, by monitoring
commands, security researchers can create alerts using
command signatures and adjust security systems like
host-based intrusion detection systems to notify administrators
when a recognised command is issued on a host in a
production environment.

2) Username and Passwords: Examining top usernames and
passwords over an extended period offers valuable insights into
attacker preferences and behaviours. This longitudinal analysis
can highlight commonly targeted credentials, revealing
evolving attacker tactics and possibly attributing attacks to
specific threat actors. Any sudden surge in particular username
or password attempts might indicate coordinated campaigns or
newly released exploit kits. Additionally, consistently targeted
weak passwords suggest the need for better password policies
and user education. This analysis gives organisations the
insights needed to enhance their security measures and adjust
to the evolving threat environment.

3) Robots vs Human: Understanding whether a threat actor
is human or robotic over an extended period is essential for
deciphering attack patterns. A consistent robotic signature
indicates automated campaigns, possibly revealing broader
cyber threats and campaigns or botnets, whereas fluctuating
human patterns can signal targeted attacks, advanced persistent
threats or evolving tactics. Distinguishing between these two
sources enables organisations to tailor their defence strategies
and anticipate future threats more effectively. An example
is a honeypot system that redirects bots and automated bots
to other security systems such as Tarpits [18]. In contrast,
human attackers are redirected to high-interaction honeypots
that provide a fully functional operating system to capture
detailed behavioural data.

4) Top Countries: ldentifying the primary countries from
which threat actors originate over a prolonged period
is instrumental in mapping attack patterns. Recognising
consistent origins can shed light on potential geopolitical
motivations, state-sponsored activities, or region-specific
cybercrime trends. This knowledge enables organisations to
enhance their defences against particular regions and better
anticipate and respond to emerging threats.

After deciding on the features to extract, the next step
involved employing the MapReduce function to emphasise
these features and identify patterns for visualisation. Figure
9 displays a mapping from a Los Angeles honeypot log file,
highlighting timestamps and events like session connections or
logins. Further examination of the mapping script was done
to establish if more features could be extracted. However,
information like the attacker’s country of origin wasn’t directly
available in the JSON log files. Therefore, a more in-depth
extraction was required by extracting source IP addresses to
pinpoint the corresponding countries.
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Fig. 9: Los Angeles log file mapped

The subsequent step involved consolidating the mapped files
by aggregating all 92 files from Los Angeles into one file
and doing the same for London. Through this process, we
could identify the frequency of specific commands and the
most commonly used usernames and passwords, helping us
identify the attackers’ patterns.

mapReduceL A json

cowrie.json.2023-08-08 combineLA-replace.json.mapped mapReducelAjson X m -

Users > jasminedong > Desktop > honours > {} mapReduceLA.json > {} 0 > [ ]passwords > {} 8

2
3 “date": "2023-06-01",

4 “sensor': "844ec26f231",
5 "passwords": [
6 {
7

8

"username": "root",
“password": "3245gs5662d34",

9 “count": 271

12 "username":
13 “password":
14 “count": 271

"345g55662d34",
"345955662d34" ,

17 "username":
18 “password":

“appuser”,
“appuser",

19 “count: 6
20 }

21 {

22 “username": "root",

23 “password": "1234",

24 “count": 6

25 }

26 {

27 “username": “admin",

28 “password": “admin1234",
29 “count": 5

30 }

31 {

32 “usernane": "oracle",
33 “password": "123456",
34 “count": 5

37 “username": “user",

T

39 “count": 5

Ln48, Col1 Spaces:2 UTF-8 LF {3 JSON & 0

Fig. 10: Reducing the individual mapped log files

Ilustrated in Figure 10 is the reduced.json file, which is
performed by combining all the individual mapped files and
then aggregating the count for the specific day and providing
a reduced file with the aggregated counts per event per day.
The current solution offers the option to specify a count using
the parameter ”-n *”. For my project, a value of 2000 was
selected, enabling the acquisition of the top 2,000 events. This

allowed for the identification of tactics spanning a period of
2,000 days.

B. Visualisations

After extracting the data, the focus shifted to exploring
visualisation libraries to determine the most effective way
to display the data, ensuring clarity for security researchers
longitudinally. As identified by Ikuomenisan et al. [6], bar,
line, and pie charts were commonly used in studies, while plots
and histograms, which often provide deeper insights, were less
frequently utilised. Due to poor visualisation, some graphs
led to data misrepresentation, emphasising the importance of
clear, minimal distraction visuals. Therefore, these findings
influenced the development of the visualisations made for this
project.

1) Plotly and Matplotlib: At first, the Python visualisation
library, Plotly [19], used by Rudigier [4], was considered.
While leveraging existing scripts from this library would
have been convenient, its graphing capabilities did not seem
well-suited for handling extensive data sets. Although it
offered visuals like scatter plots, which resemble Sankey
plots, bar charts, pie charts, and histograms, these were
already commonly used. This led to an exploration of other
Python visualisation libraries, including Matplotlib [20]. Yet,
after thorough evaluation, none of the available visualisations
satisfied the vision of longitudinally visualising the data
extracted, such as top command sequences, top usernames and
passwords used and top countries.
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Fig. 11: Matplotlib Visualisation Library [20]

2) Plotset: The movement to consider other options and
shift away from familiar Python libraries added a layer of
complexity, but something that needed to be explored. After
further discussion, Plotset and Vega were proposed and were,
therefore, something that was looked into. Initially, Plotset
[21] offered a vast array of visualisation options, including
maps, distribution charts, bar charts, line and area charts, as
well as others. This seemed ideal for longitudinal data display,
and the tool’s flexibility to change the colours and layout was
an added advantage. However, a significant limitation was its
capacity to handle large datasets. While Plotset could link to
Google Sheets, transferring hundreds of thousands of lines in
an appropriate format would cause issues such as exceeding
memory. A potential solution could involve reducing the
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dataset size, but this approach might introduce complexities,
especially when moving data across platforms and potentially
working with more data than initially planned.

(IPlotSet  Gallery FAQ Blog Docs  logn

PlotSet features.

A b = o Q

Fig. 12: Plotset Visualisation Library [21]

3) Vega: Furthermore, Vega was explored [22], revealing
several graphs suitable for longitudinal data visualisation.
The arc diagram, in particular, stood out for its potential
in visualising attack command sequences and top commands
commonly used. The layout provided was in JSON data
format, which was more than ideal with the log files provided,
offering a way to extract further and format the data for
visualisation. The next step involved exploring languages that
might support this visualisation. While these libraries explored
provided valuable insights into different graphs and data
formatting, implementing and visualising the graphs with the
data provided using a language rather than Python presented
challenges.

Example Gallery

Bar Charts

wull] n —

Line & Area Charts

Circular Charts

Fig. 13: Vega Visualisation Library [22]

4) D3 Graph Gallery: During the weekly Owhiti meetings,
the challenges of converting particular graphs into a Python
format were discussed. The potential solution of using
Javascript was suggested, leading to further exploration. The
discovery of a D3 graph gallery [23] was found, which showed
a collection of simple charts designed with D3, a Javascript
library. Among these was an arc diagram including template
Javascript code and data input format [24]. Being unfamiliar
with JavaScript, this presented a learning curve. Another
challenge to overcome was to understand the required data
format and the relationships between nodes, their associated
nodes, and links. The next crucial task was transforming the
reduced file from MapReduce to fit the arc diagram’s format.
This was achieved by writing Python scripts to extract the top

commands from the reduced file, ensuring they were formatted
to align with the appropriate nodes, associated nodes and links.

Fig. 14: D3 Visualisation Library [23]

5) Attack Map: Another visualisation option was a map
highlighting the top countries of origin. An ”Attack Map” was
discovered on a website that utilised JavaScript, HTML, and
CSS for an interactive experience [25]. This site offered a
GitHub link with open-source code, enabling data integration
for an interactive map [26]. The primary challenge was
adapting the honeypot log data to fit this map’s requirements.
The process required extracting source IP addresses, and
therefore, a Python script was created which involved using
an API [27] to retrieve IP-related information for every source
IP address that was extracted from the honeypot log files. The
information included latitude, longitude, proxy, and hosting,
to name a few.

Table II provides a summary of the various visualisation
libraries that could have been used to display the extracted
Cowrie honeypot data.

VI. EVALUATION

The project aimed to further extract valuable and meaningful
information in a more readable format by employing and
enhancing existing tools and then generating longitudinal
visualisations to illustrate the data to discover threat actors
tactics and techniques. MapReduce was used to consolidate
three months of data into a single file, and the time it took
to reduce was extremely efficient. Therefore, making further
modifications was unnecessary. If larger datasets were to be
processed, the efficiency of MapReduce might be challenged,
and its limits may be tested. In such scenarios, preliminary
data reduction, particularly of redundant and repetitive data,
might be necessary before deploying MapReduce. While the
existing tool adequately managed data reduction, it fell short
in the visualisation department. It was essential to leverage
the reduced data to present meaningful information over an
extended period. Data like source IP addresses and commands
were further analysed, utilising IP APIs to determine the
location associated with the IP addresses and to decipher the
sequence of commands to understand possible tactics that the
threat actors were performing.



ENGR 489 (LONGITUDINAL ANALYSIS OF SSH HONEYPOT LOGS) 2023

TABLE II: Summary of Visualisation Libraries on Cowrie Honeypot’s Log Data

Visualisation Library [ Pros

[ Cons

Plotly [19]

Utilised by Rudigier [4], potentially making it
convenient to leverage existing scripts
Offers a range of visualisations, such as scatter plots,
bar charts, pie charts, and histograms

Not well-suited for handling extensive datasets
Insufficient for longitudinally visualising key extracted
data like top command sequences, usernames and
passwords, and countries

Matplotlib [20]

Provides a wide array of visualisation options
Widely used in the Python community, which might
provide a larger base of examples

Did not satisfy the requirement for longitudinally
visualising specified extracted data

May not offer as interactive or dynamic visualisations
as some other libraries

Plotset [21]

Provides the flexibility to alter colours and layout
according to user preferences
Appears suitable for longitudinal data display

Encounters limitations in managing large datasets,
compromising its efficiency and reliability for extensive
data

Could have data transfer issues as it uses Google Sheets

Vega [22]

Utilises JSON data format for layouts, which is
compatible and ideal with the provided log files

The arc diagram presents potential for visualising attack
top commands

Utilising a language other than Python to visualise the
graphs with provided data posed difficulties

The need to learn new languages for visualisation might
require additional time and resources

D3 Graph Gallery [23]

Offers a collection of simple charts designed with D3,
a JavaScript library

Provides an arc diagram, including template JavaScript
code and data input format, which could streamline the
graph creation process

Will need to learn JavaScript and D3.js, which may
slow down the initial development process

Necessitates extra steps and potentially complex
scripting to transform data to fit the diagram’s format

Attack Map [25]

Utilises JavaScript, HTML, and CSS to create an
engaging and interactive mapping experience

Offers access to open-source code through GitHub
[26], enhancing accessibility and allowing potential

Requires significant effort and technical knowledge
to adapt honeypot log data to meet the map’s input
requirements

Necessitates the creation and execution of scripts such

customisation

as extracting and processing IP addresses

While Rudigier [4] developed both visualisations and
statistical tables, it was observed that visualisations more
effectively conveyed trends. Relying heavily on textual data
can introduce confusion. Therefore, using tables to illustrate
trends was deemed unnecessary for this project.

A. Arc Diagram

Los Angeles Cowrie Honeypot Top 50 First Word Commands
1stof e o he 311 of August

Fig. 15: Los Angeles Top 50 Commands

Fig. 16: London Top 50 Commands

Figure 15 displays the top 50 commands executed on the Los
Angeles honeypot from June Ist to August 31st, excluding
the subsequent parameters. Similarly, the top 50 commands
for London during the same period were visualised shown
in Figure 16. The initial idea behind this visualisation was
to visualise the most frequently executed commands on
the honeypot, thereby identifying potential malicious intents.
Yet, feedback from user testing suggested that while the
graph highlighted the most commonly used commands, a
more insightful approach would be to show the relationships
between various commands. Enabling a deeper comprehension




ENGR 489 (LONGITUDINAL ANALYSIS OF SSH HONEYPOT LOGS) 2023

of frequently used sequences by attackers facilitates a clearer
understanding of their tactics and techniques.

Therefore, an updated arc diagram was created in Figure 17
for Los Angeles and Figure 18 for London, showing the
relationships between commands to the honeypot. The only
disadvantage observed over the initial arc diagram is that, due
to the presence of additional links to display, the data had to
be reduced to the top 35 sequences to maintain clarity and
visual ease of follow-through. Results show that the most
commonly used commands were ’grep’, ’echo’, ’cd’, and
‘uname’, which could suggest initial system reconnaissance
by attackers. Specifically, 'uname’ probes system details; "cd’
involves directory navigation; ’grep’ looks through files for
data or configurations; and ’echo’ may indicate configuration
changes or script implantation. The consistent use of these
basic commands could reflect automated scans or foundational
steps for more targeted attacks.

Los Angeles Covie Ioneypot Top 35 Sequence Commands

Fig. 18: London Sequence Commands

B. Interactive Map

Figure 19 displays the top 30 countries targeting the Los
Angeles honeypot, and Figure 20 shows the top 30 countries
targeting the London honeypot between June 1st and August
31st in an interactive map. In a cyber-attack context, three
months can effectively highlight the most active countries,
offering insights into the primary global threat behaviours and
trends. Presenting only the top 30 countries ensures clarity and
avoids overcrowding the visual representation. This focused
approach likely encompasses the majority of critical attack

vectors and enables a detailed examination of the strategies
and methods adopted by each of these primary countries.

Fig. 20: London Top 30 Countries Map

Both honeypots discovered that the highest number of
occurrences came from IP addresses in the United States and
Singapore. This is crucial information as security resources
can be prioritised and focused on threats from these regions.
Additionally, it can offer insights into potential threat actors
or groups, their motivations, capabilities, and objectives.
Furthermore, ways to mitigate could involve blocking traffic or
increasing traffic monitoring to understand the patterns more
easily. There is, however, the idea that IP addresses can be
spoofed, and virtual private networks can mask the true origin
of an attack, so while geo-location data is valuable, it is
essential not to rely solely on it.

C. Word Cloud

Some simple but effective pie charts were also created to
illustrate the top 50 passwords and usernames for the Los
Angeles and London honeypots using a Python script [28].
Knowing the top attempted usernames and passwords, such
as 71234567, ”admin”, “password”, “root”, and “ubuntu”,
offers valuable insight into attackers common methods.
These predictable patterns suggest that many adversaries
prioritise easily exploitable vulnerabilities. This emphasises
the importance of implementing strong password policies
and avoiding default or easily guessable credentials. Such
information can guide the enhancement of intrusion detection
systems to flag these generic attempts more efficiently and
focus on securing frequently targeted accounts, enhancing
overall system security.
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1) Top Usernames: “root” and “admin” were the top two
usernames in Los Angeles and London, as shown in Figures
21 and 22. The prevalence of these usernames likely stems
from their common use as default administrator-level access
credentials on various systems. Threat actors often target these
usernames by leveraging brute force or dictionary attacks,
aiming to secure the highest level of system access to
manipulate and control it. Given that many systems employ
default credentials, it is logical for attackers to prioritise these
usernames when attempting unauthorised access.
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Fig. 21: Los Angeles Top 50 Usernames
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Fig. 22: London Top 50 Usernames

2) Top Passwords: Both Los Angeles and London had
71234557, 71237, and “password” as some of their top
passwords, illustrated in Figures 23 and 24. This may
have been the case because many users opt for easily
memorable and typeable passwords despite their weak
security. Additionally, brute force attacks might start with
commonly recognised weak passwords and bots, and
automated scripts may be programmed to try simple passwords
initially to maximise the chances of quickly breaking into

accounts.
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Fig. 23: Los Angeles Top 50 Passwords
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Fig. 24: London Top 50 Passwords

D. Pie Charts

London Robot vs. Non-Robot
Total: 2000 unique IP addresses

Los Angeles Robot vs. Non-Robot
Total: 2000 unique IP addresses

Non-Robot (False) - 21 Non-Robot (False) - 52

Robot (True) - 1979

Robot (True) - 1948

Fig. 25: London and Los Angeles - Robots vs Humans

Pie charts illustrating the relationship between robots and
humans were also created. The robot parameter created by
the visualisation suggests that if the connection time has been
less than 10 seconds (configurable), it is most likely that this
attack is scripted as any human being would need more time
to execute the specified commands [4]. However, this can
inadvertently produce false positives. This is because skilled
human attackers might execute rapid operations, while bots
could mimic slower, human-like interactions, both scenarios
deviating from the parameter’s foundational beliefs.

Understanding whether a honeypot attacker is a robot or
a human is crucial for longitudinal analysis, primarily
for refining security strategies and comprehending threat
evolution over time. Differentiating between automated
and human-initiated attacks allows researchers to trace
patterns, revealing how threat vectors evolve and if
attackers (particularly humans) adapt strategies based on
past interactions or security upgrades. This analysis helps
adjust defences and predict future attack methods, aligning
cybersecurity with evolving threats while correlating attack
data with global trends to enhance predictive threat intelligence
and preparedness.

VII. CONCLUSIONS AND FUTURE WORK

Honeypots serve as a strategic cybersecurity tool by
intentionally presenting themselves as vulnerable targets
to entice cyber attackers, thereby safeguarding genuine
information technology systems. This method facilitates the
diversion of attackers from critical networks while security
analysts collect key data concerning the attackers’ identity
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and their chosen tactics and tools. Utilising honeypots allows
analysts to decipher system weaknesses, which informs the
enhancement of security protocols. A pressing issue in
this field is managing and visualising data collected from
various honeypots over long durations, which is crucial for
understanding attackers’ configurations, methodologies, and
strategies.

The goal was to dive deeper into extracting meaningful
information, using and improving existing tools, and analysing
the gathered data over time. Implementing honeypots in
two locations, Los Angeles and London, by the VUW
cybersecurity team generated substantial text-based datasets,
presenting challenges in analysis and visualisation. Therefore,
there was an opportunity to minimise and refine the data
into a more readable format. It was also important to create
longitudinal visualisations, which would be incorporated into
an established threat map monitored by the cybersecurity team
at VUW.

While managing sizeable datasets effectively necessitates
focusing on data minimisation, the MapReduce programming
method was adopted as a potential solution to reduce honeypot
log data further. The main challenge was deciding on a
method to illustrate the visualisation of the extracted data
longitudinally. While exploring various graphs, Python scripts
were developed to facilitate further data extraction, enabling
data visualisation in alignment with specific graphs. Honeypots
frequently capture and store redundant data, potentially
containing unneeded duplicates that utilise valuable storage
space and computing resources without enhancing research
outcomes. Mitigating this data redundancy, especially within
the SSH Cowrie honeypot logs, resulted in reduced energy
consumption and a diminished ecological footprint.

After concluding the project, many new opportunities have
opened up for further research and growth in honeypots
and cybersecurity. Future work could include further research
to reduce honeypots’ energy and resource consumption.
Additionally, since the project only used three months of data,
one idea for the future could be to use a more extensive
six-month or yearly dataset. However, using MapReduce
might be slower with more data. Furthermore, developing
more algorithms that more efficiently manage data, potentially
reducing the storage, computing power, and energy utilised is
another idea. One more project could be to make dynamic,
real-time visual maps of threats using the honeypot data to
show global cybersecurity threats and predict new threats
by looking at the data’s location and timing and developing
visualisation tools that represent attack patterns and highlight
the techniques most often used by attackers.
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