
ENGR 489 (BUILDING DYNAMIC HONEYPOTS) 2023 1

Building Dynamic Honeypots
Selby Dasent

Abstract—Traditional honeypots have long served as valuable
tools for monitoring and studying attacks on both research
and production networks. However, their inherent static nature
falls short in accurately reflecting the dynamic landscape of
today’s networks. Modern networks comprise of changing hosts
and devices that frequently connect and disconnect, making
honeypot’s single-host, open-port setup with its static address
conspicuous amidst the network activity. To address this static
nature, dynamic honeypots automatically deploy and configure
hosts, enabling them to blend harmoniously with the network’s
existing environment. This paper introduces a dynamic honeypot
design that automates the configuration and deployment of
Cowrie honeypots within a network environment. Importantly,
this system boasts the ability to be deployed without prior
knowledge of the network’s topology or associated hosts.

Index Terms—Honeypot, Dynamic Honeypots, Cowrie, Finger-
printing

I. INTRODUCTION

W ITH the constant evolution of internet-enabled devices,
the world has become more interconnected than ever.

The recent pandemic, in particular, has prompted a significant
shift toward hybrid work structures, enabling employees to
work remotely [9]. However, this increased connectivity has
also given rise to a surge in cybercrime [8]. Advanced attackers
are now capable of bypassing conventional security measures
like firewalls. In response to this, network deception-based
methods are being developed to detect intruders within a
network, and one of the key strategies in this realm is the
deployment of honeypots.

Honeypots represent a vital tool for countering emerging
threats and provide an opportunity to study attacker behavior
and tools. A more comprehensive understanding of attacker
behavior and the tools they employ can empower defenders
to better comprehend their own network vulnerabilities. A
honeypot is essentially a system intentionally placed within a
network with the purpose of being attacked and compromised.
Existing honeypot system designs can generally be categorized
into two key approaches: improving intelligence gathering and
enhancing trapping capabilities. The former aims to make hon-
eypot deployment more adaptable, while the latter concentrates
on creating high-fidelity scenarios that divert attackers away
from other network devices.

Deployment strategies for honeypots encompass both static
and dynamic methods. Traditionally, honeypots are manually
configured and deployed on physical devices, and defend-
ers often prefer static approaches due to their accessibility.
However, these strategies face scalability issues, making it
challenging to mirror the ever-changing dynamics of network
environments. The advent of lightweight virtualization tech-
nology has facilitated the deployment of multiple honeypots

This project was supervised by Supervisor Masood Mansori

on a single device, propelling the development of dynamic
honeypot deployment as a forward-looking approach to net-
work deception.

II. THE PROBLEM

The effectiveness of honeypots hinges on their ability to
emulate real systems, thereby luring potential attackers. To
achieve this, honeypots should closely resemble genuine com-
puter systems or services. However, adversaries are becoming
increasingly adept at detecting honeypots due to their static
characteristics and inherent limitations when compared to
live systems. On a network with regular inter-host activity,
identifying a low-interaction honeypot can be as simple as
observing its lack of outbound network traffic.

A substantial challenge for honeypots lies in their de-
ployment and integration into production networks. Modern
networks are dynamic ecosystems with a multitude of server
devices, hosts, and diverse operating systems. This amalga-
mation of systems and services undergoes periodic changes as
new systems and users join, while others depart. Devices with
prolonged up-time, such as honeypots, may stand out and be
recognized as potential honeypots.

Furthermore, it’s important to note that while honeypots
capture primarily malicious traffic, not all malicious activities
on a network necessarily target honeypots. Despite being
enticing targets, attackers may refrain from interacting with
honeypots, as they can be wary of their online presence,
duration, or conspicuousness.

The inherent static nature of honeypots renders them suscep-
tible to exposure through network mapping, traffic monitoring,
and operating system/port fingerprinting. This visibility dimin-
ishes their efficacy in capturing meaningful data. Additionally,
configuring, deploying, and managing honeypots can be a
time-consuming process for users, especially when collecting
data from individual systems.

This project aims to address the challenges of honeypot
deployment and their inherent static nature by developing a
management system capable of deploying a set of dynamically
initiated honeypots into a production environment.

A. Proposed Solution

The primary aim of this project is to develop a system
capable of dynamically deploying honeypot servers within a
network environment while simultaneously diminishing the
detectability of these honeypots by potential attackers. The
proposed system is designed to offer a comprehensive solution.
It will begin by generating a network visualization, providing a
clear and detailed representation of the current network layout.
Concurrently, it will create and configure a series of honeypots,
tailored to resemble the existing hosts on the network. The



ENGR 489 (BUILDING DYNAMIC HONEYPOTS) 2023 2

ultimate objective is to enable these honeypots to seamlessly
blend into the environment, appearing indistinguishable from
genuine network assets.

Once these honeypots are deployed, they will actively cap-
ture any interactions initiated by users. This captured data will
be collated and presented in a format that is easily accessible
for review by analysts. This streamlined process ensures that
valuable insights into network threats and attacker behavior
can be readily extracted. Beyond the initial deployment, the
system will maintain the flexibility to take honeypots offline
and subsequently redeploy them. This feature allows the simu-
lation of network changes, effectively mimicking the addition
and removal of devices within the network.

The core deliverable of this project is a system with the abil-
ity to scan the network and seamlessly deploy honeypots. This
scanning component is designed to provide users with a visual
representation of the network’s current state. Furthermore,
it will generate detailed honeypot configurations, expertly
customized to ensure the honeypots’ seamless integration into
the specific deployment environment. The project’s completion
will also include all-encompassing documentation, offering
clear instructions on software setup and usage, empowering
users to maximize the system’s potential. Moreover, the system
has been intentionally designed for adaptability and further
development, offering opportunities for scalability and the
continuous enhancement of configuration generation

III. RELATED WORK

This section delves into the contemporary concepts for
comprehending the project’s objectives. Additionally, it sheds
light on existing solutions in the realm of dynamic honeypots,
offering analysis of their strengths and limitations.

A. Honeypots

At a fundamental level, honeypots are servers or services
strategically positioned within a network. Their purpose is
to be probed, attacked, or even compromised by potential
intruders [7]. Honeypots are designed to mimic real systems,
complete with vulnerabilities and configurations, luring attack-
ers into interacting with them.

These honeypots typically fall into one of two categories:
research honeypots and production honeypots. Although both
share the common goal of collecting valuable data, their
objectives differ significantly.

Research honeypots focus on acquiring insights into attacker
tactics, motivations, and the tools they employ. While they may
not directly contribute to an organization’s security, research
honeypots are invaluable for building threat intelligence and an
understanding of a businesses threat landscape. However, they
are often high-interaction and complex to deploy and maintain
due to the wealth of data they can capture.

Production honeypots, on the other hand, reside within a
business’s network and primarily serve for monitoring and
threat detection. These honeypots tend to be low-interaction
systems, making them easier to manage, but they provide
fewer details. In the context of this project, research-type

honeypots are chosen due to their extensive data capture
capabilities.

Despite significant advancements in honeypot technology
since their inception in the 1990s [1], there remains a sub-
stantial emphasis on manual configuration and deployment.
Honeypots rely on precise technical configurations, as even
minor errors can compromise their ability to capture or deceive
attackers. Additionally, an advanced intruder may swiftly
detect the presence of honeypots or exploit them for further
attacks.

B. Dynamic Honeypots

A dynamic honeypot is designed to streamline the tradi-
tionally manual processes involved in configuring, deploying,
and logging a honeypot system. In this project, the system’s
key tasks include scanning a network to gather necessary
data and generating configurations tailored for the honeypots
that will be deployed. Once deployed, these honeypots are
expected to actively monitor the network for any changes
and autonomously adapt to these changes as needed. This
automation not only enhances the efficiency of honeypot
deployment but also ensures their ability to stay relevant and
responsive in dynamic network environments.

In the realm of dynamic honeypots, two distinct approaches
have been explored. The first takes on a ”bait and switch”
methodology, where the system swiftly detects an intruder and
redirects them to a completely fabricated network that mirrors
the primary network. Implementing this approach requires not
only the rapid detection of intruders but also the immediate
deployment of the faux environment and moving the intruder
into it without their awareness. However, scalability poses
a challenge—the efficiency of the system can be directly
impacted by the size of the network being emulated.

A notable design employing the ”bait and switch” concept
was presented by I. Beres [2]. This design extensively detailed
the use of the cloud to generate mirrored honeypot servers on
demand. It relied on Amazon’s Cloudwatch to alert the system
to an intruder’s presence. Subsequently, new instances were
spawned as honeypots, and malicious traffic was redirected to
them. This paper demonstrates the effectiveness of the ”bait
and switch” honeypot approach in cloud environments. These
environments can swiftly generate new services, demanding
additional resources without affecting users. However, the
honeypots used in this method were low-interaction and
did not capture attack analytics, primarily due to scalability
concerns. A large network with high-interaction honeypots
could consume considerable resources and potentially extend
the environment generation process. The unexpected delay
experienced by an intruder when being shifted to the simulated
environment might alert them to the honeypot’s presence.

Y. Gao and colleagues [4] proposed an approach similar
to the ”bait and switch” strategy. They utilized attack path
prediction to strategically deploy honeypots within a network.
The primary goal of this method was to anticipate an intruder’s
likely path and position the honeypot directly in their way.
This approach offered the advantage of reducing the resources
required to capture an intruder while also minimizing the risk



ENGR 489 (BUILDING DYNAMIC HONEYPOTS) 2023 3

Fig. 1. Traditional static deployment of honeypots

Fig. 2. Dynamic deployment of honeypots

of detection. Although effective, it is worth noting that there
is still a possibility that the intruder might choose an alternate
path, thereby evading the honeypot entirely. This approach
highlights the ongoing cat-and-mouse game between defenders
and attackers in the realm of cybersecurity.

The second category of dynamic honeypots, which serves
as the central focus of this project, offers seamless integration
into the existing network environment. This dynamic honeypot
approach emulates the behavior of adding and removing itself
periodically, effectively mirroring the typical actions of new
hosts joining a network. In stark contrast to traditional honey-
pots, which are deployed into a network and remain static (Fig-
ure 1), dynamic honeypots demonstrate unique adaptability. In
the face of changing network topologies, traditional honeypots
remain unaltered, while dynamic honeypots maneuver within
the network (Figure 2).

In this methodology, intruders are still required to attempt
accessing the deployed honeypots. It’s important to note that
this form of dynamic honeypots doesn’t primarily aim to
safeguard the network, as observed in ”bait and switch”
honeypots. Instead, its primary objective revolves around data
collection and alerting defenders to an intruder’s activities.

C. Network Scanning

To perform comprehensive network scanning, two primary
methods are typically employed: passive scanning and active
scanning. Passive scanning entails deploying a scanner on a
router to intercept outgoing traffic. While this approach can
capture all the necessary information to map the network,
it relies on the active transmission of packets by network
hosts. In contrast, active scanning involves the use of tools like
nmap to send packets to every available host on the network

to collect data. Active scanning is a faster method that can
identify machines, even those unlikely to transmit traffic.

A significant study conducted by M. Mansoori and col-
leagues [3] relied on passive scanning as the primary method
for network mapping. Their hypothesis was that passive scan-
ning could match the accuracy of active scanning. While the
passive method offered certain advantages such as reduced
network traffic, it took longer to detect hosts within the
network. Despite the effectiveness of passive scanning, this
project opts for the active scanning approach, primarily due
to the need to generate large-scale network maps efficiently.

IV. DESIGN

The scope of this project encompasses the development
of a system capable of managing multiple honeypots and
configuring them to adapt to the dynamic nature of a network
environment. This section explores the design decisions that
will guide the development of this project.

A. Project Considerations

The core implementation, as highlighted in the proposed
solution, can be divided into four key considerations. The
first involves selecting the programming language to be used
in developing and deploying the entire system. The second
consideration pertains to the type and design of the honeypot
that will be deployed. The third aspect focuses on the method
and environment in which the honeypots will be deployed.
Finally, the fourth consideration revolves around the network
scanner to be used for mapping the network and developing
the necessary configuration details. These aspects are crucial
for the successful execution of the project.

B. Design Considerations

The purpose of this section is to explore the design decisions
made regarding the development language, scanning and the
deployment of the honeypots.

1) Development Language: Considering the programming
language for system development was the first step in this
project, particularly for creating an environment capable of
deploying Cowrie honeypots within a network. This selection
involved evaluating various aspects such as scalability, budget,
complexity, time constraints, and available resources.

Two languages were evaluated for this project: Java and
Python. While Java is recognised for its speed, Python was
chosen due to its abundance of libraries tailored for managing
Docker containers and network scanning. Furthermore, since
the Cowrie honeypot itself is built using Python, choosing
Python would facilitate future improvements and integration
into the system. Another advantage of Python is its versatility
in running on a wide array of base operating systems with
ease, reducing the system’s reliance on a particular operating
environment.



ENGR 489 (BUILDING DYNAMIC HONEYPOTS) 2023 4

TABLE I
COMPARISON OF HONEYPOTS

Cowrie Honeyd Kippo
Interaction Level Medium Low Medium
Docker Images ✓ ✗ ✓
Configurable ✓ ✓ ✓

Frequently Updated ✓ ✗ ✗

2) Honeypot: Another design aspect impacting the project
was the selection of the Honeypot system. A plethora of open-
source honeypots are available, each designed to fulfill distinct
objectives, as documented in [11].

For this project, we evaluated several key considerations,
not ranked in any particular order: the level of interaction,
ease of deployment and configuration, and the frequency
of updates. We conducted a comparative analysis of three
different honeypots, detailed in I, in order to determine the
most suitable choice.

The ultimate selection was Cowrie, a medium interaction
honeypot known for its user-friendliness in deployment and
configuration. Additionally, the involvement of the Owhiti
cybersecurity group at Victoria University of Wellington, who
have contributed to and employed Cowrie in their research,
further influenced this decision.

3) Deployment Environment: To achieve the rapid deploy-
ment of honeypots, we must address the challenge of running
multiple honeypots within a single device. When Cowrie
honeypots are deployed individually, they assume the host’s
IP address and bind themselves to a port. While this works
well for single honeypots, it becomes problematic when you
aim to run multiple simultaneously.

Initially, I contemplated having the system interact with
a hypervisor like Virtualbox to initiate and deploy machines
with Cowrie running. However, this approach raised concerns
regarding the substantial resource requirements it would entail.
A more efficient solution emerged: transitioning to a con-
tainerized system, such as Docker and Kubernetes. During our
selection process for the honeypot to run within this system,
we considered its compatibility with such an environment.
Cowrie, our chosen honeypot, offers readily available Docker
images that can be swiftly downloaded and executed. More-
over, these images can be dynamically customized at runtime,
enabling a variety of Cowrie configurations to be established.

4) Network Scanner: The final critical design decision
revolved around how to scan the network and identify the
connected devices and their respective operating systems. We
considered two primary approaches: leveraging the capabilities
of an existing tool, such as Nmap, or developing our own
network scanner. The most challenging aspect of creating our
own scanner was determining the devices’ operating systems,
which can be achieved through methods like identifying op-
erating system signatures or analyzing response packet time-
to-live values.

For the successful configuration of the honeypots in this
project, it was imperative to have precise knowledge of the
operating systems. With this requirement in mind, we opted to
utilize existing tools. An analysis conducted by J. M. Pittman
[10] revealed no discernible difference in effectiveness or

Fig. 3. Proposed system modules

accuracy between Nmap, Zmap, and Massscan. However, we
chose Nmap as the primary scanner for this project due to the
availability of readily accessible Python libraries tailored for
Nmap integration.

C. System Architecture

The system architecture outlines how the proposed solution
is dissected into smaller, interconnected segments. As depicted
in Figure 3, the design comprises two core components:
the analysis/configuration engine and the deployment engine.
These core components can be further subdivided into distinct
functions, including the network scanner, honeypot configu-
ration, Docker image management, and the deployment of
honeypots.

Additional facets of the system encompass the local net-
work, including its topology, and the user interface. The
user interface has been intentionally tailored for command-
line interaction, enabling seamless remote system access and
operation. While the local network’s design may not be within
our direct control, it remains a crucial consideration during the
solution’s implementation phase.

V. IMPLEMENTATION

In the following sections, we delve into the project’s im-
plementation process. This project unfolded in three distinct
stages: firstly, the development of the network scanner, fol-
lowed by the deployment of honeypots in the second stage.
The third and final stage involved the seamless integration
of these components to accurately configure the deployed
honeypots.

A. Scanner

In the initial development phase, our primary focus was on
the network scanner, which played a crucial role in scanning
and identifying hosts along with their respective operating
systems. To accomplish this, we designed a solution that
harnessed the capabilities of Nmap. We initially considered
two libraries, namely nmap3 and nmapthon. Our initial design
incorporated nmapthon, which allowed us to customize the
scan types and store results as a dedicated object within the



ENGR 489 (BUILDING DYNAMIC HONEYPOTS) 2023 5

system. However, we encountered challenges related to the
completeness of scan results, leading us to explore alternative
options.

Ultimately, we decided to work with a different library
that met the core requirements of our scans and delivered
results in a manageable JSON format. This format provided
us with more control over data handling within the system.
Consequently, the system was configured to save scan results
in a JSON-formatted file, enabling access to historical network
data and facilitating the identification of network changes over
time.

Ensuring that the scanner was targeting the correct network
required user input of a network range or, alternatively, the sys-
tem needed to determine its connected network automatically.
If the user did not specify a network range, the system would
attempt to retrieve its own IP address from its network adapter,
alongside the netmask of the network. This process occurred
in two stages before consolidating the results. In the first
stage, the system identified the device’s network adapter and
surveyed the networks to which it was connected. It excluded
the local host (127.0.0.1) and extracted the device’s outward-
facing IP address. Subsequently, it gathered the netmask for
this IP. This involved obtaining the binary response from a
socket connection request and converting it into an integer
representation of the netmask. Armed with the device’s IP
address and netmask, the system generated a subnet for
scanning.

B. Deployment Engine

For the deployment of Cowrie honeypots, we chose to
employ Docker containers. Cowrie conveniently offers its own
Docker image hosted on Docker’s platform, enabling us to
effortlessly pull the latest image and execute it within a Docker
container. To interact with Docker seamlessly from our system,
we harnessed the Docker SDK for Python, which empowered
us to programmatically access and manage Docker’s compre-
hensive set of functionalities.

Our initial objective was to download and initiate the
Docker image. To achieve this, we created a Docker environ-
ment object in Python and instructed it to fetch the most recent
Cowrie image from the Docker library. When combined with
the Docker image’s run function, this process enabled us to
swiftly deploy a Cowrie honeypot within the Docker network.
These active containers were then cataloged in a list within
the system, affording us the capability to monitor, update, or
shut down each active honeypot as needed.

Since Docker containers operate independently of the sys-
tem, it was imperative to implement a proper shutdown
sequence to halt the running containers. Failure to do so
could result in a buildup of unused honeypots. This was
accomplished by utilizing the stop function on any active
containers.

Once the containers were deployed, we needed to place
them on the appropriate network to be effective. When Docker
images are deployed, they automatically become part of a
network created by the Docker system. To expose Docker
containers to the internet, there are three primary methods.

Fig. 4. Bridged network adapter

The most commonly accepted approach is to create a firewall
rule that maps a container’s port to a port on the Docker
host machine. However, this approach would not suffice for
our system, as the honeypots required their own IP addresses.
To address this, we utilized a Docker network bridge, which
allowed us to configure a network adapter that the Docker
images could connect to, providing them with their unique IP
addresses.

To configure the network adapter, we need input similar
to what the scanner requires. If the user knows the subnet
address, they can input it. Otherwise, the system will use
the network to which the device is connected, a piece of
information obtained through the scanning module. Once the
subnet is set, we can proceed to create the network adapter
using Docker. This action yields a network adapter object,
allowing us to iterate through a list of containers and connect
them to the network as seen in Figure 4

Similar to managing the containers, it’s crucial to establish
an appropriate shutdown sequence for the network adapter.
Leaving networks operational can potentially interfere with
the functioning of the running program. We accomplished this
by first removing all containers connected to the adapter and
subsequently removing the adapter from Docker.

C. Cowrie Configuration

The next step in the process involved configuring the Cowrie
honeypots. To achieve this, we needed to transform the data
generated from the network scan into a suitable configuration
file for Cowrie. The scan produced a comprehensive JSON
object, but for the project’s specific needs, we extracted
essential information. We retained the IP addresses, open ports,
and hostnames of the devices. Additionally, we selected the
most accurate operating system information.

Nmap’s OS scan produces a list of potential operating
systems for a device, derived from two sources. The first is
a unique signature determined by Nmap using various factors
such as TCP ISN sampling, IP ID sampling, and initial window
size checks. If Nmap cannot establish an operating system with
this signature, it resorts to TCP sequence predictability classi-
fication, measuring the difficulty of establishing a forced TCP
connection against the host. These techniques have proven to
be highly accurate, as substantiated by studies [3] [10], making
them a reliable method for configuring the honeypots.

Once the scan results have been parsed, the system generates
a list and incorporates it into the Cowrie configuration file,
which is then injected into the Docker image during the startup
process. When Cowrie determines the operating system to



ENGR 489 (BUILDING DYNAMIC HONEYPOTS) 2023 6

emulate, it randomly selects from the list of available systems
within the configuration file. With this in mind, we construct a
list of all the operating systems, including duplicates, to create
a weighted list for Cowrie to choose from.

D. User Interface

User interaction with the system is facilitated through a
command-line interface (CLI) that was purpose-built for the
project. This CLI offers a range of commands enabling users
to interact with the system, including tasks like starting and
stopping honeypots, initiating network scans, and accessing the
results of these scans. Although the consideration of develop-
ing a Graphical User Interface (GUI) was entertained initially,
it was deemed incompatible with the system’s intended use and
requirements for remote access. Consequently, the decision
was made to revert to a command-line interface, which aligns
better with the project’s requirements.

The user interface was designed with simplicity and ease
of use in mind. Users can issue commands to perform various
tasks, and the system provides feedback and status updates
to keep users informed about ongoing processes. The CLI
is structured to accommodate both novice and experienced
users, with detailed help documentation available to guide
users through the commands and their usage.

E. Integration and Testing

The integration of the various components of the system was
a critical phase in ensuring the functionality and reliability of
the entire solution. Extensive testing was conducted at each
stage of the development to identify and resolve any issues,
bugs, or inconsistencies.

Integration testing involved coordinating the interaction
between the network scanner, Docker-based honeypot deploy-
ment, and network simulation. The network scanner would
provide data to configure honeypots, and the network simu-
lation component would continually monitor the network to
maintain the dynamic nature of the honeypot deployment.

User interface testing ensured that the CLI provided a
smooth and user-friendly experience, with a clear and intuitive
set of commands. Extensive documentation was created to
guide users in using the system effectively.

VI. EVALUATION

A survey was conducted to assess the usability of the system
and gather user satisfaction feedback regarding the deployment
of honeypots on a network. The survey involved participants
associated with the Owhiti Security Group and was adminis-
tered during two live demonstrations of the system. The survey
questions primarily focused on evaluating the system’s ease of
use and its effectiveness in providing relevant information.

The following section provides a summary of the questions
posed in the survey and outlines the rationale behind each
question:

1) Were the instructions provided for using the com-
mand line interface clear and easy to understand?
It helps determine if the system’s instructions were suf-
ficient, comprehensible, and user-friendly. Moreover, it

indicates whether additional information or clarifications
may be required to improve the overall usability of the
system.

2) Did you encounter any difficulties in navigating or
using the command line interface? This question is
vital for gaining insights into the user’s overall experi-
ence with the system, especially concerning its layout,
functionality, and ease of navigation. Understanding any
difficulties or challenges users faced in navigating or
using the command-line interface helps in identifying
specific areas of improvement in the system’s design
and layout.

3) Were you provided with sufficient information about
the network scanning and honeypot deployment pro-
cess? This question provides insights into the adequacy
of information within the system, which is vital for user
understanding and successful operation. If users indicate
that they were not provided with sufficient information,
it highlights potential areas for improvement.

4) Have you ever deployed honeypots using a command
line interface before using this system? This question
helps in gauging whether the user’s prior experience
influences their assessment of the new system’s ease
of use. Understanding the user’s level of expertise and
familiarity with the domain is essential for obtaining
a comprehensive and context-specific evaluation of the
system.

5) If you have prior experience, how does this system
compare to your previous experiences with deploying
honeypots? This question is essential as it encourages
users to provide insights based on their past experiences,
allowing for a contextual comparison between the new
system and their previous honeypot deployment tools.
Users with prior experience offer valuable feedback
on the system’s strengths and weaknesses in relation
to existing solutions, aiding in the assessment of its
usability.

6) What aspects of the system do you think could be
improved? By directly asking users to identify aspects
of the system that could be enhanced, it provides an
open platform for users to express their thoughts and
suggestions for refinement.

During the first demonstration, feedback was gathered from
four participants, with overall positive impressions regard-
ing the system’s usability. However, a valuable suggestion
emerged: the availability of commands should print back to the
command line more frequently. This constructive feedback was
incorporated into the system before the second demonstration.
Subsequently, during the second demonstration, participants
expressed satisfaction with the interface, reporting that they
could efficiently navigate the system.

In response to questions 4 and 5, two out of the four
participants had prior experience in honeypot deployment.
Their feedback regarding the ease of honeypot deployment
was positive, with suggestions revolving around providing
more detailed information about the deployed honeypots and
offering users additional options for deployment, such as



ENGR 489 (BUILDING DYNAMIC HONEYPOTS) 2023 7

specifying the network range for honeypot connections. There
was also a suggestion to have the honeypots deploy to a more
pseudo-random set of addresses within the network to enhance
their deceptive nature, although this suggestion could not be
implemented before the project’s completion.

VII. CONCLUSION AND FUTURE WORK

In conclusion, this project aimed to address the challenges
associated with the deployment of honeypots and their inherent
static nature. It sought to create a management system capable
of deploying dynamically initiated honeypots into a production
environment, ensuring that they integrate with the existing
network assets. The project involved multiple key components,
including a network scanner, honeypot deployment engine, and
a user-friendly command-line interface.

Throughout the implementation process, the project under-
went several phases, including the development of the network
scanner, the deployment of Cowrie honeypots using Docker
containers, and the configuration of honeypots based on scan
results. A user survey was conducted to assess the usability and
effectiveness of the system, with valuable feedback gathered
from participants associated with the Owhiti Security Group.

The survey results indicated that the system provided clear
instructions and was relatively easy to navigate. Participants
with prior honeypot deployment experience found the system
to be user-friendly. The feedback also led to improvements,
including more frequent command-line feedback and consider-
ations for enhancing the randomness of honeypot deployment.

In summary, this project addressed the challenges of honey-
pot deployment and offered a dynamic solution that integrates
honeypots into a network environment. While there is room for
further improvement and development, this system represents
a step towards enhancing the effectiveness of honeypots in
network security and threat detection.

A. Future Work

While the outcome of this project was successful, there are
several ways to extend this system to increase its value. Four
key areas for improvement have been proposed:

1) Enhanced Honeypot Variety: Expanding the range of
supported honeypot types, each emulating different services
and systems, can improve the system’s ability to represent
various operating systems. This diversity enhances the sys-
tem’s effectiveness in detecting different types of attacks and
attackers, making it a more versatile tool in network security.

2) Real-time Monitoring and Alerts: Implementing real-
time monitoring and alerting mechanisms allows security ana-
lysts to receive immediate notifications of suspicious activity.
Customisable alert triggers provide flexibility in configuring
the system to respond to specific threats promptly.

3) Machine Learning Integration: Incorporating machine
learning models can enhance the system’s ability to iden-
tify operating systems and network configurations. Machine
learning aids in classifying and analyzing network traffic,
allowing the system to adapt honeypots based on evolving
attack patterns.

4) Comprehensive Reporting: Implementing a system that
gathers and presents logs from deployed honeypots in a
user-friendly manner can enhance the system’s usability as
a research honeypot. This comprehensive reporting feature
provides users with valuable information for studying attacks
and analyzing security threats.

By focusing on these development areas, the dynamic
honeypot management system can become more versatile,
responsive, and effective in detecting cyber threats. It will
adapt to changing attack techniques, offer real-time insights,
and provide a wider range of emulated services, ultimately
strengthening network security and threat detection capabili-
ties.

VIII. REFERENCES SECTION

REFERENCES

[1] S. Clifford The Cuckoo’s Egg: Tracking a Spy through the Maze of
Computer Espionage. New York, NY, USA, Doubleday, 1989.

[2] Beres, Ivan, Hurley-Smith, Darren. (2022). Dynamic honeypot deploy-
ment in the cloud. 10.13140/RG.2.2.18384.58883.

[3] MOHAMMADZADEH, H., MANSOORI, M., AND
WELCH, I. Evaluation of fingerprinting techniques and
a windows-based dynamic honeypot. [Online]. Available:
https://dl.acm.org/doi/pdf/10.5555/2525483.2525490

[4] D. Fraunholz, M. Zimmermann, H. Schotten. (2017). An adaptive
honeypot configuration, deployment and maintenance strategy. 53-57.
10.23919/ICACT.2017.7890056.

[5] Y. Gao, G. Zhang, C. Xing, A Multiphase Dynamic Deployment
Mechanism of Virtualized Honeypots Based on Intelligent Attack Path
Prediction. Security and Communication Networks. [Online]. Available:
https://doi.org/10.1155/2021/6378218

[6] ML. Kiah, W. Zakaria. (2013). A review of dynamic and intelli-
gent honeypots. ScienceAsia. 39s. 1 - 5. 10.2306/scienceasia1513-
1874.2013.39S.001.

[7] Kaspersky. What is a honeypot. [Online]. Available:
https://www.kaspersky.com/resource-center/threats/what-is-a-honeypot

[8] CERT NZ. Cyber Security Insights [Online]. Available:
https://www.cert.govt.nz/about/quarterly-report/

[9] M. Mutebi, A. Hobbs. The impact of remote and hybrid working
on workers and organisations. UK Parliament, London, England,
October 2022. [Online]. Available: https://post.parliament.uk/research-
briefings/post-pb-0049/

[10] J. M. Pittman. A Comparative Analysis of Port Scanning
Tool Efficacy. arXiv. Cornell University. [Online]. Available:
https://doi.org/10.48550/arXiv.2303.11282

[11] J. Nazario. Awesome Honeypots [Online]. Available:
https://github.com/paralax/awesome-honeypots


