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November 1997. 

THE DISCRETE TIME BETA 

by Roger J. Bowden• 

Abstract 

Empirical studies of the CAPM commonly utilise returns measured over discrete time 

intervals. In such a sampled data frame, the correct choice of the risk free rate is far from clear

it is commonly taken as the yield on a discount bill or bond, whose time to maturity coincides with 

the sampling interval. It is also unclear whether use of discrete data preserves the independence 

of the CAPM relationship from idiosyncratic variance elements. This paper relates the continuous 

beta to what one would observe from discrete data, assuming continuous underlying no- arbitrage 

trading processes. It is shown that the risk free rate can be eliminated, as a nuisance variable, and 

the CAPM cast in tenns of two benchmarks, namely the market rate of return and the yield on 

a default free discount bond; the latter more or less corresponds to the 'risk free rate' as it appears 

in the usual empirical study. In such tenns, the bond beta contaminates the measured stock beta, 

powering up the latter, so that high beta stocks appear even higher, and low beta stocks even 

lower. It is shown that the bond beta is equal to one half times the proportion of the overall 

market portfolio devoted to risky assets. Thus one can expect the powering up - and hence the 

measured stock betas - to vary over the business cycle. Moreover, idiosyncratic variance elements · 

appear as an intercept term in the CAPM relationship, though this effect vanishes as the sampling 

interval becomes small. 

Key words: Beta, CAPM, bond yields, continuous trading, cost of capital, empirical theory, 

equivalent martingale, no-arbitrage trading process, risk free rate, sampled data. 

•school of Economics and Finance, Victoria University ofWellington, New Zealand. 
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I ·introduction. 

The literature on the CAPM beta is both huge and indecisive. It remains unclear why a 

theory of such robustness in alternative assumptions should perform so badly in its empirical 

fitting. In recent times, inquests from authors such as Fama and French ( 1996) under the 'beta 

is dead' catch phrase have attracted much attention, as well more long standing reservations 

implicit in the Roll critique ( Roll, 1977), and a variety of other authors on anomalies, the 

question ohime stability, time series versus cross section, and other issues. However while much 

of the literature has been preoccupied with the actual techniques of estimation or testing, little of 

it- apart from the Roll contribution- has actually considered the matter of the underlying empirical 

theory, as distinct from the econometrics. In other words, one starts with a relationship derived 

in a particular theoretical world, and the problem then arises as to what one can expect to happen 

when the translation is made to the world represented by the available data. The present paper 

addresses two related issues that arise within such a framework. The first considers the empirical 

meaning of the risk free rate. The second is concerned with the choice of time interval over which 

the returns are to be measured. Both are ultimately concerned with what one would expect to 

happen when the CAPM model is actually fitted. 

Inevitably, the available data, for the time series phase of the study, spans some finite time 

interval: an hour, day, a month, a year, and so on. Where all are available, as is now pretty much 

the case with sophisticated commercial databases, which should be used? Most researchers would 

not feel comfortable in estimating a stock's beta on the basis of hourly or even daily trading data, 

which may very well be dominated by extraneous "noise", in the terminology of Fischer 

Black(l 986). Moreover if the proposed use is for cost of capital studies, the time interval to be 

employed is also relevant. On the other hand, if a longer period of time is to be considered, 

measurement of the risk free rate becomes a problem. On the basis of monthly data, for example, 

one could elect to use the yield on 30 day T-bills as the risk free rate. However this may not 

coincide with the true risk free rate as it is actually being used to measure the opportunity cost 

of risk by investors. One might ask, for instance, why investor decision horizons should coincide 

so beautifully with the precise monthly boundaries presumed by the study. Where they do not, the 

measured risk free rate is far from risk free. To some extent, this difficulty has been overcome in 

the more recent literature by the use of the yield on a default free zero coupon instrument whose 

tenn coincides with the measurement period, to form a stochastic discount factor. In the 'law of 
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one price' methodology ofHansen and Jagannathan (1991), the betas are assessed in terms of the 

covariance between the stock's return and a stochastic discount factor, whose expectation is the 

price of the zero coupon bond. The origins of this approach lie in the modem theory of no 

arbitrage financial general equilibrium, where the discount factor represents discounted state 

prices for risk. ln this respect the development extends Breeden's ( 1979) idea of the consumption 

beta as determined by the marginal utility of consumption in various states of the world. While 

this is conceptually much more satisfactory, it does not relate the risk premium for the stocks 

directly to their betas with respect to a recognisable rate of return on the market, or even with that 

on the bond itself Thus the stochastic discount factor approach does not address the question 

of just what one might expect to happen where studies cast in terms of the more traditional 

framework of expected rates of return of the stocks with the market. 

In the present contribution, we take the approach that if the true definition and empirical 

identification of the risk free rate (or a zero beta security) is a problem, then we can bypass it, 

essentially by treating the risk free rate }s a nuisance variable that can be eliminated. In this 

approach, the two benchmarks of the conventional theory, namely the risk free rate and the 

market return , are replaced by the bond rate and the market respectively. In many ways this is 

a natural thing to do for cost of capital studies, for it highlights the margin of the stock in 

question not only with respect to the market as a whole, but also relative to the rate of return 

quoted in the fixed interest market over the chosen observation interval. 

Once this is done, then we can also relate the observed discrete time betas to the 

underlying parameters of continuous time trading processes. Supposing the latter to constitute 

basic parameters, it emerges that the discrete betas are simple transformations of the continuous 

time betas, characterised by the following: 

(a) The discrete betas are contaminated by the beta of the bond with respect to the market, which 

is neither zero nor unity. Specifically, the stock betas are powered up by the bond beta. High 

stock betas become even higher, and low stock betas become even lower. One could call 

this the 'over-estimation effect'. We show that the bond beta is equal to one half the proportion 

of the overall market portfolio devoted to risky assets. It can therefore be expected to vary over 

time according to cyclical attitudes towards risk, or less formally as to whether times are good 

or bad, in terms of perceived investment opportunities and/or the marginal utility of wealth. In 

tum , the powering up effect on stock betas will inherit this variation, so one would expect a 
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cyclical effect on measured stock betas. The powering up effect is independent of the sampling 

interval employed. 

(b) The discrete beta is contaminated by idiosyncratic variance elements. Stocks that are more 

intrinsically variable therefore appear to have higher betas, no matter that they are not so penalised 

in the underlying continuous time trading. This effect is dependent on the time interval - the 

shorter the chosen interval, the smaller the effect. 

In short, discrete observation betas are more variable in cross section than are the underlying 

continuous time betas; and there may be additive contributions to the CAPM relationship itself 

from an idiosyncratic risk term. With regard to time series, the betas are also more variable 

across different phases of the business cycle. The latter aspect could be thought ofas providing 

theoretical motivation for empirical studies that attempt to allow for the possibility that beta does 

in fact change; for examples see Fisher and Kamin (1985) or Ferson and Harvey (1991). 

The scheme of the paper is as follows. Section II establishes the underlying continuous 

time trading model, which in itself is quite standard. Within such a framework, we derive the 

instantaneous beta equation for any chosen risky security. The corresponding equation is also 

obtained for default free zero coupon bonds, relative to the market fund of risky assets; it is the 

same for zero coupon bonds of all maturities. The two sets are combined into a single beta 

relationship that eliminates the risk free rate between the two beta equations, one for the stock 

and one for the bond. The yield on the bond now replaces the risk free rate. In section III this 

relationship is integrated up over the unit interval to obtain the discrete beta. Powering properties 

are exposited in terms of the mapping between the continuous and discrete betas. Some 

concluding comments briefly explore the implications for cost of capital assessments. 

II Continuous time: The risk premium process and the global portfolio. 

2.1 The risk premium process and the reproducing portfolio. 

For simplicity we review here only the case of the complete market. The formal algebra 

is the same for the incomplete case but the risk premium process is no longer necessarily unique. 

Even with complete markets, the analysis that follows can be generalised further, but in order to 

dispense with mathematical details, we cover only the most basic case. Suppose that there is a 

set of N securities that span an underlying or driving set of stochastic influences, the latter 
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modelled in continuous time by some N dimensional lto process. The security returns are then 

themselves Ito processes - or more precisely so are the values P; of the corresponding 

accumulation funds, which represent the progressive rewards in terms of dividends, capital gains 

and other reward elements. Security returns in the chosen spanning set are specified to have 

means µ and covariance matrix I:, conditional on information :T, up to times. Jn the present 

section time s will be taken as continuous - later we shall reserve the index t for discrete time. 

The mean and covariance matrix are defined in the Ito sense as the instantaneous drift and 

coefficient of the Brownian motion terms. They need not be constant over time. In what follows, 

the time unit will be taken as the interval (s, s+ds). There is also an asset whose instantaneous 

return over the interval is the risk free rate p . The latter will in general be stochastic over time 

(the 'spot rate', in the tenninology of interest rate theory). 

Given the above specifications, there exists a risk premium process ~ that evolves 

according to the Ito equation 

(l) d~ = 1 ~ e·e ds - ~ e· dB, 
2 

where 0 = :E ;½ ( µ - p I ), with I as the unit vector, and B denotes the underlying Brownian 

motion process. For brevity, we shall sometimes refer to the above as an equation _in d~/~ = f, 
say, with drift ( -½0'0ds) and volatility coefficient (-0). In complete market theory, the risk 

premium process is used as a stochastic discount factor to value future payoffs. Duffie (1992) is 

an excellent discussion in the context of state price theory; a compendious recent reference is 

Magill and Quinzii (1996). 

Define a vector x = :i: ;½ 0 , and consider a portfolio M of nominal value $1 with amounts 

x in the risky assets and I - l 'x in the safe asset. The returns on this portfolio are such that the 

drift or mean term is µm = 0'0 + p and the instantaneous variance is a2
m = 0'0 ( for readability 

we omit the time increment ds in the present context). The quantity Am = µ,. - P • ca'a)½ 
" .. 

is often referred to as the market price of risk for the M portfolio. If we restrict attention to the 

risky asset part of the portfolio, this will have portfolio weights given by x / I 'x , and will have 

instantaneous variance a2
• = a2 

m / (I 'x)2 = 0'0 /(l'x)2 
. The price Qf risk for this portfolio }., 

= µ_ - P is the same as for portfolio M, i.e. A,= Am. The interpretation of the return on the 
". 

nominated portfolio of risky assets is that there exists a market accumulation fund (the 
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reproducing portfolio) of risk")' assets whose price P. obeys the Ito process 

(2) dPJP. = (p + A.a.) ds +a.dB., 

where the Brownian motion increment dB. is defined in term of the constituent security 

increments dB. This particular form motivates the conventional description of A. as the market 

price of risk, referring to the pricing penalty attached to the portfolio standard deviation o •. The 

market return is interpreted as the proportional change of P. , the price of the accumulation fund 

generated by the reproducing portfolio of risky assets. For typographical convenience, we shall 

often write dPJP. = p., ie use the lower case for the instantaneous proportional change. Similarly, 

for the individual securities the notation p, = dP/P, will be used. Thus E p; will mean (EP,,."' -

Pi, )/ P;, , with a similar meaning for Cov ( p, , P; ) . 

To get the instantaneous beta relationships, define the conditional regression coefficients 

P, = Cov (p,, p. )/ 0 2
• ds , 

so that collectively, 

p = 

= 

E~ 6 
a? i'x 

I 
--,- (11 - pl) 

a. a. 1 X 

= I I 

a. ,l 
(11 - pl), 

In view of the definition of A. it follows that for security i, the drift terms are related by 

(µ, - p) = P, ( µ. - p) . It follows that for any security in the economy, whether or not in the 

chosen spanning set, the drift terms are related by: 

(3) E p, - pds = P, ( Ep. - pds) , 

which is the instantaneous CAPM. 
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2.2 Relationship with =ero coupon rates. 

The price at instant s of a zero coupon bond of maturity T > s is given by 

(4) P, 
I -f'p_,,. 

(-)E ( ~TC , ) • 

C, 

where the expectation is taken conditional on information available at instant s. Define 

P", = ~' P,. Applying the iterated expectation to expression (4) over the infinitesimal interval 

from s to s+ds , we get 

P n -p, d, E(P n ) 
& e s,ds 

s 

where the expectational subscript emphasises conditionality on information available at instant s. 

Thus pn is the price of a risk adjusted bond, that returns an instantaneously non stochastic rate 

p,. One has effectively transferred to a risk neutral world, the "equivalent martingale theory", in 

the terminology of Harrison and Kreps (1979), in which the discounted prices of securities follow 

martingale processes under a transformed (EM) probability measure. 

Indeed, under the EM measure, the zero coupon bond follows a price process 

dP/P = pds + 8 'dBm b , 

where Bm is a martingale process, and the volatility coefficients 8b may depend on the maturity 

T of the bond. The relationship between the increments under Bm and B is: dBm = dB + 8ds. 

Hence under the original or natural probability measure, 

(5) dP/P = (p + 0b•0 )ds + 8b'dB . 

Now since dP P n = Pn = p + f , in proportional change terms, and Pn = pds, it must be that 

8b'8 = ½8'8 . This is an important constraint on the allowable 8b; it essentially means that they 

must lie on a hyperplane in N dimensional space that is oriented orthogonally to the vector 8 . 
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However, our precise concern here is with the bond beta relative to the market portfolio of risky 

assets. Thus comparing equation (5) with(]), Cov ( p,0 = -½ 6'6, from which the beta of the 

bond return upon the market portfolio return p. is given by: 

(6) Ph = ½J..../o. = ½ 1 'x . 

The bond beta is thus equal to half the..proportion of the overall market portfolio M allocated to 

risky assets. Note that this means that the bond beta will be between zero and unity. 

The corresponding CAPM relationship on the market portfolio of risky assets would be 

(7) (Ep - p )ds = Ph ( E p. - p ds ) . 

It can be verified from equation (5) that this pricing relationship is indeed consistent with the mean 

term for the bond price process. Thus the CAPM beta pricing relationship holds for the zero 

coupon bond as well as for stocks. It can also be verified that it holds for the risk adjusted bond 

considered above, whose price is P n ; in this case the beta is zero. 

Note finally that the instantaneous expected return is independent of the maturity of the 

bond. However this does not mean that the instantaneous variances of all bonds are the same. The 

significance of the risk premium process is that the associated volatility coefficients given 

collectively by ½6 constitute a lower bound for the variance of bond returns. To see this, note 

from expression ( 5) that the variance of an arbitrary bond is given by 6b.6b . Minimising this 

subject to 6b'6 = ½6'6 results in the choice 6b = ½6 . In some circumstances1 , the minimum 

variance may actually be associated with a bond of specific maturity Tm, so that there is some 

maturity for which the variance of zero coupon bonds is minimal. This may ,of course, change 

over time, as these properties relate to the instantaneous variance, given Y, . One might think that 

the minimal variance bonds are those of very short maturities, but this may not necessarily be so. 
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2.3 Chanf<inf< the instantaneous benchmark rate 

Equations (3) and (7) may be grouped together as 

(8a) Ep; - pds = P; ( lip. - pds) ( security i ) 

(8b) £ p - pds = Ph ( £ p. -pds) ( bond ) , 

where pb = ½ (A.lo. ) = ½ I'x . The two equations (8a,b) can be used to eliminate the 

instantaneous risk free rate. We end up with the beta type relationship: 

(9) EP; = Ep + b; (Ep. -Ep) , 

where: 

Equation (9) is a form of the continuous time CAPM where the benchmark is the instantaneous 

expected rate of return on the bond, rather then the risk free rate. It is the starting point for the 

discrete time treatment of the next section. 

For each security i, construct an asset or benchmark fund of proportions b; in the market 

fund and (1-b;) in the bond. The return on the benchmark fund would be 

(10) ~ = P + b; ( P• -p) 

and the beta ofp; on~ would be unity. So one could write 

P; - Ep; = ~ - E ~ + d11; , 
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where Tl; is an idiosyncratic process whose differentials dT]; are statistically independent of 

the benchmark returns f; . As Ep; = Ef; , it follows that 

( l 1) 

so that the return on security i decomposes into the systematic part f; and the unsystematic or 

idiosyncratic part dT]; as in the standard theory, with additive variances. 

Ill Discrete time 

3. l The discrete CAPM 

Let t denote real time and consider a unit time interval from instant t to instant t+ 1 ; a 

month, a year, and so forth. In the case of the zero coupon bond, set T = l, i.e. it will have unit 

time to maturity. We assume the instantaneous beta b; is constant over the discrete interval, and 

also that Var ( dT]., ) = o2., ds does not depend upon f; for us s, and can be treated as an 

exogenous process so far as the systematic effects are concerned. Also define 

2 J ,.1 2 
a11it .. t a,,uds. 

This is the instantaneous idiosyncratic variance over the chosen interval. 

The above assumptions as to the behaviour of the beta and the idiosyncratic variance over 

the unit period call for some comment. They are made to derive tractable results in what follows, 

but they do have a certain intuitive logic to them. Essentially, we suppose that change can occur, 

but only on the macro or inter- period scale, rather than the micro or intra- period scale. If the 

betas are changing quite rapidly over the time scale of the unit interval, it is difficult to justify the 

logic of an approach that attempts to derive the discrete cost of capital in such terms. It is more 

appealing to allow the betas to change but only slowly; or alternatively, with sudden bumps and 

grinds punctuated by periods of relative stability. Likewise, one can allow the idiosyncratic 

variance to change, but only over the macro scale. 

Equation ( 11) above decomposes the price process P., into two additive processes the 

systematic part F., and the unsystematic part T]., . The latter has zero drift and increments that 

are independent of the F., process. Hence integrating (10) over the unit period and taking 
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expectations conditional on information available at the beginning of the period, i.e. instant t, we 

obtain 

By definition, F,, = P,, . We end up with 

(12) Efu.1 • ½o\ir E F 
e t i,r,1 

Also, integrating equation ( I 0) over the unit period we get 

(13) 

Define the holding period yields over the period as r,, for security i ; r., for the bond; and r,, for 

the market portfolio. Equation (13) implies that 

(I • r1{) • (I • rbt)'"\1 • r, /' 

Taking logs of both sides and expanding Iog(l+x) in Taylor series about zero, we obtain 

(14) 

where: 

f 2 2 2 2 
r,, • [ rbt • b ,{r, t • rbt )] 

The error 15,, in the linear approximation (14) amounts to a difference between two squared 
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interest rates, themselves small unless b is unrealistically large in absolute value. Hence it is 

ignored in what follows. Taking expectations of both sides of ( 14) , and incorporating expression 

( I 2), we end up with the approximation 

(15) 

where in each case the expectation s are with respect to information available at the start of the 

period . Equation ( 15) will be taken as the discrete version of the CAPM relationship. In what 

follows we analyse the ways in which this can be expected to differ from the conventional 

empirical version. 

3.2 Temporal and cross sectional stability 

Relative to the conventional CAPM, the discrete CAPM contains within itself more possibilities 

for variation both across securities and over time, and in the conjunction of the two aspects. 

Cross sectional variation. 

This refers to the term in the idiosyncratic variance, which now plays the role of an 

intercept in the CAPM expectational equation, or at least the equation as it would appear from 

the vantage point of an investigator operating with discrete data. Much depends on the purpose 

of the empirical exercise. If discrete discount rates are to be used in a capital budgeting or similar 

exercise, then the variance term adds to the cost of capital. From this point of view its appearance 

in the discrete CAPM relationship re-introduces the idiosyncratic risk to add to the systematic 

risk, considerably diminishing the appeal of the CAPM based discounting philosophy. On this 

view, the cost of capital depends in some measure on the total risk of the security. If, on the other 

hand, the object is simply to utilise the discrete data to estimate a beta, then the variance intercept 

is a nuisance parameter. It may or may not be difficult to get rid of. If, for example, the o2 ";' is 

itself time varying, then things may indeed be problematical, and the stress would then be on using 

finer time intervals so that the variance contribution would be smaller. 

Beta powering. 

As b; = (P; - Pb)/ (1 - Pb), the magnitude of the discrete beta will depend on the beta 

of the unit period zero coupon bond, as well as the underlying continuous time beta for the actual 

security i. Relative to the underlying continuous beta ( P; ), the net effect is to amplify the 

variation in the original betas about the point p = 1 . Moreover the amplification may itself depend 



13 

on the variation of the bond beta through time. Earlier ( see equation (6) above), the zero coupon 

beta was interpreted in terms of the proportion of the overall reproducing portfolio that was 

devoted to risk-y assets. One would expect that in volatile times, or when times are bad, a lower 

proportion would be allocated in this way. Recall, for instance, that for constant relative risk 

aversion utility functions, the parameter itself is related to the proportion of assets invested in 

risky investments, and this is a matter of the curvature of the utility function- marginal utility is 

increasing more rapidly when wealth is lower . 

Figure I will help to fix ideas. It represents the mapping from the underlying continuous 

beta to the discrete one. Observe that regardless of the magnitude of the bond beta, the mapping 

has a fixed point at J}; = I ; the resulting b; is also unity. We have assumed that the bond beta is 

less than unity, as one would expect from its interpretation. The two Jines drawn represent the 

graphs of the discrete beta against the continuous, for higher ( steeper) and lower ( flatter) bond 

bet.as. The steeper of the two can therefore be interpreted as what happens in_ Jess V_C?,latile, or 

good times, and the flatter as corresponding to bad times. 

As figure I shows, there is always magnification of the continuous beta, apart from the 

pivot at unity. High beta stocks become higher, while low beta stocks become lower. But the 

interesting thing is the cyclical effect. The analysis suggests that high natural beta stocks become 

even higher when times are good, while low natural beta securities become even lower. And when 

times are bad, low beta stocks become higher, while high beta stocks become lower. In other 

words there is a degree of resonance between the natural betas and the environment that suits 

them best. This represents another possible rationale for the Blume(l975) effect, wherein it is 

observed that numerically higher betas tend to regress towards unity over suceeding time 

intervals of measurement. The original explanation ran in terms of itatistical sampling error or 

variation over succeeding time periods. But it might be that high beta stocks regress in 

succeeding time periods to lower, simply because bad times tend to follow good over the business 

cycle. 
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Figure I: Mapping from continuous to discrete beta. 

3 .3 Co11cluding remarks: beta a11d the cost of capital 

The purpose of computing beta is often to compute the company's cost of capital for 

purposes of capital budgeting or the valuation of the firm's cash flows for other reasons. In such 

terms, failure to identify the true continuous bets may not be a matter of much importance; the 

adjustment for the bond beta is, after all, the same for any company. A study of equation (15) 

does indicate that the time interval used to measure returns should be small, in order to avoid 

serious contamination by the idiosyncratic variance, at the risk of counterbalancing contamination 

by market noise, referred to earlier. 

Possibly a more serious difficulty might arise in assessing the cost of capital for long 

dated projects, which might be expected to span a succession of bad times and good times over 

their life. Our analysis suggests that the bond beta, and hence the discrete time beta, will vary 

over the stages of the business cycle. Thus in employing the resulting beta in the cost of capital, 

one will have to face up to the likelihood ofintertemporal variation in the future. Should the cost 

of capital to be applied to the future cash flows represent some sort of average; or should one 

at tempt to build likely future economic conditions into the a term structure of future discount 

rates? In the case of shorter dated projects such problems are likely to be less serious: the cash 

flows might be expected to fall into one or the other category, good times or bad, and using 
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observations of recent vintage to compute the beta would probably give a reasonable guide. 

However, more work remains to be done on the implications for long dated projects of 

intertemporal variation in the cost of capital, induced by systematic changes in beta, as well as 

changes in the market risk premium as a whole. 

While the results concerning the over estimation effect are in a sense more graphic, the 

contamination by idiosyncratic variance elements itself raise some problems of practice. If the 

sampling interval is chosen too long, the distortions may be unacceptable in magnitude. But if too 

short, then market noise or measurement errors may obscure the identification of the betas. There 

may be some sort of limit to the precision with which we could ever hope to measure beta, 

Finance's very own version of the Heisenberg uncertainy principle! In short, the 'beta is dead' 

literature may be telling us that beta is hard to pin down as to temporal stability, and obscured 

even where it is stable. This would be consistent with the sort of story emerging from the present 

con,tribution. 

FOOTNOTES 

'Suppose that 0 1 ,02 , ••• 0N is a basis for JRN so that any vector 0b can be represented in the form 

a 101+a202 + ... a,:0"'. If the scalars a; are functions of maturity T, then there may be 

T = T m > 0 such that a i(T m )01 +a,(T m )02 + ... aN(T m )0N = ½0 . If so then the zero coupon 

bond of maturity Tm would be the minimum variance bond. 
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