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Models for Seasonal Time Series 

John Haywood* and Granville Tunnicliffe Wilsont 

Abstract 

We present a method for investigating the evolution of trend and seasonality in an observed time 
series. A general model is fitted to a residual spectrum, using trigonometric components to represent 
the seasonality. We show graphically how well the fitted spectrum captures the evidence for evolving 
seasonality associated with the different seasonal frequencies. After fitting a seasonal IMA model, 
the method requires only ordinary least squares estimation. A submodel which adequately fits the 
data can then be conveniently selected. We apply the method to two time series and discuss the 
implications for time series forecasting. 
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1 Introduction 

Practitioners of forecasting and seasonal adjustment commonly deal with time series exhibiting 
trend and seasonality which evolve through time. Among the models and methods used to represent 
and forecast these series are ( a) the seasonal ARIMA models of Box and Jenkins (1976), particularly 
that known as the airline model, (b) the Holt-Winters seasonal forecasting procedure which in its 
additive form is equivalent to a particular ARIMA model, as shown in McKenzie (1976), and 
( c) state space models with seasonal components as advocated by Harrison and Stevens (1976) 
and more recently by Harvey (1990). Some of the earliest models for evolving seasonality were 
formulated by Hannan (1964) and a similar approach is found in the dynamic harmonic regression 
models presented by Ng and Young (1990). We shall confine ourselves to linear prediction models in 
this paper so will not consider the mixture process aspects of Harrison and Stevens work, designed 
to model outliers and sudden changes in trend and seasonality, although the conclusions of this 
paper may well be relevant to current developments of these by Bruce and Jurke (1996). 

When these models are fitted to a time series or, in the case of the Holt-Winters procedure, tuned 
for optimal forecasting performance, the parameters will reflect the extent to which the level, trend 
and seasonality are evolving through time. The aim of this paper is to investigate the evidence 
to be found in an observed time series for such evolving features, and to use a flexible spectral 
component model to represent them. This model may then be applied to forecasting or seasonal 
adjustment. We shall confine ourselves to considering seasonality with a period of 12 because this 
is so important in practice, but the methods can be applied equally well to other periods. 

Our approach is to fit a very general model to the observed series; a model with 14 parameters 
of which 12 are used to characterise the evolution of the seasonality including the level, one for 
evolution of the trend and one for white noise error. These parameters are the coefficients of linear 
components of the spectrum of the series ( strictly the psuedo-spectrum; for convenience we shall 
use just the term spectrum). The seasonal coefficients in particular are associated with what we 
shall call trigonometric components of the spectrum located at the seasonal frequencies. These 
trigonometric components may be associated with independent unobserved components of the time 
series if their coefficients are positive. (Where necessary to avoid confusion between the components 
of the spectrum and the series, we shall emphasise when we are referring to series components). For 
the unobserved components interpretation we present both a simple ARIMA representation and a 
convenient state space representation of the series components. 

Our general model is equivalent to a seasonal IMA model with 13 moving average parameters 
and one prediction error variance parameter. This encompasses many of the other models referred to 
above and Newbold (1988) uses it for comparing Box-Jenkins, Holt-Winters and structural models. 
Our starting point is to fit this model to the data, a quick and reliable procedure using standard 
packages, and then to use it as a basis for fitting the linear spectrum model to the sample spectrum 
of the observed series. We propose our own modified method of doing this, which we believe 
compares well with other methods in that it uses only least squares estimation. This approach 
also provides a valuable graphical means for displaying how well the fitted spectrum captures the 
evidence for evolving seasonality. 

Regression methods can then be used to test which coefficients are significant and therefore, 
within the series, which components of evolving seasonality are supported by the data. We illustrate 
the method for two time series and discuss the implications for the standard models mentioned 
above. 
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2 Initial investigation of varying seasonality 

We shall use use two examples of US macroeconomic series for illustration. The first of these is 
the inventory of unfilled orders for newspapers and magazines from January 1964 to March 1989 
inclusive. Figure la shows a graph of the first 25 years of this series after transformation by taking 
natural logarithms and multiplying by 1000. In this series there appear to be clear changes in both 
trend and seasonality. To confirm this we can fit a standard regression on fixed trend and seasonality 
and analyse the departures from this model, ie the errors n,. For data {y,; t = l, 2, ... , n} the model 
may be expressed 

5 

Yt = c + bt + L (AjSj,t + BjCj,t) + BsCs,t + n, 
j=l 

(1) 

where the regressors apart from the constant and trend are the cycles with fundamental period 12 
defined by 

Sj,t = sin 21rjt/12 Cj,t = cos 21rjt/l2. (2) 

An equivalent form would be to replace the constant and trigonometric terms of the regression by 
a seasonal factor, ie 12 monthly indicator variables. 
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Figure 1: (a) Monthly values of the unfilled orders for newspapers, (b) Sample and model spectrum 
of this series. 

Evidence for changing seasonality would be revealed by irregular peaks close to the seasonal 
frequencies Fj = 1/12, 2/12, ... , 6/12 in the sample spectrum of the errors n1 from fitting this 
model. Unfortunately, compared with the low frequency components of these errors arising from 
the large variations about the fixed trend, these seasonal peaks are typically small and not easily 
inspected when plotted without modification of the spectrum. 

The modification we propose is achieved by first approximating the whole of the correlation in 
the errors by a simple autoregressive structure 

(3) 

whose parameter p we determine as the first lag sample autocorrelation of the errors n1• We then 
calculate residuals from this autoregression as the generalized difference e1 = n, - pn,_1 and inspect 
the sample spectrum of these residuals for the evidence of changing seasonality. This is equivalent 
to scaling down the low frequencies in the spectrum of n1• What we have done is to carry out one 
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step of the Cochrane-Orcutt procedure for fitting the regression (1) with autoregressive errors (3). 
We have checked for our examples that nothing is lost by using just the one step. 

The irregular line in Figure lb shows the sample spectrum of the residuals et, derived from the 
series in Figure la using p = 0.9691, defined as 

W*(f) = l~etexp(21rift{ /n (4) 

and graphed against frequency f for O :,; f :,; 0.5. The sample spectrum clearly reveals irregular 
peaks around the seasonal frequencies as evidence of changing seasonality. 

If however there were no indications of excess power, ie peaks, in this sample spectrum in the 
neighbourhood of the seasonal frequencies then the fixed seasonal regressors could be considered 
adequate for the data. If the fixed seasonal terms were not first removed by these seasonal regressors 
then they would appear in this spectrum as large discrete components precisely at the seasonal 
frequencies. The peaks which evidence changing seasonality would appear as relatively small side
bands to them. It is partly for this reason that we first remove fixed seasonal components; we 
consider that they should not contribute to modelling the variations in seasonality. 

We shall describe in section 4 how we fit a component spectrum model to this residual sample 
spectrum. Particular terms in this model aim to explain any excess variation at the seasonal 
frequencies. We will also display the fitted spectrum values against this residual spectrum as 
a visual check. The dotted line superimposed on the sample spectrum in Figure lb is from a 
preliminary model whose derivation we describe in section 4. 

The coefficients and fitted values of our model in fact describe the extent to which the compo
nents of varying seasonality are present in the errors nt of the original series, not in the residual 
series et. It is however a simple matter to scale the fitted values in order to display them against 
the spectrum of the residuals and thereby gain the advantage of a clearer comparison between data 
and model, avoiding the dominating effect of the low frequencies. 

3 The general model and its components 

Our stated aim is to model the variations in the trend and seasonality of the series about the fixed 
component of trend and seasonality as expressed in (1). None of the models which we mentioned 
in section 1 do in fact explicitly invoke such a fixed component because they are all expressed in 
terms of the changes from the past to the future. A fixed component of trend and seasonality is, 
strictly, not even uniquely defined for these models although they do all encompass model ( 1) as 
a special or limiting case. All these models do however contain, in their parameters, a statistical 
description of the variations in trend and seasonality and a convenient general model by which they 
may all be represented is the seasonal IMA process: 

v"'v12Yt =Wt= (l - 01B - 02B2 - · · · - 013B13)et = 0(B)et (5) 

where et is white noise and we are using the notation of Box and Jenkins (1976). An equivalent 
description is that the differenced series Wt·= v'v'12y1 is autocorrelated to a maximum lag of 13. 
The model may be represented by its spectrum which is well defined at all points except frequency 
zero and the seasonal frequencies F; defined above, by setting B = exp(iw), where w = 21r f, in 

l
i@.2_12 2 
v'v'12 a •. 

This may be expressed as the rational cosine function 

P(f) = 1 (0) + 21 (1) cosw + • • • + 21 (13) cos13w 
4(1- cosw)(l - cos 12w) 
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where 1'( k) are the autocovariances of the differenced series Wt and the numerator is the spectrum 
of this series. The denominator is the gain of the differencing operators v'v' 12 • 

Note that 14 free coefficients appear in both the IMA model ( as 13 moving average coefficients 
and a residual variance) and in the spectrum (as 14 autocovariances). Our next step is to express 
this spectrum as the unique linear combination of 14 components: 

13 

P(f) = ~ VkPk(f) (8) 
k=O 

where the free parameters are now the coefficients Vk. Each of the components Pk(f) corresponds 
to the spectrum of a low order process. We describe these components here in simple terms, giving 
the technical definitions in section 5. 

The first component Po(f) is the only one which does not have a peak. It is the spectrum 
of white noise with unit variance, so takes the value one over the whole frequency range. The 
remaining components have peaks which correspond to the zeros of the denominator of P(f) which 
are double zeros at frequencies 0, F1 , F2, ... , F5 and a single zero at frequency F6 = 0.5. 

Both Pi (f) and P2 (f) have an infinite peak at frequency zero and correspond respectively to 
the spectrum of a random walk (whose first difference is white noise) and an integrated random 
walk (whose first difference is a random walk). These model respectively the variation in level and 
trend of the series. 

The remaining eleven components P3 (f) to P13(f) model the variations in seasonality of the 
series. The first ten of these are considered as five pairs which have peaks at the seasonal frequencies 
F1 to Fs. Figure 2 illustrates these selectively in two frames, the first (second) of which shows the 
first (second) member of each pair P3(f), P4(f) and P11 (f), Pi2(f). Rather than truncate the 
infinite peaks in the plots they are rounded off so that each corresponds to the spectrum of a 
stationary ARMA(2,1) process defined in section 5. The members of each pair look very similar 
in the centre of the peak but are skewed differently, reflecting an important property that the first 
(second) of each pair falls to zero at the upper (lower) limit of the frequency range. As we shall 
see, both members of each pair are needed if we are adequately to represent some typical model 
spectra. In practice we shall fit the models by replacing each pair by its sum and difference, to 
avoid the high collinearity which otherwise occurs. · 

(o) First of each Pair of Seasonal Components (b) Second of each Pair of Seosonol Components 

''° ''° 
200 ,oo 

I ,,.. 
''° 

,oo ,oo 

'° '° 
) ) 

0 
M o., ,., o., ... 0, 

FREQUENCY 

Figure 2: Seasonal spectrum component pairs (a) First components of pairs with peaks at Fi = 1/12 
and Fs = 5/12, (b) Second components of the same pairs. 
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The last, single, seasonal component P13(J) has a peak at frequency 0.5 which mirrors the peak 
at frequency zero in the random walk component A(J). 

We end this section by illustrating how the seasonal part of some simple models is represented 
in terms of these components. In Figure 3a we show the seasonal part of the spectrum of a typical 
Box-Jenkins seasonal model, the 'airline' model with parameters 0 = 0.4 and 0 = 0.55. The peaks 
at frequency zero associated with the components P1 (J) and P2(J) have been subtracted out so as 
to reveal the seasonai part more clearly. In this and the other frames of Figure 3 a bar plot shows 
the relative magnitudes of the coefficients of the seasonal spectrum components P3 (J) through 
P13(J) represented in the spectrum. One of these is negative. 

(o) Box-Jenkins model seasonal spectrum (b) Seasonal Random Wolk spectrum 
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(c) Corrected lntegroled Seasonal Random Wolk spectrum (d) Holt-Winters model seasonal spectrum 
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Figure 3: Model spectra, with bar plots indicating the coefficients of spectral components, for (a) A 
Box-Jenkins Model, (b) A Seasonal Random Walk, (c) A Corrected Integrated Seasonal Random 
Walk, (d) A Holt-Winters Model. 

The spectrum of the 'airline' model can be expressed as the positive combination of four con
tributions. The first of these is the constant white noise spectrum, proportional to P0 (J). The 
second is that of a random walk, proportional to A (J), which has been removed in Figure 3a. The 
third contribution is the spectrum of a seasonai random walk v' 12X1 = e1 which is proportional to 
1/(1 - cos 12w). This is shown in Figure 3b without the peak at frequency zero removed. All the 
peaks in this contribution are the same height and in fact all the ten seasonal components P3(J) 
through P12(J) have the same coefficient. The peaks at the ends of the range are proportional to 
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Pi(f), the random walk component, and P13(f) each with half the coefficient of the other compo
nents. We shall later use this pattern, with the peak at zero removed, as a combined component 
to represent a purely seasonal feature of a model, referrring to it as the corrected seasonal random 
walk component. 

The fourth contribution to the airline model spectrum is the spectrum of an integrated seasonal 
random walk V'V' 12x, = e,. This models the falling away of the peaks towards higher frequencies 
and is shown in Figure 3c, but with the peak at frequency zero removed. We shall use this as 
another combined component to represent seasonality, referring to it as the corrected integrated 
seasonal random walk component. It is a combination of P3(f) to P13(f) in which the coefficients 
of P4(f) and P6(f) are negative and that of Ps(f) is zero. After adding the contribution from the 
seasonal random walk just one seasonal coefficient remains negative in Figure 3a. 

Figure 3d shows the spectrum corresponding to the Holt-Winters predictor with discount factors 
· tuned for the logarithm of the airline series, given, in the notation used by Newbold (1988), by 
A= 0.35, B = O.Ol and C = 0.75. Again the peak at frequency zero due to Pi(f) and A(f) is 
removed. The pattern is very different to that seen in Figure 3a. The one-step ahead forecast error 
variance for the Holt-Winters predictor is only about 5% higher than that using the Box-Jenkins 
model, but the implications for evolving seasonality are seen to be dissimilar. 

One other combined seasonal component is that in the basic strucural model of Harvey and Todd 
(1983), which also appears in Newbold's (1988) comparison. It is represented using the seasonal 
summation operator as S(B)x, = e,. Its spectrum is found from that of the seasonal random walk 
in Figure 3b by multiplying by the gain 2(1- cosw) of the differencing operator V', in contrast to 
dividing by this gain which furnishes the spectrum of the integrated seasonal random walk in Figure 
3c. Consequently its spectrum has a pattern of increasing peaks towards high frequencies which we 
have not seen in the series we have modelled, and we do not illustrate it. Later structural models as 
described by Harvey (1990) allow components which separately model each seasonal peak. These 
components are equal to the sum of the pairs of seasonal components we describe together with 
the single seasonal component. A further model used by Harvey assumes a common coefficient for 
all these peaks. The result is the same as the corrected seasonal random walk component shown in 
Figure 3b, apart from a scaling factor and the relative doubling of the single seasonal component. 

We stated earlier that if the coefficients of the components in our model are positive, then 
they can be interpreted as arising from unobserved independent components of the observed series. 
These series components can then be estimated; in particular they can be used to extract the 
seasonal components. The state space formulation we present in section 5 can be used for this 
purpose. However, as the foregoing discussion of Figure 3 indicates, it is quite possible to have 
some of the coefficients of individual components negative yet for their sum to represent a well 
defined positive component. Part of the value of fitting our component model is to be able to 
investigate whether all the coefficients are positive, and if not whether a particular combination of 
the fitted components, such as the set of seasonal components, is itself positive. As Burman (1980) 
shows, the Box-Jenkins 'airline' model always has a positive decomposition into non-seasonal and 
seasonal components. Figure 3d shows that this is not true for the Holt-Winters predictor. 

The pairs of seasonal components which we have chosen are helpful in such an investigation. 
The first (second) component of each pair is zero at the upper (lower) frequency limit so that their 
combined contribution is positive if and only if both coefficients are positive. The coefficient of one 
component may be negative provided the sum of their coefficients is positive, which ensures that a 
positive peak results from their combination. A negative peak necessarily implies an inadmissable 
spectrum model; the estimation method may, rarely, imply this but the components would not be 
statistically significant and would be removed from the model. Similar constraints apply to other 
components, in that the coefficient Vi of the integrated random walk and V13 of the single seasonal 
component must be positive. 
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Our general model is useful for checking the extent to which the imposition of 'desirable' con
straints, such as replacing each seasonal component pair by its sum, or forcing all the seasonal 
components to have the same coefficient, affects the fit of the model. It also readily allows the 
fitting of subsets of components as in ordinary regression if the aim is to identify the sources of 
variability in level, trend and seasonality or simply to obtain a parsimonious model. 

4 Model estimation using a modified sample spectrum 

We now propose a method for fitting the linear model (8), selecting those terms in the model which 
are supported by the data. 

For a stationary time series a spectrum model S(J) may be fitted to the sample spectrum S*(J) 
of the observed series using what is generally known as the Whittle likelihood. This approximates 
the likelihood using the assumption that at the frequencies fe = i/n, where n is the length of the 
observed series, S*(J) are independent values of Exponential variables with means S(J). When the 
spectrum model is linear as in our case this is a standard generalised linear model, see McCullagh 
and Nelder (1983). The GLIM software may be used to fit the model, as in Diggle (1990), but 
there is always a possibility that this will fail when a linear model is fitted with the identity link 
due to negative fitted values arising in the iteratively reweighted least squares (IRLS) cycle of the 
method. This is one of the difficulties which our method overcomes. 

Harvey (1990) has used the Whittle likelihood for fitting the variance coefficients in seasonal 
time series models. Because the likelihood is defined only for a stationary model he uses the sample 
spectrum of the differenced series Wt defined in (5) and the 'differenced' components. For our 
model these are obtained by multiplying all the components in ( 8) by the differencing gain in the 
denominator of (7) which reduces them all to polynomials in C = cos(2ir f). 

Using the sample spectrum of Wt has several drawbacks. Because the differencing gain has 
zeros at all the peak frequencies the visual effect is that the peaks in the sample spectrum of 
the data are invariably replaced by troughs at the same points in the spectrum of the differenced 
series. The evidence for a particular spectrum peak is then the, generally small, amount by which 
this differenced spectrum exceeds zero in the corresponding trough. If the component associated 
with a particular spectrum peak has a zero coefficient and is not in fact present in the model 
then the differenced model spectrum will have an exact zero at that point. Testing for such a zero 
component has inherent difficulties. It is a non-standard inference problem for the exponential error 
model, equivalent to the unit-root testing problem in the time domain. Moreover there is poor 
relative accuracy (which is the important measure of accuracy in exponential error models), close 
to this zero, of the differenced sample spectrum as an estimate of the model spectrum. The sample 
spectrum must be positive even if the model spectrum is zero. This can lead to the inclusion of a 
component which is not evident as a peak in the undifferenced spectrum. If a particular component 
is deemed to be absent then the remaining components should be refitted to the spectrum of a series 
obtained by applying a modified differencing operator. This operator is obtained by removing 
the factor associated with the deleted component from v'v' 12 . The model components must be 
correspondingly modified. 

The implication is to seek a method of fitting the model directly to the undifferenced series 
spectrum. For example the dynamic harmonic regression models of Ng and Young (1990) have 
since been fitted to the logarithms of an autoregressive spectral estimate of the undifferenced 
data, emphasising the importance of the flanks of the spectral peaks for determining the variance 
coefficients. 

We now describe the method we recommend for overcoming the difficulties which arise from the 
(seasonal) unit root non-stationarity of (6); ie the factors [1-exp(2iriFj)B] of v'v'12 whicli generate 
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the infinite spectral peaks at frequencies Fj. We argue that, provided the deterministic trend and 
seasonality terms of model (1) are included in the model, these unit roots may be modified to 
make the model stationary by replacing the above factors by [1 - s exp(21riFj )BJ. The value of the 
shrinkage s is chosen to be a little less than unity. Such near unit roots were proposed in Hannan 's 
(1964) model of stochastic seasonality. The use of exact unit roots has since been favoured, see 
Hannan (1967) for example, partly because it is difficult to discriminate statistically between a root 
of unity and one slightly smaller, and also because the unit root model conveniently and robustly 
models the persistence of typical seasonal patterns without the explicit introduction of deterministic 
terms for trend and seasonality. 

However, once having corrected for deterministic terms, the peaks we see, for example in Figure 
lb, are quite consistent with the peaks of the shrunken stationary model. 

The first plank of our estimation method is therefore to modify all the models we use by 
shrinking the unit roots ( or rather, the reciprocals of these roots) in these models by the factor s. 
The implementation of this is described in the next section, but for example this is achieved for 
the seasonal IMA model ( 5) by multiplying the coefficient of Bi by si. We discuss the choice of s 
later. By this means the components Pk(!) in (8) are modified to have finite peaks corresponding 
to stationary processes. Formulae for these shrunken components are given in the next section. 
All the illustrations of spectrum components in Figures 2 and 3 are of shrunken components with 
s = 0.97. 

These shrunken components could then be fitted directly to the sample spectrum of the error 
series nt of model (1 ), formed after correction for the deterministic trend and seasonality, so that 
the difficulties described above, of using the spectrum of the differenced series w1, are avoided. We 
expect the estimated coefficients of the components to be insensitive to the precise choice of s just 
less than unity. 

In practice we introduce another modification, so the second plank of our estimation method is 
to use the sample spectrum W*(f) defined in (4) of the residuals e1 from (3) rather than the errors 
nt from model (1) for fitting our component model. The key point here is that the generalised 
differencing partially whitens the spectrum. This both reveals better the features that are to be 
modelled and gives better data to which the model components are fitted, by reducing leakage from 
the dominant low frequencies. Of course this requires that the model components Pk(!), besides 
being shrunk, be also multipled by the gain of the generalised differencing, or whitening, operator 
(1 - pB) which is 

w(f) = (1 + p2 - 2pC). (9) 

We shall refer to this as fitting on the whitened scale and will call the new shrunken and whitened 
components Qj(f). 

The third and final plank in our method is to avoid problems with the IRLS scheme of fitting 
used for the exponential error model. We do this, following de Jong (1985), by obtaining a consistent 
estimate of the final weights used in this scheme. We can then use just one step of (weighted) 0 LS 
regressions to obtain our estimates and carry out tests to select which components are supported by 
the data. These weights are in fact estimates of the fitted values of the model corresponding to the 
whitened residual spectrum W*(f). We obtain them by fitting the general model (5) using standard 
time domain exact likelihood methods which are very quick and reliable. The weight function W(f) 
is then given by the spectrum defined in (6), but first modified by coefficient shrinkage in both 
numerator and denominator and then multiplied by the generalised differencing gain: 

W(f) = I (1 - sB~g1=} s12B12) 1

2 

u;w(f). (10) 

If any of the components of (8) are not present, this will correspond to unit root factors in the 
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moving average operator of (6) which cancel unit root factors in the differencing operator of that 
equation. Such cancellations give rise to no problems in theory, and none that we have found 
in practice when estimating (5), provided exact likelihood estimation is used. Applying coefficient 
shrinkage to both differencing and moving average parts when calculating the weight function W(f) 
ensures that any such cancellation is preserved and no spurious peaks are introduced. 

To select the shrinkage parameter s and validate the weight function as a fit to the whitened 
sample spectrum we consider a discrete set of possible values s = .99, .98, ... , calculate the corre
sponding value of W(f) and plot it superimposed on the whitened sample spectrum W*(f). The 
visual comparison helps to confirm the adequacy of the fit and indicates if too much shrinkage (too 
low a value of s) has been used. A formal measure of the fit is the likelihood, or equivalently the 
deviance (minus twice the log likelihood relative to the saturated model), calculated as 

dev = 2 ~ [W*(h) - log W*(fe) - 1] . 
W(fe) W(fe) 

(11) 

The sum is taken over the frequencies fe = £/n for integer£, excluding frequency zero and the 
seasonal frequencies Fj because regression upon the fixed trend and seasonality will have reduced 
the fitted values at these points to near zero. In practice we have found that the deviance usually 
improves (decreases) as s initially moves away from 1, which supports the use of some shrinkage. 
The estimation of the model coefficients however proves not to be very sensitive to the precise 
choice of s and we suggest that it not be reduced below 0.95. 

The fitted values obtained using s = 0.98 for the inventory series are shown superimposed on 
the whitened spectrum in Figure lb. 

We now use the consistent estimator W(f) as the weights in OLS regression for fitting the 
(shrunken) component model by taking as the 'response' and 'regressors': 

W*(f) 
W(f)' 

Qj(f) . 13 
W(f);J = 0, ... , (12) 

The frequencies used are again fe = £/n excluding frequencies zero and Fj. Note that the whitening 
factor w(f) appears in both numerator and denominator of the regressors so may be cancelled for 
calculating this ratio. 

We start by fitting all the 14 components. The maximum likelihood estimates of the coefficients 
in this case are a direct transformation of the 13 moving average parameters and residual variance in 
the fitted seasonal IMA model (5). This direct transformation can be obtained simply by making 
the response in the above OLS regression identically equal to 1. The coefficients obtained by 
carrying out a regression with the response as given should be very close to these. 

Having fitted the full model we then apply the usual procedures of OLS regression to select a 
submodel with significant coefficients supported by their standard error estimates and the visual 
evidence of fit to the sample spectrum. The standard errors given by the weighted 01S are 
asympotically valid and are useful for indicating important terms in the model. However, we 
recommend the use of deviance reduction tests, as presented by McCullagh and Nelder (1983), for 
decisions on their inclusion. These tests are similar to sum of squares reduction tests but correspond 
to likelihood ratio tests for fitting the model spectrum. The spectrum fit must however be positive 
for the deviance to be defined. 

We shall also compare such subset component models with models in which fixed combinations 
of the components are used. Examples are the corrected seasonal random walk and the corrected 
integrated seasonal random walk components defined in section 3. 
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5 The model components and their representation 

Provided that all the coefficients are positive in the component model (8) it is convenient to use 
a state space model to define the components; as for example in Harvey (1990). Each coefficient 
then appears naturally as the variance of an independent white noise input to this model. We 
shall however also give specific formulae for the model spectrum components for direct use in 
the estimation procedure just described. These are best expressed in terms of the variable C = 
cos(21rf), defined earlier, and constants Cj = cos(2trFj), Sj = sin(2trFj), 

The state space representation has the form: 

Yt = hxt + Eo,t (13) 

where the observation vector h is a row of 13 constants combining the elements of the state vector 
Xt, The observation error Eo,t gives rise to the white noise component VoPo(f) of the model, so that 
Po(f) = 1 for all frequencies. 

The states evolve accoriling to the structural transition equation 

Xt = TXt-1 + Et (14) 

where each element of Et is an independent white noise input, the k-th component having variance 
Var( Ek,t) = Vk, The transition matrix T which determines the structure of the model is block 
iliagonal, the states being considered in pairs except for the final single state. In order that the 
states defined by this model follow the stationary processes used in our estimation procedure, rather 
than unit root processes, the transition matrix T should be multiplied by the shrinkage factor s. 
However we omit this for simplicity in the following presentation. 

The contribution of the first pair of states is defined by the sub-model 

[ 
X1,t ] = [ 1 1 ] [ X1,t-l ] + [ E1,t ] , 
X2,t O 1 X2,t-l E2,t 

(15) 

Then E1,t gives rise to a simple random walk and E2,t to an integrated random walk. Note that the 
state x 1,t is the sum of these two and is the only state which contributes to the observation. 

When the shrinkage factor is introduced the random walks become respectively an AR( 1) with 
coefficients and a repeated root AR(2) process, the formulae for the corresponiling model spectrum 
components being 

1 
A(f) = l+s2 -2sC (16) 

Note that the factor s2 arises in the numerator of A(f) as a consequence of the way the state 
transition is formulated; it may be omitted without any consequence of substance in the modelling. 

The next five pairs of states are associated with the five seasonal periods F1 through F5 • The 
contribution of each pair is defined for j = 1, ... , 5 by the sub-model 

[ h2j+1 h21+2 ] = [ aj /3j ] ; [ ::~:~:: ] = [ ~j ~j ] [ ::~:~::=~ ] + [ ::~:~:: ] (17) 

where aj = sin(trFj) and /3j = cos(trFj), The formulae for the corresponiling (shrunken) model 
spectrum components arising from E2j+1,t and E2j+2,t are 

(1- Cj)(u + sC) 
(18) 
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To simplify this expression we have defined u = (1 + s2)/2 and v = (1 - s2)/2. These are the 
components shown in Figure 2 using s = 0.97. When no shrinking is applied s = 1, u = 1, v = 0 
and the components simplify further to 

p. . (f) _ (1 - Cj)(l + C) 
2J+l - 4( Cj - C)2 

p. . (f) _ (1 + Cj)(l - C) 
2;+2 - 4(Cj - C)2 . 

Both components defined in (18) have an ARMA representation of the form 

(1 - 2CjsB + s2 B 2 )Yj,t = Zj,t = (1 - 0sB)ej,t 

(19) 

(20) 

where for the first component 0 = 1 and Var(ej,t) = O<J- For the second, 0 = -1 and Var(ej,t) = f3J. 
We comment upon the choice of the observation vector elements aj and /3j, dropping the 

subscript j for simplicity. Let us allow any choice of the values of these elements, any choice of the 
variances Va, V,e of , 2j+1,t, , 2 j+2 ,t which appear in this model and any choice of the covariance Va,e 
between these two inputs. Then the total contribution to the model of the state equations (17) is 
a series component which also has an ARMA representation of the form (20) and whose spectrum 
is of a similar form to those in (18). The denominator is exactly the same; the numerator is of 
the general form 10 + 211 C which is the spectrum of Zj,t, the moving average part of this model. 
The five quantities a, /3, Va, V,e and Va,e determine then only two free coefficients ,o and ,1 of 
the spectrum contribution. It is therefore usual to constrain the five quantities in some way, and a 
commonly used approach is to set a = 1 and /3 = 0. In fact the pair of states can always be redefined 
( rotated and scaled) to ensure that this holds, without any change to the state equations. There 
is a corresponding rotation and scaling of the inputs but this requires merely a re-interpretation of 
Va, V,e _and Va,B• We give here two reasons to justify our different choice of a and /3; further details 
are given by Haywood (1994). 

Firstly, it is widely agreed that it is desirable to avoid using the covariance Va,e; doing so 
leaves just the required number of two free coefficients, the variances Va and V,e which will have 
their associated spectrum components contributing to the total model spectrum. However, for the 
frequency F3 = 1/ 4 this does not lead to two free coefficients 10 and , 1 when using a = 1, f3 = 0. 
In fact the two spectrum components associated with Va and V,e are then proportional, in the ratio 
1 : s2

• Using the choice of a and (3 which we propose this is not the case, as is seen directly from 
(18). Our choice leads to precisely two linearly independent components for each of these seasonal 
frequencies. If in fact Va,e were taken as non-zero using our choice of a and /3 it would lead to a 
further component of the same form as in (18) but with numerator simply 2vSj. This, conveniently, 
vanishes when shrinkage is not applied, in which case Va,e does not enter the equation. 

Secondly, when shrinkage is not applied, any, necessarily non-negative, spectrum component 
generated by a state sub-model such as (17) can be expressed as a combination of the two compo
nents in (18) using positive values of Va and V,e. With other choices of observation vector elements 
such as a = 1 and /3 = 0 this is not always possible. This point is not important if it is merely 
required to fit a spectrum model, but is important if it is desired to implement a state-space 
model which corresponds to that fitted model and use it for forecasting or seasonal adjustment. 
The explanation of the point lies in the fact that the components we define lie at the extremes of 
possible positive spectra, the first (second) component being zero at the upper (lower) limit of the 
frequency range. This does not hold precisely when shrinkage is applied but the difference is very 
small, proportional to (1- s ) 2• This point is made in the context of the particular state sub-model 
(17). We have previously pointed out that using the components we define in (18) to fit a general 
spectrum pattern, negative coefficients can result which prevents the use of the Kalman Filter for 
estimation. · 

A final point to note is that models in which it is assumed that Va = V,e are fitted using the 
sum of the components in (18). This sum is in fact the same as that obtained by using a= 1 and 
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(3 = 0. When the inputs are of equal variance and uncorrelated, this property is unchanged by 
rotating them. 

One further sub-model requires definition, that for the last, single, seasonal component which 
is 

[ XJ3,t l = [ -1 l [ XJ3,t-1 l + [ €[3,t ] . (21) 

Including the shrinkage factor, this is an AR(l) model with coefficient -s. It give rise to a spectrum 
component 

Pia(!) = 1 + s21 (22) 

which mirrors at the upper frequency limit of 0.5 the AR(l) (shrunken random walk) component 
at the lower limit of 0. 

6 Modelling examples 

Our first example series is illustrated in Figure la. Figure lb shows the sample spectrum on the 
whitened scale together with the fit obtained from the seasonal IMA model. Using the procedure 
described in section 4 we fit a series of component models to the sample spectrum. This procedure 
requires only ordinary least squares, which provides approximate standard errors for estimates of 
the component coefficients. As explained in section 4, we use the (residual) deviance defined in 
(11) and deviance differences, rather than the residual sum of squares, for carrying out model 
comparisons. The residual deviance for the (shrunken) seasonal IMA model is 140.11. On the 
assumption that the fitted model is correct, this statistic should come from a distribution with 
mean 1.154p - 14 = 152 and variance 1.29p - 14 = 172 where p = 144 is the number of spectrum 
points used to fit the model. A Normal approximation is adequate for this number of points and in 
this case there is no evidence of lack of fit of the seasonal IMA model. This is not a very powerful 
test of model adequacy but is certainly a necessary qualification for proceding further, given that 
our method is based on the assumption that this fit provides a consistent estimate of the spectrum. 

We first fit the full 14 component model (model 1) described in section 3, with the variation 
described there, that each seasonal pair of components is replaced by its sum and difference. This 
reduces collinearity. Table 1 shows the estimated coefficients and their standard errors for this 
model. The fit of this model appears identical to that shown in Figure lb. It is important to refit 
the model to obtain the baseline deviance for comparison with, and testing of submodels. It is in 
fact slightly reduced to 135.8; the change is attributable to the use of the shrunken components and 
the switch from time domain to frequency domain estimation methods. The model is equivalent 
to the shrunken seasonal IMA model. From the t values in Table 1 there is no evidence to support 
inclusion of the seasonal pair difference terms. Neither is there evidence to support the white noise 
or the integrated random walk component. However we retain these last two in the model until we 
have determined the best form of the seasonal components. 

For model 2 we therefore simply remove the seasonal pair difference components. Because the 
coefficients of the terms retained are little changed, these are not shown. The fit of this model 
is shown in Figure 4a. The deviance increased by only 0.7, to 136.5. Since five parameters are 
removed, the appropriate test statistic distribution is clii-squared with five degrees of freedom. 
Hence exclusion of all seasonal pair difference terms is supported strongly, and the model reduces 
to a nine parameter structural model with different variances for each harmonic seasonal pair sum. 

We now consider models with a single component for the seasonality. For model 3 we use 
the corrected seasonal random walk component for this purpose and for model 4 the corrected 
integrated seasonal random walk. These were defined in section 3. 
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1st 2nd 3rd 4th 5th 
white random seasonal seasonal seasonal seasonal seasonal 
noise walk pair sum pair sum pair sum pair sum pair sum 
21.0 1709.0 48.4 23.19 10.03 3.60 1.65 

(0.11) ( 4.45) (1.81) (2.94) (2.05) (2.32) (0.94) 
integrated single 1st 2nd 3rd 4th 5th 

random seasonal seasonal seasonal seasonal seasonal seasonal 
walk component pair cliff pair cliff pair diff pair diff pair cliff 
2.62 0.444 101. 47. -19.4 -20.7 -4.9 

(1.05) (0.59) (0.49) (0.46) (-0.30) (-0.77) (-0.36) 

Table 1: Spectrum component coefficient estimates for models of the series of unfilled orders for 
newspapers with ( t) values. 

Comparing model 3 with model 1 the deviance increase of 28.2 for a saving of 10 degrees of 
freedom lies at the upper 0.2% point; hence there is strong evidence against model 3. 

If we note how, in Table 1, the coefficients of the seasonal components fall away from the lower to 
the higher harmonics, we obtain an indication that model 4 would better represent the seasonality 
by a single component and this is the case. The deviance increase compared to model 1 is only 4.9 
on 10 degrees of freedom, (well below the 50% point). 

The t values for the white noise and integrated random walk components were respectively -0.25 
and 0.93. Removing these two terms had no adverse effect so that the final model included just two 
components, the random walk and the corrected integrated seasonal random walk. Their respective 
coefficients ( t values) were 1864.1 (9.70) and 584.4 (3.70), while the residual deviance was 142.09. 
The fit of this model on the whitened scale is shown in Figure 4b. Whatever comparisons are 
made with the other models there is no strong statistical evidence to reject this model, which we 
recommend as the best for this series. 
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Figure 4: Spectrum models for the monthly series of unfilled orders. 

Our second example is another US macroeconomic series - wholesale sales of sporting goods 
from January 1967 to February 1989 inclusive. This is plotted in Figure 5a, after taking natural 
logarithms and multiplying by 1000. The sample spectrum of the series on the whitened scale is 
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Figure 5: (a) Monthly values of the logarithms of sporting goods sales, (b) Sample and model 
spectra for the series. 

shown in Figure 5b with the fit of the seasonal IMA model superimposed. The coefficient p used in 
the generalised differencing was 0.655 for this series, the shrinkage factors used for the components 
was 0.97. The residual deviance for the seasonal IMA model fit was 144.35 using p = 124 frequency 
points giving a tolerable Normal deviate of 1.24 using a mean of 129.1 and a variance of 146.0. 
A simple correction for trading day effects has been made to the series by removing first a cycle 
at frequency 0.3477 which was evident as a sharp peak in the original whitened spectrum. This 
frequency is well known to be associated with trading day effects. One other, smaller, peak was 
also removed at the frequency 0.4310 = 1/12 + 0.3477 which is associated with a modulation of 
the fundamental seasonal frequency 1/12 by the trading day effect. Table 2 shows the estimated 
coefficients and their t values for model 1, the 14 component model. The fit was close to that shown 
in Figure 5b, but with some re-adjustment of coefficients giving a somewhat better residual deviance 
of 136.24. Because the coefficient of component 3, the integrated random walk, was negative, this 
component was removed for all subsequent analyses. The reason for this negative coefficient may be 
that the low frequency peak appears to lie a little above zero, so the random walk components may 
be attempting to approximate a low frequency business cycle in the data. Model 2 was determined 
by removing insignificant terms one by one, the terms remaining being indicated by a t in Table 2. 
The coefficients and standard deviations did not change appreciably; the fit for this model is shown 
in Figure 6a. The deviance for this model was 147.42 on 118 degrees of freedom, the increase of 11.2 
from the 14 component model being reasonable for a saving of 8 degrees of freedom, corresponding 
to the upper 20% point of the appropriate chi-squared distribution. 

Model 3 arose from attemps to simplify the seasonal components using both the corrected 
seasonal random walk component and the corrected integrated seasonal random walk component; 
only the latter was retained. The estimated coefficients for this model were 1868.7 (t = 28.94) 
for the white noise, 823.5 (t = 17.88) for the random walk, 702.3 (t = 13.10) for the corrected 
integrated seasonal random walk and 281.7 (t = 21.95) for the fourth seasonal pair difference. The 
fit of this 4 component model is shown in Figure 6b. The deviance increase from the model 1 was 
17.9 on 10 degrees of freedom, which is at the upper 5.6% point. Figures 6a and 6b clearly reveal 
the nature of the choice between these two models - whether to go for a compromise in the more 
marginal model 3 or stay with the less parsimonious but better fitting model 2. 

Note that for both models 2 and 3, one seasonal pair difference component was necessary in the 
fit. Without this the deviance increase is extreme. For model 2 the coefficient of the remaining term 
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1st 2nd 3rd 4th 5th 
white random seasonal seasonal seasonal seasonal seasonal 
noiset walkt pair sumt pair sum pair sumt pair sumt pair sum 
1708. 668. 67.0 7.30 22.1 16.99 3.68 
(4.39) (2.62) (1.97) (0.89) (2.05) (3.17) (0.14) 

integrated single 1st 2nd 3rd 4th 5th 
random seasonal seasonal seasonal seasonal seasonal seasonal 

walk component pair diff pair diff pair diff pair difft pair diff 
-0.87 6.07 12. 34. 104. 377.5 -17.1 

(-0.77) (1.14) (0.66) (0.24) (0.64) (3.90) (-0.44) 

Table 2: Spectrum component coefficient estimates for models of the series of sporting goods sales 
with (t) values. 
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Figure 6: Further spectrum models for the series of sporting goods sales. 

associated with that seasonal peak falls from 17.46 (t=3.37) to -1.07 (t=-0.32), so that this peak, 
which appears clearly in Figure 6a, is not fitted at all. For model 3, the use of a single component 
with peaks at all seasonal frequencies protects against this type of lack of fit. Its coefficient falls 
only from 702.3 (t=13.10) to 592 (t=5.12). 

We have seen other examples similar to this one, in which a seasonal peak appears quite skewed, 
with an appreciable fall in the spectrum between that seasonal frequency and the next. Use 
of a seasonal pair difference term then appears necessary to obtain a good fit to the spectrum 
and in particular to avoid a poor estimate of the seasonal pair sum whose coefficient measures 
the amplitude of the peak. The disadvantage is that the seasonal pair difference component is 
necessarily negative over some frequency range so can only be interpreted in conjunction with 
other terms. Only if the coefficient of this component is smaller (in absolute value) than that of the 
corresponding seasonal pair sum component is their total contribution positive and representable 
by (17). This is not the case in this example. It does however become positive when the white 
noise component is also added. For this example that would leave the random walk component 
as the only non-seasonal feature of the model. We emphasise therefore that limiting the models 
to those with only positive coefficients in order to permit the use of the Kalman Filter can lead, 
for some time series, to a poor fit of the whole model. Conversely, the method we propose gives a 
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viable alternative to estimation by the Kalman Filter even if a stuctural model is required. 

7 Discussion 

We have presented a procedure which allows a flexible model for evolving trend and seasonality to be 
readily investigated for a given time series. This model may be applied to forecasting and seasonal 
adjustment, the latter being the application for which careful assessement of evolving seasonality is 
perhaps most important, and the interpretation of the components most val.uable for constructing 
adjusted series. The first example shows how a parsimonious model may be readily identified using 
this method. The second example provides justification for considering all the terms in the model 
lest important seasonal features are poorly estimated. 

The model building process we describe may be related to procedures for seasonal unit root 
testing, for example those of Canova and Hansen (1995) and more recently those of Hylleberg and 
Pagan (1997) who have returned to the evolving seasonality models presented by Hannan, Terrell 
and Tuckwell (1970). In our model components we distinguish however between the condition of a 
unit root, ie s = 1 as opposed to s < 1, and the presence or absence of a stochastic peak, ie Vk > O 
or Vk = 0. Our view is that establishing whether s is equal to or just less than unity is relatively 
unimportant and that inference for Vk is both more important and relatively insensitive to the 
choice of s. We choose a value for s just less than unity in order to carry out that inference, for 
Vk, in a robust and revealing way in the frequency domain. We favour this approach rather than 
that of fixing s = 1 and then supposing that testing for Vk is the same as testing for the presence 
of a seasonal unit root. 

By assuming that s < 1 we ensure that we are carrying out inference upon a stationary model 
thus avoiding some of the non-standard asymptotic inference problems for unit root models. For 
the finite sample case, however, the distinction between standard and non-standard inference is 
illuminated by our frequency domain methods. When we apply our least squares method to test 
for the presence of a shrunken spectrum component, the important statistic is the combination 
of spectral ordinates in the neighbourhood of the seasonal frequency, weighted by the values of 
the seasonal peak component at that frequency. Asymptotically the central limit theorem will 
apply to this weighted combination of exponential (xD variates, but for typical seasonal series 
which are modelled its distribution will be appreciably skewed. The effect on the distribution 
of the test statistic could be computed and would be similar to that found for the non-standard 
distributions associated with unit root tests. This point is made to acknowledge that no slight of 
hand associated with unit root shrinkage can magic away the non-standard testing problem. The 
finite sample properties of the deviance reduction tests that we have used could be checked by 
simulation studies. 

Finally we discuss procedures for applying the results of the modelling process to forecasting 
and seasonal adjustment. If the fitted model can be represented in terms of the components Pj(f) 
all with positive coefficients, or in terms of combinations of these such as the integrated seasonal 
random walk which has a simple state space representation, then state space methods can be applied 
directly for forecasting and seasonal adjustment. If some coefficients are negative, as we have shown 
may be the case, then a final form SARIMA representation of the model can be constructed using 
available tools, and Wiener filtering used to separate the trend and seasonal parts. We leave 
open the question of whether to retain the shrinkage factor at the application stage. Our limited 
experience suggests a slightly better model fit is achieved using modest shrinkage, which suggests 
that the fixed trend and seasonal terms be retained in the model. Once the model is estimated 
however, it is possible to check whether removing the shrinkage still gives a positive spectrum fit 
and then to apply the seasonal unit root forms of the model, state space or ARIMA, without the 
need for the deterministic trend and seasonal terms. 
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