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Modelling and Solution to the Municipal Effluent 
Management Problem 

J.B. Krawczyk* 0. Pourtalliert M. Tidball• 

Abstract 

The aim of this paper is to analyse the municipal effluent management problem; 
we also show how to solve a problem of that kind. 

Municipal effluent economics is a complex problem. There are many agents con­
fined to a small area, their capital can change through the investment and dis­
investment processes and they can abate pollution in the abatement facilities or '(in­
stantaneously" (e.g. by exporting it). The agents pollute a local river. On the other 
hand, a regional authority would like to preserve the quality of the river's water. The 
quality can be expressed as a series of constraints to be satisfied locally, globally or 
on average, in the spatial and temporal sense. For that complicated situation, we 
propose a multi-criteria hierarchical multilevel optimisation model with a Stackelberg 
type equilibrium between the leader's and the followers' levels, and a Nash type equi­
librium at the followers' level. We outline the procedure necessary for a solution to 
a problem of that class. We analytically compute a steady state Nash equilibrium 
solution for the followers, and determine a Stackelberg equilibrium solution for the 
leader-followers interactions, through a Decision Support Tool. 

1 Introduction 

This paper analyses the municipal effluent management problem. We propose a model for 
that problem and point out difficulties one encounters in solving it. We also discuss under 
which assumptions the current state of the art in dynamic games enables us to solve this 
problem. We suggest that the approach we are using, can be followed in the modelling and 
solution of other intertemporal conflict problems in the area of environmental economics. 
In that sense, the effluent management problem is the vehicle for the presentation of a 
methodology useful for a solution to a larger class of conflict models. 

Our modelling framework is suitable for situations in which the Local Government 
(LG) acts as an elective representative of different interest groups1 . That is, we consider 
the situations where the existing infrastructure permits LG to recognise a few feasible 
abatement options for which it can build a mathematical model of how the realisation of 
the options relates to the groups' and its own interests. 

"'Victoria University of Wellington. Research supported by VUW GSBGM. 
fNational Institute for Recherche in Computer Science and Control, Sophia-Antipolis, France 
tuniversity of Rosario, Argentina. 
1 For methodological guidelines for models of ecosystems management and resolution of the arising 

conflicts see [26]. 

1 
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In the model, there are many agents ( commercial, dwelling, transportation) confined 
to a small area. Their production capacities can change through the investment and 
dis-investment processes. The agents can take decisions about abating pollution "instan­
taneously" (e.g. by exporting it) and/or investing in the abatement capacities. The 
production and abatement should be such that the quality of the local river's water sat­
isfies a series of constraints locally, globally or on average, in the spatial and temporal 
sense. This potential diversity of structures makes the model very complex. 

In [17] a framework for the description of the municipal effluent economics was pro­
posed. Here, we recall the main result of that paper, which consists of a multi-criteria 
hierarchical optimisation model with a Stackelberg type equilibrium between the leader's 
and the followers' levels, and a Nash type equilibrium at the followers' level. We outline 
a procedure necessary for a solution to a problem of that class, under an appropriate 
"dynamic" solution concept. As that ideal solution cannot be analytically, or even numer­
ically, easily computed, in this paper, we find a ( closed form) "limit" solution which is a 
steady state Nash equilibrium solution for the followers. For the leader-followers interac­
tions, we determine a Stackelberg equilibrium solution through a Decision Support Tool, 
in an analogous manner to [18]. 

The paper is organised as follows. In Section 2, a complete mathematical model of the 
effluent management problem is formulated. In Section 3, we discuss strategies relevant 
to the economic goals of the players and consider the solution concepts. It is there that 
we conclude that obtaining solutions in the "ideal" class of strategies presents a lot of 
mathematical problems, that in the present state of the art cannot be overcome ( unless 
using heuristics). A decision support tool (DST) which leads to a satisfactory solution to 
this simplified problem is provided in that section. It is in that framework in which we 
obtain, in Section 4.2, a solution to the municipal effluent problem specified in details in 
Section 4.1. The paper ends with the concluding remarks. 

2 A mathematical model 

2.1 The model dynamics 

The model illustrates typical interactions between several economic agents and a commu­
nity located in a municipality, whose effluent contributes to the pollution of the neigh­
bouring water resources. 

Economic agents. We suppose that each economic agent i, i = 1, 2, ... N makes decisions 
that control his market production, investment, abatement etc. Assume that the i-th agent 
produces pollution within a production period (a month, say) t, t = O, l, 2, ... , in the 
volume of c,;q/. Symbol q/ denotes the i-th agent's production output in period t and 
c,i > 0 can be interpreted as a "technological" coefficient, i.e. c,, = ni where n1 are m3 s 

n2 
of pollution and n2 kgs of output, per month. We will identify the agents' outputs with 
their production capacities. The agents are supposed to invest vj ( or dis-invest, hence v/ 
can be of either sign) so that the production meets the demand. The equation of motion 
which describes the production capacities reads: 

i = 1,2, ... N (1) 
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where O:::; 'Pi :::; 1 is the capacity depreciation rate, qp is known and qf 2: 0. 
Each agent is supposed to use an abatement plant whose capacity is y;, 0 :::; yl, in 

which pollution yf will be stocked and abated. Each period t, the capacity depreciates 
to (1 - µi), 0 :::; µ, :::; 1 and can be rebuilt, augmented or dismantled through investment 
u; 2: 0 or < 0: 

-t (1 )-t-1 + t-1 Yi = - µi Yi ui i=l,2, ... N; (2) 

17? is known and y; 2: 0. We will assume that a natural process of the pollution elimination 
takes place in the abatement plant. This may be helped through an abatement effort. The 
stock of pollution yf (yf 2: 0), satisfies the following equation of motion, under the adopted 
nonlinear2 abatement regime: 

yf = (1 - Ki)(yJ-1 + °'iqJ-1 )(1 - kJ-1) - rJ-1, yp - given (3) 

where ki, 0:::; ki:::; 1 is an instantaneous abatement effort (as said, could be the pollution 
export), ri is the pollution discharge to the city sewage system, yf is the initial pollution 
stock and O :::; Ki :::; 1 is the natural elimination coefficient. Obviously, if the pollution 
stock at t does not exceed the abatement capacity, the discharge ri is null. In general, the 
discharge is 

r/ = max{O, (1 - Ki)(yf + a,q/)(1 - k/) - y;}, (4) 

and can be considered an observable output variable of the i-th agent's production process. 
Allowing for ( 4) in (3) yields 

yp - given. (5) 

The last equation is useful to see that the pollution stock cannot exceed the plant's capacity 
and that the discharge is the pollution stock "surplus" over and above the capacity lll-

Notice that the changes in the economic prosperity of a city can also imply the changes 
in the number of economic agents N. However, in this study, we will assume that N 
remains constant. Nevertheless, through the dis-investment process (v/ < 0), production 
of a particular agent i can vanish. 

The dwellings. Let Mt be a measure of the size of the dwelling sector3 • If each unit of 
Mt generates the volume /3, 0 < /3 of pollution per month, a monthly pollution load st 
from the city households is 

(6) 

An improvement in the wealth of the municipality attracts immigrants; conversely, a 
worsening of the economic prosperity causes emigration. We can model these phenomena 
through the following relationship: 

(7) 

2 Where the nonlinearity comes from the max operator, see (4)i (12), (13) below. 
3It can be the sum of the rates. We expect that a higher rate's dwelling generates more pollution than 

a lower rate's one. 
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Here, we assume that production is "aggregable", or substitutable, and q' = I:~1 q/; 
o-1 is the natural reproduction rate; M 0 is known and o-2 is between zero and one. The 

expression ( qi~
1

) < represents the migration propensity. 

Storm waters. The storm waters are polluted due to leaks from the agents' production 
processes, fertilisers, pesticides and herbicides washed from the green areas, tar etc. The 
volume of the storm waters carrying the pollution can be estimated as T' which will be 
proportional to the average precipitation in month t. 

Government abatement. The pollution carried through the sewage system, and the 
storm waters, that eventually reaches the river, lake or sea becomes the effluent. For every 
amount of the "dominant" pollutant4 s' dumped into the target waters, the Dissolved 
Oxygen 5 concentration c', at a critical area, can be computed as 

c' = .C(s',c0
), (8) 

where .C is an operator representing an averaged solution ( over a production period t) 
to a partial differential equation that describes the pollutant transportation, decay and 
diffusion processes. The quantity s' is a forcing factor and c0 a boundary condition for 
that equation6 • 

Suppose that the Local Government wants the concentration of Dissolved Oxygen in 
the target waters to be less than a critical level c. It is evident that the concentration c' 
can be controlled by the agents' decisions on production and abatement. However, c' can 
also depend on the government abatement as the Local Government can build their own 
abatement facilities to purify the sewage and storm waters. Those facilities are a safety 
measure to help and clean the "mess" which has escaped the agents' and community's 
abatement. 

Suppose that LG uses two abatement plants: j = 1 for cleaning sewage, and j = 2 
for the storm waters (see [9] and [23]). The plants' capacities are Y1 and Y2 , respectively. 
They can change in the following way: 

Yf = (l -v;)YJ-1 + UJ-1
, j = 1,2, (9) 

where O :,; v; :,; 1 are the sewage and storm waters', treatment plants' depreciation rates, 
and UJ is the investment. As the Local Government will probably not dis-invest, Uf will 
be non-negative (while, as said before, u/ and v/ could be of either sign). Obviously, the 
capacities Y;' ~ O, t = O, 1, 2 ... 

Under the accepted abatement regime, the pollution stock Yf will satisfy the following 
state equations: 

Yf 
Yi = 

(1- "'D(Y1'-1 + R'-1 + s•-1)(1- Kt1)- Pf, 
(1- i<;)(Yi-1 + T'-1)(1- Ki-1

)- Pi, 
(10) 

(11) 

4 ln this paper, we will implicitly assume that curbing one pollutant's emission is satisfactory. In 
particular, Ammonia~N usually dominates the total dissolved inorganic nitrogen so it appears to be a 
candidate to be the "dominant" pollutant, see [1]. 

5 Dissolved Oxygen is also a good measure of water quality, see [27]. 
6 For the general form of the transportation equation, see [5]; also [15), [11], [16] for a few applications. 
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N 

where Y/,j = 1, 2 are given, and R' = L rj. The functions Kj, 0 :,; Kj :,; 1 are LG's 
j=l 

"instantaneous" abatement efforts, K;, 0:,; K; are the natural elimination coefficients and 
Y;° represent the initial pollution stock in the abatement plant, all for j = 1, 2. Pollution 
which is not abated or retained is leaking into the target river, lake or sea in the amounts: 

Pf 
PJ = 

max{O, (1- K~)(Y1' + R' + S')(l - Ki) - Yi}, 
max{O, (1- 11:;)(Yi + T')(l - K~) - Y2}. 

(12) 

(13) 

Pollution amount. The pollutant amount s' that eventually reaches the target waters 
can be modelled as 

' P' 'P' S =<p1 1+'P2 2, (14) 

where 'P)\ j = 1, 2 are the pollutant concentrations in the effluent from the sewage and 
storm waters, respectively. Notice, however, that while the coefficient cp1 can be considered 
constant, cp2 has to be modelled as a function of the pollution that reaches the storm waters 
i.e., depending on the amount: 

N 

8M' + LD;q/, 
i=l 

where 8M' represents the pollution from the the residential sector and 8,q/ is the one 
which originates from the commercial sector ( due to trucks, cars, leaks etc.). 

We will denote X' the state variable at time t with 

X' - (x' z' M' c') - ' ' ' ' 
where x' = (x;, xt ... , xl-.,). Symbol x/ denotes the part of the state variable vector related 
to the i-th economic agent; symbol z' refers to the Local Government's part. Precisely, 

2.2 The management problem 

2.2.1 A game theory problem 

(15) 

The effluent producers are potentially in conflict with oneanother. The cause of the con­
flict can be economic competition, and/or global common constraints on the amount of 
effluent tolerated by the environment. On the other hand, the producers, including the 
dwellers, depend on some regional authority, like the Local Government, whose aim is to 
negotiate, and legislate, agreements on the admissible pollution and abatement policies 
of each polluter. Features such as the conflicting interests and the possibility of negotia­
tions naturally suggest a game theoretical approach towards solving the municipal effluent 
management problem. Applications of the theory of non-cooperative dynamic games to 
environmental management have already been reported in the literature, see (10], (14], 
(16], [21], (28], (25]. The idea for the model studied in this paper comes from (17]. 
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2.2.2 Agents' controls and the profit function 

The producers' problem is to choose their strategy of abatement and production. The 
choice is not obvious. On the one hand, investing in an abatement plant and/or abating 
instantly makes products more costly. This, due to the demand law, diminishes the sales. 
On the other hand, failing to abate the effluent, can make the producers vulnerable to an 
environmental levy. 

At each instant of time t the economic agents choose actions ( k', u', v') using certain 
strategies ( to be described in Section 3). To this set of actions and the amount of tax, 
with the tax rate r' fixed by LG, corresponds an agent's one-period profit function defined 
as 

iri(x'; r'; k;, u;, vj) = q;p; (t qj) - diki(l - Kl)(y; + a;qj) 
t::::::.3 

- r'wi(a;q;)-hi(q;,a;qi)-g;(ul,yl)- J;(v/,qj), (16) 

where di ::C: 0 is a (constant) price of the pollution neutralisation. Function w;( ·) allows for 
the pollutant diffusion, decay and transportation 7 from the source down to a critical area 
at which the government wants to enforce a standard. Each agent is levied r'w;( a;qi), with 
r' ::C: 0 by the Local Government for a unit of the transformed pollutant °'iqJ. Assuming 
production is "aggregable" and q' = I:[1 qf, function Pi(q) is the i-th agent's inverse 
demand law and hi(•,·),gi(•,·),J;(·,·) are the production and (abatement and capital) 
investment cost functions. The dependence of h; on a;q; allows for the fact that although 
the i-th agent may not realise the cumulative effects of his emission, he may want the 
clean production in his own interest, if e.g. his water intake is below his effluent pipes. 

Notice that the polluters are coupled through the inverse demand law p;(·). Neither 
this law nor the instantaneous reward depend on the current actions undertaken by other 
agents. Instead, the coupling is realised through the state variable x'. In turn, the 
evolution of x' depends on all players' controls. 

Define a player's intertemporal profit: 

co 

II ·( o ) _ "°' t ·( ,. t. k' t ') ix ,1'1,/2,•••,'YN - L.....tfl 7ri x ,r, i,ui,vi, 
t=O 

(17) 

where a discount factor is (!, 0 < (! < l and 'Yi is the i-th economic agent's strategy, that 
determines controls k/, u/, v/ at each instant in time. 

2.2.3 The Local Government's controls and goals 

The Local Government is supposed to use a version of the polluter pays rule i.e., it levies 
the environmental damage caused by the agents. Their first, say, instrument is r which 
is the environment tax rate. The other controls at LG's disposal are: U1 - investment 
in sewage abatement, U2 - investment in the storm waters abatement, 1(1 - sewage 
abatement effort and K2 - storm waters abatement effort. These controls are to be 
chosen so that certain goals of LG are satisfied. 

We assume that LG is interested in the environment quality and economic prosperity 
of the city. This makes the LG's problem multi-criteria with J being its vector criterion, 

7This function is known to each agent and to the government, and can be a solution to the pollutant's 
transportation equation, similar to equation (8). 
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J = (w1 , W2 , •.. , Wn)- We will concentrate on two components of vector J only, those 
which describe the most "natural" objectives of the Local Government: 

J = [ :: ] = [ econ;~;:z;~~s;erity ] (lS) 

By pollution, we understand the numerical value of the dominant water quality measure 
( e.g. Dissolved Oxygen). The measure could be a topological norm of concentration c like 
llc1llm2 or sup1 c1

• However, providing the LG decision maker with the time profile of 
c1, t = O, l, 2, ... could give them a better basis for the comparison of the different outcomes 
of their policies8 . In this paper, we define 1[1 1 ass; which is the long term concentration of 
et, or its steady state value, 

(19) 

This implies that we expect our system to reach a steady state after a sufficiently long 
transitory period. We discuss thoroughly the steady state solution concept in Section 
3.2.1. 

Economic prosperity of the municipality will be measured as a part of the economic 
agents' sales9 plus the revenue LG collects from the pollution taxation. All LG's state 
variables, as well as production and pollution outputs can be determined at any time 
through the state and output equations ( see Section 2.1 ), provided that the relevant initial 
conditions and previous decisions on investments and efforts are known. In this case, a 
one-period second objective of the government can be modelled by a function 

H(Xt,rt,Uf,Ui,Ki,Ki) = 

t [(q/p, (t q/) + r' w,(a,qI)] -t G;(UJ, Y/) - t D;K}(l - (1";)')(Y/ + Cj) (20) 

where Cf = S1 + Rt, c; = Tt, the coefficient ( represents a "local" tax rate and 
D j, j = 1, 2 are prices of the pollution neutralisation in LG's reservoirs. The functions 
G;(UJ, Y/), j = 1, 2 are LG's investment cost functions. As in the case of an economic 
agent, instantaneous reward of the government does not depend on the other players' 
control variables, and coupling is realised through the state variable. Assuming the Local 
Government is interested in the long term discounted sum of revenues and that 'f} is its 
strategy, the LG 's second goal function can be defined as 

00 

W2(X0
, 1'1, 1'2, ... , 'Yn, 'fJ) = L (e') 1 H(Xt, rt, ut, uJ, Ki, Ki) (21) 

t=D 

A strategy 'f/ defines the LG's control variables at each instant of time t and is such that 
its results are "satisfactory", as measured by W1 and W2. This strategy will be defined in 
the next section. Notice that the discount factor e' may be different from I! which is the 
economic agents' discount factor. In particular, as LG may be less myopic than the other 
players we could expect e' 2'. I!· 

8 See [16] where the local government decision maker was supplied with the time profiles of c. 
9 Assume that a percentage ( of the GST (Goods and Services Tax) is retained by LG. 
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3 Problem solution 

3.1 Strategies and solution concepts 

The "realistic" manner in which the players determine their controls may look like this: at 
time t LG chooses the tax rate r', the levels of investments Uf, Ui and abatement efforts 
Kl, Ki- The controls, in particular the value of rt, are communicated to the economic 
agents who react to those values by selecting their actions k/, ul, v/. Notice that the 
information sets available to economic agents and LG are not the same: at time t, LG 
knows all the state variables X', whereas each economic agent knows their own state 
variable only, i.e. x/. In other words, we regard a class of feedback strategies the most 
appropriate for the situation at hand. We define them in the following way: 

• For each economic agent i, a strategy 'Yi is a sequence of functions ( 1?, 'Y[, ... , 1f, .. . ), 
where 7/ is a mapping from the agent's information set at time t to their set of 
actions. Thus the controls of the i-th agent chosen at time t are 

(kt t ') - '( t ') i, ui, Vi - Ii xi,w 

where w' = (r', Uf, Ui,Ki,Ki) is LG's decision vector. 

• Similarly, a strategy 71 of the Local Government is a sequence of functions 
(71°, 711, ... , 711

, •• • ), where 711 is a mapping from LG's information set available at 
time t to its control set. The controls thus selected are 

w' = (r',ut,uJ,Kl,KD = 711(X'). 

Notice that for then+ 1 strategies thus selected, (71,71,1 2, .. -,'YN), the state sequence 
(X0 ,X1, ... ,X', ... ) is well defined for every initial state x 0 • Consequently, the profit 
functions II;(71,'Y1,'Y2,---,'YN), and indices W1(71,'Y1,'Y2,--·,'YN), 1V2(71,'Y1,'Y2,--•,'YN) are 
also well defined. 

Let us now discuss the solution concept for a game where the set of players comprises 
economic agents and the Local Government. Notice that the game is multi-level, or hi­
erarchical. It is so because the economic agents react to the LG's controls rather than 
choose them simultaneously. We will call the agents - followers, and the Local Gov­
ernment - the leader. We assume the followers compete against one another with no 
cooperation. Hence, the natural concept for the solution to the followers "reaction" game 
is a Nash equilibrium. We define the followers' optimal reactions to the leader's strategy 
71 as ('Yi(71),72(71), ... ,7Jv(71)) which s.atisfy the following Nash equilibrium conditions: 

'h,, i=l,2, ... ,N. 

Notice that for the Local Government, to be able to enforce an environmental policy, the 
agents' game has to have a unique equilibrium solution. (If there was no unique solution, 
LG would not know what the reaction of the firms to a tax policy would be.) Moreover, the 
unique Nash equilibrium is self-enforcing which makes it an even more attractive solution 
concept. Indeed, at the equilibrium, no agent can increase their profit by unilaterally 



September 4, 1996 9 

deviating from the Nash strategy. Hence the firms become "self-regulated" with no need 
for monitoring. 

However, to guarantee the uniqueness of a ( steady state10) Nash equilibrium we need 
players' combined payoffs to be strictly diagonally concave11 (SDC). In broad economic 
terms, this mathematical property signifies that the agents' own decisions influence their 
payoff functions more than the onces of the competitors. As this is not an infrequent situ­
ation, the SDC requirement on the agents' payoffs does not greatly limit the applicability 
of our model. 

Now, consider LG's problem. We have to cliscuss what solution the Local Govern­
ment can regard as optimal. We have settled for two LG's goals \J/1 and \J/2, that de­
pend on the strategy 7J chosen by the government itself, as well as on the followers' 
reaction strategies 7j(ri),72(ri) .. ·'YN(rJ). (To simplify notation we will write \J/;(ri) for 
\J/;(rJ,'Yi(ri),72(ri) ···'YN(rJ)), i = 1,2). The leader will not accept a strategy which is 
dominated. This means that the leader's "optimal" strategy ri* has to satisfy: 

. { \J/1(ri) > \J/1(ri*) 
Vri, either \J/z(ri) :<::: \J!z(ri*) (23) 

Obviously, conditions (23) define the Pareto solution concept which typically does not 
provide the unique "optimal" strategy. Indeed, (23) determines a set of Pareto efficient 
solutions P. To enumerate a few of them, it is sufficient to solve the one-criterion optimi­
sation problem embedded in the following definition of Pq,: 

(24) 

for several12 <(; E [O, l]. If the Local Government believes that one of \J/;s has to be kept 
greater than a given number M, as a result e.g. of having been lobbied by the greenies to 
maintain \J/1 2: M, then it (LG) will want to solve the following constrained optimisation 
problem, which defines P;,M as : 

P;,M={7JM suchthat 7JM=argmax\J/_;(ri) subjectto \J/;2:M} (25) 
,E'P,; 

where j = 1, 2 and -j means "non" j. Solutions P;,M constitute a subset of P4>. The 
former is presumably smaller than the latter, which will make it easier to choose from 
P;,M a non-dominated solution for implementation. 

3.2 The difficulties 

3.2.1 The followers' game 

One problem in solving the hierarchical optimisation problem (22), (24), (25) comes from 
the difficulties in calculating numerically, or analytically, the Nash equilibria (22) in the 
followers' game13. A computable solution option are open loop strategies. In real life, 

10We explain in Section 3.2.1 why we decide to solve the game using a "simple)' steady state equilibrium 
as the solution concept. 

11 As formulated by Rosen [22] and quoted in the Appendix A. 
12We could have all Pareto efficient solutions if we solved (24) for all if> E [O, !]. 
13See [12] for a continuous time dynamic game. 
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the state observations could be difficult or costly and we could eventually assume that 
neither player observes the state variables. In that case open loop strategies would have 
to be considered, for which turnpike theory (a la [4]) would tell us if and to what steady 
state the system converges. From now on, we will restrict our attention to sytems whose 
long term behaviour is the "turnpike" steady state equilibrium. This should be true for 
systems with strict diagonal concavity of payoffs and linear decoupled state equations14 • 

Unfortunately, there is no general methodology how to compute a turnpike Nash equi­
librium. In particular, solving implicit programming problems, as in the optimal control 
case (see [8]), is not a proved method to determine a turnpike equilibrium in games. We 
will not pursue the problem of computing turnpike equilibria in this paper, as it would 
lengthen it substantially. Instead, we will compute a "simple" steady state Nash equilib­
rium. That kind of a solution might also be useful for the Local Government. 

What we know about this solution is that, for(!= 1, the sufficient conditions [4] for the 
turnpike ( or extremal) steady state equilibrium become the "simple" steady state equilib­
rium conditions. So, if we admit a hypothesis about monotonicity of the "evolution" of 
the Nash equilibrium as the discount factor tends to 1, and combine it with those on turn­
pike equilibrium existence and SDC of payoffs, then our "simple" steady state equilibrium 
payoffs will provide us with lower bounds to the agents' optimal payoffs. Consequently, 
the controls supporting the simple steady state equilibrium will be indications on how 
"myopic" agents might react to the levy r. We assume that the above hypotheses are 
satisfied and proceed to define a steady state Nash equilibrium. 

We look for the steady states15 :;,,J, and associated controls :!>;("t), :!!.;(:?Q') and k;("1') 
such that the controls stabilise the state & and 

7ri(2£i,2£2,···~ ... ,:?f.'j..,; 7 ) ~ 7ri(2£i,2£2,·••2£i•·•,~N;r) 
\/x; \/i = 1, 2, ... , N. (26) 

Assuming uniqueness of the stabilising controls, we shorten the notation and write 
7r i(:?f.i, 2£2, ... lf.i ... , lf.N; T) instead of 7r i(2£i, 2£2, ... tf.i ... , 2£'}..,, r; & , fu, 12.i), where 1££, fu, Qi 
are controls which maintain the steady state "*. 

Having decided on the computation of the followers' steady state equilibrium reactions, 
we consider the LG's problem (also static) with the following goal functions: 

iJi1 = C } 

iliz = H(X; r) (27) 

where H(X; r) was written instead of H(X; r; U1(X), U2(X), K 1(X),K2(X)), and where 
LG 's controls are stabilising the state X. 

3.2.2 The hierarchical game 

Another difficulty in solving the hierarchical optimisation problem (22), (24), (25) comes 
from the fact that the Local Government's goal is non unique, see (18). Even if we get 
a closed form solution in the followers' problem, determining analytically the set (25), 

14 Notice that this "theorem" has been inspired by the examples contained in [4] and [13]. It remains to 
be stricktly formulated anf proved. See the Conluding Remarks. 

15We underline a variable to denote its steady state value. 
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is difficult in this hierarchical context. Also, assigning the weights ef, in problem (24) to 
determine P4, might be non intuitive for a Local Government decision makers' panel. 

We recommend a satisfactory solution to this game which will be computed through a 
Decision Support Tool (DST), cf[18], [16]. The DST described below is an interactive way 
of using our model to generate a number of solutions to the problem, under the adopted 
solution concept (here, (26), (27), (23)). The solutions are Pareto efficient and, obviously, 
fulfill all constraints. The solutions thus obtained are easier to interpret and apply by the 
Local Government decision makers than other solutions to that problem16 . 

The DST for the effluent management problem works in steps as follows: 

I. The subset of LG's strategies psub is initialized to the empty set. 

II. LG sets up a tax function r( (), which is part of strategy 'f/, and where ( can be 
the initial state (constant tax), or the time (open loop tax). Notice that followers' 
reactions do not depend on the other part of 'f/ • 

III. LG solves the follower's problem and obtains a polluters' reaction to the levies im-
posed. In particular, index J(X0; r) is computed. 

IV. LG chooses a value ef, E [O, l]. 

V. LG solves the P4, problem (24) in the remaining instruments (i.e. U1 , U2, Ki, K 2). 

VI. The Local Government tests the results to see if they are satisfactory ( e.g., the local 
lobbiests and politicians debate if the pollutant concentration has been confined to 
an acceptable limit, and whether the economic prosperity level is adequate). 
If the answer is not, LG returns to step IV; if yes, LG continues to step VII. 

VII. The strategy is placed in the set psub. 

VIII. After having obtained a few strategies for a value of r fixed in step II, LG returns 
to that step and modifies r. 

IX. When the set psub contains a number of strategies which result in i!i1 ranging from 
low to high pollution, and iii 2 from low to high economic prosperity respectively, LG 
selects one of its elements (e.g., through voting). 

4 A steady state solution 

4.1 Model specification 

In this section we specify the demand and cost functions, as well as LG's prosperity 
measure, for which we will solve the effluent management problem. 

The underlying situation which the model is able to capture remains unchanged. In 
particular, we envisage a city where economic agents (like factories or big shops) produce 
commercial goods and effluent as a by-product. The effluent might be treated by the agents 
partially, or entirely, before it reaches the city sewage pipes. In the pipes, the "commercial" 

161n particular, the DST was successfully used in [18] to solve a "real life" four criteria leader-follower 
problem; in [16], also through the DST, a farm effluent management problem was solved for typical pork 
farm data. 
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effluent joins the community human waste and then is processed at a treatment plant and 
discharged to a neighbouring river, lake or sea. Besides the sewage pipe network, the city 
has also got a storm water system. This system carries the storm waters into the same 
river ( or lake, or sea). 

We assume that the linear inverse demand law p(q) is given as 

N 

Pi =p=A-B"'I:,q,. (28) 

The pollution function w;(-), proportionally to which an agent will be levied, is fixed as r;, 
see ( 4). This means that the abatement effort of each agent is not going to be unnoticed 
and that the penalty will be imposed on the part of the production which is responsible 
for the pollution emission. 

We assume that cost functions introduced in Section 2.2 satisfy the standard convexity 
assumptions. We suppose that these functions are given as: 

h;(q;, e;) = Ciqi, (29) 

g;( u,, 'ih) = Liu?+ Eifi;, (30) 

f;( Vi, qi) = Fiv[ i = 1,2, ... N (31) 

G;(U;, Y;) = 2 - -AiU; + =.;Y;, j = 1,2 (32) 

where all constants A, B, C;, L;, E;, F;, Ai, 3; are positive. The above functions define a 
large class of agents for which a solution of the effluent management problem will be 
carried out. In particular, accepting a linear production cost function in the form of (29) 
means that we expect our agents to easily adjust their production to the demand (no 
"bottle necks" in particular). The form (30) (and (32)) of the investment cost function 
defines our agents as the ones for whom an extension of the existing abatement capacities 
costs more than if they started from scratch. Finally, the quadratic form of (31) means 
that, to our agents, heavy investment into the production capital is costly. 

Now, a one-period agent's profit 1r; and a one-period economic prosperity measure H 
can be written respectively as ( dropping the index t): 

1ri(x; r; k;, u;, v;) = qi (A - B t q;) - dik;(l - l<i)(Yi + lliq,) - r r; 
t;:::;l 

- C·q· - (L·u~ + E--y-)- F.-v2 (33) tt ti tt ti· 

and 

2 2 

- "'I:,(A;UJ + B;Y;) - L D;Kj(l - (1,;j)')(Yf + Cj). (34) 
j;:::;l j;:::;l 

To end the model specification we will rewrite total pollution equation (14) as 

s = cp1P1 + 'P2 ( M + t o;q;) P2, (35) 

where 'PI is constant, and Pi, P2 are given by equations (12) and (13), respectively. 
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4.2 A steady state Nash equilibrium solution 

4.2.1 Notation and profit segmentation 

13 

We simplify the notation to suit the definition of a steady state equilibrium (26). From 
(1), we obtain straightforwardly that, for any constant control Q;, the state 

V· _, 
q. = -,/;, _, . 

' 
is constant. For brevity of the notation we introduce: 

consequently 
q. = v;. _, 

As the production has to be non negative we have:!!.; :2: 0 and v; :2: 0. Similarly, we denote 

1 
W·=-U· 

t µi-t 

and then, from (2) we have that for any value of W; we have a steady state 

y.=W;. _, 

Again, W; must be non negative. Using the new variables v; and W;, the steady state 
conditions for the pollution stock (5) and discharge ( 4) can be rewritten as 

{ 
y. = min{(l - 1q)(l - fs)(y. + a;V;), W,} r: = -W; + max{(l - i;:,)(i'- k.;)('f!.; + a,V;), W;} 

(36) 

Now assume that we are dealing with two economic agents i = 1, 2 only and that the 
levy rule is constant, i.e. 

r(c) = T. 

from (36), it is easy to see that the i-th agent's pollution discharger., can be: 

I. r.; > 0, if the abatement capacity W, and/or cleaning efforts k.,, are not large enough 
to contain the pollution. In this case the abatement capacity will be fully utilised 

y. = y. = w,. 
-t -t 

This is when the following condition is satisfied : 

(1 - i;:·)(1 - k-)(W· + a·V:) - W:· > 0. t -t i ii i_ (37) 

Consequently the discharge ( or "leakage") into the sewage system is 

T..i = (1- K;)(Il; + a;q;)(l - k.;)-"'ff_; = (1- K;)(W; + a;V;)(l - k.,) - W,. (38) 

----- ·~-------- ·-------·---------
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For this "high" pollution case, the profit function can be written as irf( • • -) and 
defined as follows 

iri("i; r;k_1, W1, Vi,k2, W2, V2) = irf(r;k,, W., V1, V2) 

= V;(A - B(V1 + Vi)) - CiVi - F.v';2 

-(1- 1q)(W; + a;V;)(d;fs + r(l - fs)) + rWi - LiW,2 - E;W;. 

where :1>; is the i-th agent's vector of his steady state stocks. 

Alternatively, 

(39) 

II. Li = 0 (no pollution), if the abatement capacity W; and/or cleaning efforts ki, are 
sufficiently large, relative to the production output. In this case, k; and Wi satisfy 
the inequaJity 

(1- Ki)(l - k;)(W; + a;V;)- W; < O, 

the capacity will be filled up to the level 

(1- x:;)(1- k;)a;V; 
'Jl.i = 1 - (1 - Ki)(l - k;)' 

and the "low" pollution case profit function 1rf(· ··)can be written as 

= V;(A- B(V1 + V2)) - C;V; - F;V/ 

d;fs(l - x:;)a;V; 
1 - (1 - x:.)(1 - k;) 

L;W,2-E;W; 

(40) 

(41) 

(42) 

The equilibrium conditions (26) can be interpreted in the new variables as follows: we 
are looking for the agents' decisions k1 , k2, W1 , W2 , i'\, 112 such that the Nash equilibrium 
conditions are satisfied, that is 

1c1(,,1;r;_&1, W1, 111,b, W2, ½) = Ilj;aio'fl,,axmvax 1c1(:1>1;r;k1, W1, Vi,b, W2, ½), l 
-1 1 1 

2ci(:1>2; r; k1' W1, 111,b, W2, ½)= mkaxn;wxmvax 2!:2(:1>2; r; .&i.' W1, 111,ki, W2, V2). 
_ 2 rr2 2 

(43) 
In computing the optimal values, we will exploit the fact that in the adopted model the 

i-th player's cost function 2!:i does not depend on the other player's decisions concerning 
the abatement effort k(-i) and capacity W(-i) · Moreover, we can swap the order of the 

maximisations in ( 43). Hence we will be able to deduce the optimal values _&; and W;, as 
functions of V;, V(-i), for each player independently. To do that, we will fix V;, V(-i) and 
maximise 2!:; sequentially in k; and W;. Finally, we will solve the interrelated maximisation 
problem, that is we will find the Nash equilibrium payoffs, and compute decisions 111 , 1/i. 
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4.2.2 Optimal abatement effort 1£.;. 

Consider player i. Suppose that W;, Vi and V2 are given. The profit is a piecewise 
continuous function of 1£.;. Let us denote kf(W;) a critical value of the abatement effort 
defined as 

kf(W;) = max(0, kf"(W;)), 

where kf''(W;) is such that the equality is attained in (37). In other words, abatement 
efforts kf(W;) and more, guarantee no effluent leaks into the river. 

To compute the optimal abatement effort, we have to determine the shape of the profit 
function for the following two regions of 1£.;: 

- fork; :5 kf(W;), 1r; is given by equation (39) and is an affine function with slope 

(r - d;)(l - 1<;)(W; + a;V;). 

If the tax is large relative to the price of the abatement effort ( r > d;), the slope 
is positive and the function grows in k;- If d; > r the slope is negative, and the 
function is decreasing in 1£.;. If d; = r, then 1r; is constant ink;. 

- for 1£.; <". kf(W;), 1r; is given by equation ( 42) and decreases ink;-

Note that 1rf(kf'(W;)) = 1rf(kf'(W;)), which proves that the profit function is continuous 
ink;-

from the above, we can deduce that the "whole" function 7r; attains a maximum in k; 
either at zero if r < d; (see Figure la), or at kf'(W;) if r > d; (see Figure lb and lb). 
If r = d; any value in [0, kf(W;)] leads to the same profit. We will make an (optimistic) 
assumption that, in this case, the agent will choose the "good" environmental control, 
that is k; = kf(W;). 

Notice finally that if r < d; the maximum is attained in the first segment of the 
function, which means that there will be some pollution if kf(W;) > 0. Conversely, if 
r <". d;, the maximum is attained in the second segment of the function and there will be 
no pollution leakage into the sewage system. 

Table I displays the current results. 

Conditions Optimal k I Figure I Pollution I 

r < d; k- = o _, l.a I Yes, if kf(W;) > 0 I 

r <". d; k = k~r(W·) -i i t l.b-c 

I 
No 

I 

Table I: Optimal abatement effort. 
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Figure 1: Computation of optimal abatement efforts. 

4.2.3 Optimal abatement capacity W;. 

16 

k, 

Here too, the computation of W; can be done independently for each player. Let us fix 
the players' decisions V1 and V2 and analyse the resulting optimisation problems. Table I 
tells us that for the computation of the optimal abatement capacity we need to distinguish 
between the situations in which the tax value T (fixed by the local authority), is more - or 
less - than d; (which is the marginal cost of the ith agent's abatement effort). 

First consider r < d;. 
From Table I we see that fs = 0. Let us define a critical value W[' of W; as 

Wf' = (1 - i-;)a; V;. 
'-i 

The value W;°' is such that equation (37) with !s.; = 0, holds with equality, i.e., any capacity 
greater or equal than critical, guarantees no pollution leaks into the river, no matter how 
small the abatement effort is. Let us maximise W; for W; ~ W;°' and W; > Wf' separately. 
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• W; < W[". In this case the profit function is given by (39) with k_; = o, and is a 
concave parabola in W;, with the maximum at 

wfr = ri.; - E; 
' 2L; 

if 0 < Wh < Wer, 
- i - i ' 

or at o, if W;h:,; 0. If, however, Wl 2': wr then the minimum is at wr. 
• W; 2". W[', i.e. the facility contains all the pollution. The profit function, given by 

( 42) is a concave parabola in W;, with the "global" maximum attained at a negative 
value of W;. In that case a local maximum is achieved at W['. 

The above observations, including the one on the profit function continuity in W;, 
allow us to conclude that, for the low tax case (r < d;), the optimal size of the abatement 
capacities will be (see Figure 2): 

W;=min{max(o, W;h), wr}. 
or equivalently 

W. . { ( rK; - E;) (1 - i.;)a; V;} 
i=m1n max O, L , . 

2 i K.i 
(44) 

Now let r 2". d;. 
From Table I the profit function is given by equation (42) and k., = kf'(W;) = max(0, kf"(W;)) 
and there is no pollution. 

• If W; :,; W[', then kf' = kf"(W;) f. 0. If we substitute k; for kf' in equation ( 42) we 
can see that the profit function is a concave parabola with a local maximum attained 

W I d,Ki - E; 0 wcr 
at i = L , or , or i • 

2 i 

• If W; > W[', then kf' = 0. The function given by ( 42) with k, = 0 is a concave 
parabola decreasing for W; :,; Wf'. Consequently, a "local" maximum is attained at 
wpr. 

From the above, we can conclude that the size of the optimal abatement capacity is: 

Ti,._ . { (o d,i., - E,) (1 - i.;)a;V;} 
vv, - nun max , L , . 

2 i K.i 
(45) 

Tables II and III summarise the current results. Notice that 1rl, 11:'f, ... , 1rf are defined 
as follows: 

1rl(V1, V2) = -(B + F,)V;2 + (A- C; - ra;(l - i.,))V; - BV1 Vi+ (n~r,~')
2

, 

1rr(Vi, V2) = -(B + .F;)V/ + (A- C; - ra;(l - i.;))V; - BVi V2, 

1rf(Vi, Vi) = -(B + .F;)V;2 + (A - C; - ra;(l - i.;))V; - BVi Vi+ (d;x4L~;)2
, 

1rf(Vi, V2) = -(B + F;)V? + (A- C; - d;"'(~~K;))V; - BVi V2, 

We remark that all profit functions defined in Tables II and III are continuous. 

(46) 
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Figure 2: Computation of an optimal abatement capacity. 

4.2.4 Economic and ecological interpretations 

18 

u, 

Before determining the equilibrium decisions on the production capacities V;, i = 1, 2 let 
us economically interpret the results ( 44), ( 45). 

Let us follow the agents' behaviour as the pollution tax T increases. If T is small (even 
zero), the maximum in ( 44) has the zero value. Consequently, the optimal capacity's size 
and abatement effort are W; = 0 and fu = O, respectively. As expected, if pollution is 
not taxed there is no incentive for the agents to take this problem seriously: they will not 
abate the pollution at all. That situation will continue until the tax T is more penalising, 
relative to the building and maintenance cost of the abatement capacities (i.e. r has to 
be in certain relationship with the variables E; and L;). The firms will now "stock" part 
of the produced pollution which is W; = Wl and for which the respective facilities will 
have been built. If the tax still increases, the capacity's size also increases, to allow more 
pollution to be contained. If the tax increases further, two situations can happen: either 
the capacities (reservoirs, filters etc.) are sufficiently large to stock all the produced 
pollution, or the agents begin to abate the pollution instantaneously in the amount of 
fu = kf, which is the part of the pollution impossible to contain. 

------------------------------------------------~ --- --~---------------
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Conditions II Optimal (k,, W;) I Pollution I Profit function 

E; ~ Tl<i 

(o, (1-:?~;V;) NO ,r~ , 
V: 1<;( Tl<i - E;) ·< 

' - 2L;(l - r;;,)a; 

E· < T1<· ' - , 
( T1<· -E) ,r1 0 ' ' YES 

' 2L; ' 
r;;·(Tr;;· - E·) V.·> i i i 

' - 2L;(l - r;;,)a, 

E; ~ TI<; (0,0) YES ,r? 
' 

Table II: Optimal decisions for T < d;. 

Notice that similar results would be obtained if the natural cleaning propensity 1<; 

could increase. In short, if the natural abatement was complete, i.e. 1<; = 1 then, from 
( 45) and ( 44), W; = 0. This is to be interpreted that, obviously, there is no necessity to 
build reservoirs or filters if there is no pollution. If, on the contrary, there was no natural 
abatement of pollution (i.e. 1<; = 0), the firms would face the problems described above 
with the only difference being that the agents would react "earlier" to the levy instrument 
T. 

4.2.5 Interrelated production capacities 

The analysis carried out in Sections 4.2.2 - 4.2.3 provides us with optimal decisions fs and 
W;, i = 1, 2. If we substitute them in the agents' profits, the latter become functions 
of (Vi, V2) only. Tables II and III, together with definitions (46), determine what an 
agent's profit function is, for a given set of exogenous parameters T, d;, E;. Notice that 
each function ir{, i = 1, 2, j = 1, ... , 5 is of the following form: 

(47) 

with 

The functions are concave parabolas, twice continuously differentiable. Notice also that 
for T < d; and E; ~ TI<; or T ~ d; and E; ~ d;r;;; the profit function is piecewise defined, 1 

is in the first case: 

ir·(V, V) _ { irf(Vi, Vz), 
, 1, 2 - '(V, V) 7ri 1, 2 , 

V: < vcr(T) 
' - ' 

V; > V{"(T), 
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Conditions II Optimal (k;, W;) 

Ei '., d;1,,i 

(a, (1-::)<>i¼) 

V. < Kj(djl,;,j-Ej) 
i - 2Li(l-ni}ai 

E; '., d;1,,; ((1 - 1,,;)2a;L;V; - 1,,;(d;1,,i - E;) d;1,,; - E;) 
(1- 1,,;)(d;1,,; - E; + 2a;L;V;) 

, 
2L; 

V.· > Ki(diJq-Ei} 
i - 2Li(1-Ki)C1:'j 

E; 2". d;1,,; (1,0) 

Table III: Optimal decisions for r 2". d;. 

and in the second case: 

with 

irl (V1, V2), 
irt(V1, V2), 

v; < ycr(d·) 
i - i i 

v; > ycr(d·) 
i i i ' 

V;c"(O = 1,,;((1,,; - E;) . 
2L;( 1 - 1,,; )<>; 

20 

I Pollution I Profit function I 

NO ,r7 
' 

NO ,r1 
' 

NO ,r? 
' 

Table IV describes all relations between the tax and cost parameters that may happen, 
and the corresponding expressions for the profit functions. The notation ( ir{; irf - f) 
means that the firm i's profit function is equal to ir{ if V; < v;cr((), and equal to irf for 
¼;::,: v;cr(O 

Lemma 1 The agents' steady state game (43) is concave and "strictly diagonally concave"17 

hence the unique Nash equilibrium exists. 

Proof: We use definitions (46) and those given in Tables II and III. 
We first prove that the profit functions ir; are concave in V;, for each case noted in Table 
IV. This, applying Theorem 1 of Appendix A, guarantees existence of an equilibrium. 
Then, we prove the equilibrium uniqueness through showing that the "combined payoff " 
to the game, of any pair (ir1, ir2) of the profit functions (see the Appendix A), is strictly 
diagonally concave, which is sufficient for the uniqueness of an equilibrium. 

The non-piecewise defined profit functions are obviously concave. Thus we show con­
cavity for the two cases where the profit functions are piecewise defined, i.e. (irf; ir1 - r) 
and (irf; ir4 - di)- Here, the only point to verify is that each function ir; is concave at 

17See Appendix A where we provide relevant definitions and results. 



September 4, 1996 21 

Agent 1 Agent 2 Profit function form 
(ir1, ir2) 

T < d1 T < d2 
-- --

E1 < TK,1 E2 < T1'2 ((irf; 7rf - r), (ir?; irJ - r)) 
E1 < TK,1 E2 > TK,2 ((irf; 7rf - r), ir?) 
E1 > TK,1 E2 > TK,2 ( irr, irJ) 

T < d1 T > d2 
-- --

E1 < TK,1 E2 < d2"'2 ((irf; 7rf - r), (ir?; iri - d2)) 
E1 < TK,1 E2 > d2"'2 ( ( irf; 7ff - T ), irl) 
E1 > TK,1 E2 < d21,,2 (irr, (ir?; iri - d2)) 
E1 > TK,1 E2 > d2"'2 (irr, irl) 

T > d1 T > d2 
-- --

E1 < d1"'1 E2 < d2"'2 ((irf;irt- d1),(ir?;iri-d2)) 
E1 < d1"'1 E2 > d2"'2 ( ( 7rf; irt - d1), irl) 
E1 > d1"'1 E2 > d2"'2 (irf, irl) 

Table IV: Profit function pairs. 

V;c'((). This is true because each profit function is continuously differentiable. The proof 
of that is a straitforward computation of the derivatives. The limit condition of Theorem 
1 is also verified. Hence, we obtain existence of a Nash equilibrium. 

Next, we demonstrate the uniqueness of the equilibrium. 
To show that the combined payoff is stictly diagonaJ!y concave we need the "pseudo­

Hessian" matrix 

to be negative definite, for all Vi, V2• Using expression ( 47) we have: 
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The eigenvalues are computed as 

A1 = 2(,8{1 + ,8~1) + ✓ 4(,8{1 - ,8~1)2 + (,8{3 + ,8~3)2 

and 

A2 = 2(,8{1 + ,B~i) - ✓ 4(,8{1 - ,8~1)2 + (,8{3 + ,8~3)2 

(a) l 
(b) 

(49) 

The second eigenvalue A2 is clearly negative since ,Bil < 0. For .X1 to be negative, the 
following inequality has to be satisfied: 

(50) 

It is easy to see that this is true using expressions ( 46). Indeed, we have 

,B(.) - -B - "'· ,a(-) - -B - "'· - L· a}(l - 1<;)2 il - .r, or il - .L'i i 2 , 
I<. 

' ,Bj -,Bk - B 13 - 23 - - , 

in any case, which assures us that the previous inequality is satisfied, and ends the proof 
of the lemma. 
• 

4.2.6 Computation of Vi and V2 

Non piecewise defined profit functions 
Suppose that either player has a non piecewise defined profit function (i.e. either 1rf 

or 1rf). We have to compute a constrained Nash equilibrium, as V;, i = 1, 2 have to be non 
negative. 

The condition for equilibrium productions V1 , V2 is 

Equivalently, a pair V'1, V2 is such that it is the fixed point of the "best reply" functions 
defined as follows. For Vi fixed, the first player's best reply is the decision vf•st which 
maximises his firm's profit: 

(51) 

Symmetrically, for Vi fixed, the second player's best reply is decision vj•st which maximises 
his firm's profit: 

vJ••\v1 ) = max ( o, (52) 

Substituting Vi in (51) for (52) and taking into account that vf•st (Vi) is a decreasing 
function of V2 , yields the following equation which Vi has to satisfy 

0 = min (v max (v; + .!:_ .B{2 .!:_ .B{2 _ .!:_ ,B{3,B~2 _ 1 ,8{3,8~3 :- 4.B{1.B~1 v; ·)) (53) 1 ' 1 2,BJ '2,BJ 4,BJ ,Bk 4 ,BJ ,Bk 1 
11 11 11 21 11 21 
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Conditions (Vi, Vi) 

(3k > 0 22 -
f3{2 :,; 0 (o _!/312) , 2 (3k 21 

2/311/3{2 2: f3{3f3~2 

f3{2 <'. 0 

/3~2 :,; 0 (-!f3{2 a) 
2 (3' , 

2f3{1f312 2: /313/3{2 
11 

Other cases ( /3{3/3~2 - 2f3{2f3~1 f313f3{2 - 2f312f3{1 ) 
-(3{3/313 + 4/311/3{1 , -/313/3{3 + 4/3{1/3~1 

Table V: Equilibrium production outputs. 

The final results of optimal V1 and V2 are shown in Table V. 

Piecewise defined profit functions 
Suppose either firm has a piecewise defined profit function (i.e. either ( 1r7; ,r1 - T) 

or (1rr; ,r4 - d;)) . (The case when one firm has a non piecewise defined profit function 
and the other a piecewise defined profit function can be viewed as a particular case.) We 
denote 1r1 = (1rf; 1r{ - 6) and 71'2 = (1rJ; 1r1 - 6). 

Again, the solution is the fixed point of the best reply functions. 
For the decision V2 fixed, the best reply of the first firm is Vib•st(V2), and is the argument 

of the maximum of 1r1(Vi, V2), Due to the strict concavity of the 1r1 this maximum is 
unique, and we have: 

vl••\v2) E {Vi2(V2), V{(V2), o} 

with 

v/(V.) = _ ! f3{2 + /3{3 V2 
12 2 (3' 

11 

(54) 

In the same way, for Vi fixed, Vf•st(V1 ) is the second player's best reply. We have 
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with 

Now the Nash equilibrium is (V1 , V2 ) such that 

or equivalently 

{ 
vt•••cvJ•st (V1)) = Vi 

v,t•••cvt•st (V2)) = V2 

{ 
vt•st (vJ•st (Vi)) = V1 

V2 = vJ•st (V1). 

24 

(55) 

(56) 

Formulae (54) - (56), together with the definitions of coefficients ,a):/(.) (see (46)), tell us 
how to compute the unique Nash equilibrium of a game, for which the parameter values 
define piecewise differentiable profit functions. If only one profit function is piecewise 
defined formulae (54) have to be replaced by (52). 

4.2.7 Economic and ecological interpretations of the production decisions 

The obtained solutions are parametrical in ,0s rather than in the original problem pa­
rameters. Hence the interpretation of the results is not immediate. Instead, numerical 
simulations are needed. They will show what economic output is optimal for a given tax 
rate and cost, when production and abatement function parameters are fixed. 

4.3 Resolution of the Local Government problem 

4.3.1 Computation of the steady state equilibrium 

Here we calculate the optimal LG's abatement decisions 1( j and U j optimising (24 ), for 
a given value of ef; E [O, 1]. In a steady state, the Local Government states Y j and f\ 
become (see (9), (10) and (11)): 

where 

y. = (1-v·)Y· + u. -J J -J -J j = 1,2 

Y1 (l-,;;~)(Y1 +R+S)(l-Ki)-P1, 
Y2 = (1-i;;;)(Y2+T)(l-K2)-P2 

Pi= max{O, (1- ,;;D(Y1 + R + S)(l- K 1 ) - Yi} 

P2 = max{O, (1 - i;;;)(Y 2 + T)(l - K 2) - Y 2} 

(57) 

(58) 

(59) 
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and R, S and T are the steady state, or averaged (see Section 2.1), pollution amounts 
reaching the government abatement facilities. From (57) we obtain 

y. = uj 
-J v· 

J 

As in the agents case we abbreviate the notation and introduce a new symbol to denote 
the steady state LG's abatement facility size 

Z; = Yj. 

Remember that C1 = R + S, C2 = T which depend on and the agents' decisions and, 
implicitly, on the tax rate r, but not on the other controls of LG. Then we have 

Yj = min{(l - K;)(l - Kj)(Yj + C;), Z;} } 
P; = -Z; + max{(l - K;)(l - Kj)(Yj + C;), Z;} 

(60) 

We say that the system (60) possesses the S property if the abatement facility is saturated: 

(1 - K5)(l - Kj)(Z; + C;) - Z; ;:>: 0. (61) 

If the facility is non saturated (which corresponds to the inequality sign < in (61)) we 
say that the system possesses the property NS. We call K;er = K;er(z;) if equality is 
reached in ( 61 ): 

I('. er = l - Z; . 
-J (1 - K;)(Z; + C;) 

(62) 

Let us denote K'j' the critical value of the abatement effort defined as K'j' = max(0, K; er) 
and let 

CT (l - i;;';)C; 
Z; = I • 

"; 

We obtain: 
(1 - K

1·)(l - I( ·)C · 
Y · = 3 _, 

3 P; = 0 if NS 
-, 1- (1- i;;';)(l- Kj)' 

Yj = Z;, P; = (1- i;;';)(l - Kj)(Yj + C;) if S. 

Finally, remember that the Local Government goal functions are: 

2 = cp1P1 + 'P2 ( M +toil) P2, 

where M is the steady state size of the dwelling sector. According to (24) the LG's 
optimising criterion can be a weighted sum of H and - 2; we denote 

'¥ = <f,H- (l-</,)2 (63) 
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where ef, is a parameter given by LG that measures the importance of prosperity vis-a-vis 
pollution. Also, to shorten notation, call: 

h; = -A;ZJ - =.;Z; - D;K;(l - 1,J(Y; + C;) 

!i; = tp;P; 

Depending on whether the property S is satisfied or not, and in what facility, we obtain 
different forms of (63); i.e.: 

Here 

cf,(Q +hi+ h&)- (1- ef,)(si + s&) 
<f,(Q + h} + h~) - (1 - <f,)(s} + s~) 
</>(Q + h} + h&)- (1- <f,)(s} + s&) 
</>(Q +hi+ h~)- (1- ef,)(si + s~) 

if 
if 
if 
if 

S for 
NS for 
NS for j = 1, 
S for i = 1, 

I 2 - (1 - Kj)C; 
h; = -A;Z; - =,;Z; - D;K; l _ (l _ x;j)(l - K;) 

hj = -A;ZJ - =.;Z; - D;K;Z; 
I 

Sj = 0, sj = ip;P;. 

4.3.2 Optimal abatement effort K; and capacity Z; 

j = 1,2 
j = 1,2 
Sforj=2 
NS for j = 2. 

We follow a procedure analogous to that of Section 4.2 and obtain the optimal k ;( Z;) 
and Z;. 

Case S, j = 1, 2: In this case W is a decreasing function of K; because 

aw 
BK; [1- (1- x;j)(l - K;)] 2 < O. 

Then, k; = min (1,max(Kf,o)), j = 1,2. 
To maximize in Z; consider: 

• Z; < Zf, then Kf > O; substituting Kf in the corresponding w yields the maximum 
at 

in this "low" pollution case; then, 

Z; = min ( max(O, zj'), zy) . (64) 

• If Z; > Zf, then Kf = 0 and the global maximun of W in Z; is attained at a negative 

value. Hence, Z; = zr. 
Cases S, i = 1, NS, j = 2 and NS, j=l,2 can be treated in similarly. 
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5 Numerical simulation of the LG problem via the DST 

5.1 Parameter values 

27 

We simulate game (24), (26), (27) for the model defined in Section 4.1, and solved in 
Section 4.2, for the parameter values18 given below in Tables VI - X. 

I Player 

1 
2 

.3 I .08 .02 .01 .01 
.08 .02 .01 .01 

Par;[l] I Par;[8] I Par;[9] I Par;[6] I Par;[l0] I 

Table VI: Agents' effluent production parameters. 

The tables contain values whlch reflect a situation in whlch the Local Government deals 
with two almost symmetrical players. The asymetry comes from the fact that the second 
player's technology produces less pollution than the first player's (i.e., °'1 > 0<2)- We 
assume that maintaining a facility's size is "cheap" relative to changing it i.e. E 1 ,2 is low 
compared to L1,2, see Table VII.. Regarding the Local Government facilities we assume 
that they are cheaper to re-build then those of the agents (i.e., L1 ,2 > A1 ,2 , however, 
E 1 ,2 < 3 1 ,2 ). Between the sewage abatement and the storm waters' facilities, the latter is 
cheaper (i.e., A1 > A2)-

I i/j II C L E F d A I 

I ~ II :~ ~ :~ :~ ~ :~: I :~ 
II Par;[2] I Par;[7] I Par;[4] I Par;[5] I Par;[3] I PGarj[2] I PGarj[3] I 

Table VII: Cost functions parameters. 

We also assume that the municipality size is steady (i.e., <T1 = 0). 

T' /3 <Tz \01 8 ( 

10000 100 .3 .001 .5 .01 .001 .0585 1 

I PGar1[4] I PGar1[5] I PGar1[6] I PGari[7] I PGar1[8] I PGari[9] I PGar1[l0] I PGar1[ll] I 

Table VIII: Miscellaneous government's parameters. 

18The parameters enter a Maple programme, obtainable from the authors on request, as vectors 
Par, Pari, Par 2, PGar1, PGar2. The last row of each table, for the convenience of programming, tells us 
what Par is a parameter part of. 
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At this stage, we have to specify the \02(·) rule. We assume that the pollutant's 
concentration in the storm waters can increase up to 1 % of the storm waters volume, 
according to the following function: 

where x is the function \02(·) argument and symbolises the combined (i.e. industry + 
dwellings) size of the municipality. 

I I V 
,., 

I;:~ I .02 .02 
.02 .02 

I I Parj[ll] PGari[l] 

Table IX: Government's' state equations parameters. 

A B I 
120 .02 1 

I Par[l] I Par[2] I 

Table X: Inverse demand law function parameters. 

Regarding a solution to the transportation equation (8) we assume that it is a time 
invariant steady state solution (see [ll]). If so, the concentration c(00

) is a linear transfor­
mation of s. Hence, we can identify W1 as-§_, see (35). 

5.2 The "current" economic and ecological situation 

Here we calculate the agents' payoffs and the Local Government indices which correspond 
to a no-tax-no-abatement regime. 

I Player II lf. 

1 0 136.849 460.769 25476.99 
2 0 127.725 460.769 25476.99 

Table XI: Agents' initial conditions. 

Table XI documents the fact that, without taxes, the second player's cleaner technology 
gives him no financial reward (lf.1 = .112). The agents are (obviously) not abating pollution 
(.!£1 = .!£2 = 0) and have not constructed the abatement capacities (W1 = W2 = 0). The 
municipality prosperity, as measuered through W2 , and the pollution concentration are 
given in Table XII. Notice that in the concentration level of§.= 4.6457, 2 is the "base" 
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pollution concentration which originates from the dwelling sector (1 unit) and the storm 
waters ( also 1 unit). The Local Government abatement facilities are (obviously) non 
existent. 

1 4.6457 1 552s.3o9 1 o I o 1 

Table XII: Government initial conditions. 

5.3 Satisfying taxing and abatement options 

Here we compute the agents' reaction to a range of tax values. The Local Government 
is supposed to the make a political decision as to what r is to be applied, basing its 
judgemtent on the provided pollution concentration and "prosperity" values. 

Here, for simplicity we assume that options of building the common pool abatement 
facilities are not available for the Local Government. In other words, LG is interested in 
the agents' abatement only. Figure 3 shows what the expected results of raising the taxes 
are. We see the pollution concetration §. decreases albeit very slowly from 4.6457 to 4.6394 

while r raises from 0 to 1. Abatement facilities W, built from the middle ragne of r do 
not seem to contain a substantial amount of pollution. However, applying r > 1 (which 
satisfies the condition r > d1 ,2 , where dis the price of the abatement effort) motivates the 
agents to abate "instantaneously": 12.1 , 12.2 "" 1 i.e., sufficiently to diminish the pollution 
concentration to the base level. This environmental improvement is associated with a 20 
- 25 % drop in the agents' outputs, profits and the regional "prosperity". 

6 Concluding remarks 

In this paper, we presented a comprehensive model of municipal effluent management 
which resulted in a hierarchical game with a Nash equilibrium at the lower level. We 
solved this game by indicating a satisfactory solution obtainable through the use of a 
Decision Support Tool. That approach can be used to resolve other conflict problems with 
hierarchy and multiple agents. 

Control-through-levies is a market oriented method of compeling economic agents to 
adhere to environmental standards. Arriving at an acceptable tax through the DST means 
that the authority gets acquainted with a range of feasible taxing options, each implying 
a different trade-off between the econolnic and environmental indicators. Through the use 
of the DST, the authority can establish what econolnic indicators are relevant to desired 
environmental standards. Also, enforcing non-feasible standards can be avoided. 

We will not repeat the economic interpretations of Sections 4.2.4 and 4.2.7 here. How­
ever, one qualitative result of importance for the regional abatement services planning is 
worth quoting. The linearity of the abatement effort cost function results in a bang-bang 
type of optimal k_. As the linearity of this function seems plausible ( two track sludge 
loads probably cost twice as much as a one track load), so does the result. Therefore, the 
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Figure 3: The tax and reactions. 

Regional Government should expect that the demand for the abatement services will raise 
sharply, after a certain value of T has been reached. 

Finally, in the course of dicussining the analytical and numerical solution concepts, in 
particular in Section 3, we identified several issues which in this paper we were able to 
treat intuitivly rather than with full mathematical rigour. We list them here as topics for 
further research. 

• Continuity of a Nash equilibirium in dynamic games with discounting. 

• Easily applicable turnpike equilibrium suffucient conditions. 

• Easily applicable turnpike equilibrium necessary conditons. 
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Appendix 

A Existence and uniqueness of the Nash equilibrium 

We cite the relevant definitions and results of (22]. 

31 

Let i = 1, 2, .. . N be players in a game, where ,ri(Vi, ... , Vi) are the profit functions 
to be maximised through v; which is a strategy of player i. 

Theorem 1 Suppose that 11"i(V), V = (Vi, ... , Vn) is continuous in V and concave in v;, 
furthermore, let 

,ri(V;, V_i)-, -oo as [V;[-, oo VV_;, i = 1, ... N. 

then a Nash equilibrium point exists. 

To obtain uniqueness of an equilibrium we need a stronger condition. Denote p(V, r ), 
r E lR n, r; 2'. O, Vi the "combined payoff" as 

N 

p(V,r) = Lri,ri(V), (66) 
i=l 

and g(V, r) the pseudo-gradient of p(V, r), 

g(V, r) = (67) 

8,rN(V) 
Tn 8VN 

Definition 1 The function p(V, r) will be called diagonally strictly concave in V, if for 
every V = (Vi, Vi, ... , Vn) and V' = (V{, V2, ... , V~), V1 , Vi E IR, and fixed r E 1Il+ we 
have 

(V - V'f g(V', r) + (V' - V)g(V, r) > 0, 

where T means transposition. 

Lemma 2 A sufficient condition that p(V, r) be diagonally strictly concave in V and fixed 
r > 0 is that the ''pseudo-Hessian" symmetric matrix 

1i = G(V, r) + GT(V, r) 

be negative definite in V. Here the matrix G(V, r) is the Jacobian with respect to V of 
p(V,r). 

Theorem 2 If p(V, r) is diagonally strictly concave for some r E 1Il+ \ {O}, then the Nash 
equilibrium point is unique. 
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B Extensions 

We present two lemmas useful for the proof of uniqueness of the equilibrium. 

Lemma 3 Consider two pairs of the payoff functions (ir}, ir2) and (irf, ir2). Assume either 
pair satisfies the property of strict diagonal concavity. Define a new payoff function ir1 of 
the first player in the following way: 

(v; V.) - { ir}(½, Vz), for Vi $ vr 
ir1 1, 2 - 2 (V V. ) fi TT < ucr 7r1 1, 2 , or vi _ v1 

(68) 

and suppose that ir1 is continuously differentiable at V{' for all Vz, and that the following 
property holds: 

~~ (V1, Vz);::: ~~ (V1, Vz), for½$ V{r. (69) 

Then the property of strict diagonal concavity holds for the payoff pair (ir1, ir2). 

Proof: Let V = (½, Vz) and V' = (V{, V{) be two pairs of strategies. We must verify 
that the following property is satisfied: 

(V - V'f g(,..,,,..2 )(V1
) + (V' - V)g(,..,,,..2 )(V) > 0 (70) 

g(,..,,,..2 )(V) is the pseudo gradient of (ir1,ir2), i.e. 

( ) - ( W,(½, Vz) ) 
g(.-,,.-2) V - £2'2.(V V.) . 

8V2 1, 2 

Because each pair of the payoff functions ( ir}, ir2) and ( ir'f, ir2) possesses the property of 
strict diagonal concavity, to prove the validity of inequality (70), it is sufficient to check 
it for V and V' located at the opposite sides of V{' i.e., such that ½ $ V{' $ V{. We get 

(V - V')g(,..,,,..2 )(V') + (V' - V)g(,c,,.-2 )(V) = 

(V - V')g(.-;,.-2 )(V') + (V' - V)g(.-;,.-2 )(V) + (V{ - ½) ( ~~ (½, Vz)- ~~ (½, Vz)) > 0 

which terminates the proof. 
• 

Lemma 4 Let ir}, irf be two payoff functions of the first player and ir½, ir? of the second 
player. Assume the pairs ( irf, irD, i,j = l, 2 satisfy the strict concavity assumption. Define 
the i-th player's (i = l, 2} payoff function, ir, as 

ir;(½, Vz) = { irt((v;V1, V.V.2)), i!f!: $ VV;:: 
7ri 1, 2 ' z Vi > i 

and suppose that irf are such that ir1 and ir2 are continuously differentiable, that the pairs 
of payoff functions (iri,ir~), i,j = 1,2 have the strict diagonal concavity property and 
that the following two inequalities, for i = l, 2, hold: 

!j (½, Vz);::: !7. (½, Vz), for V; $ V;cr (71) 

Then the pair of payoffs ( ir1, ir2) satisfies the strict diagonal concavity property. 

Proof: Use the previous lemma twice. 
• 



----- _________________ ,, ----------------------

September 4, 1996 33 

References 

[l] "Assessment of the effects of the discharge of wastewater from the Waikanae sewage 
treatment plant on the environment", 1992. Prepared for Kapiti Coast District Coun­
cil. Kingett Mitchell & Associates, Environmental Consultants. September 1992. 

[2] BA§AR T. & G.J. OLSDER, 1982, Dynamic Noncooperative Game Theory, 
Academic Press, London/New York. 

[3] BURKHARD, L. P. & JENSON, J. J., 1993, in a Municipal Effluent", Arch. Environ. 
Contam. Toxicol., 25, 506-515. 

[4] CARLSON, D., A. HAURIE, 1996, "A turnpike Theory for Infinite Horizon Open­
Loop Competitive Processes', SIAM J. Control & Optimization, .. , ... - .... [ COM­
PLETE] 

[5] DOMENICO P.A. & F.W. SCHWARZ, 1990, Physical and Chemical Hydrogeol­
ogy, J. Wiley & Sons, New York etc .. 

[6] BEAVIS, B., I.M. DOBBS, 1986, "The Dynamics of Optimal Environmental Regu­
lation", Journal of Economic Dynamics and Control, 10, 415-423. 

[7] CLEMHOUT, S., H.Y. WAN JR., 1985, "Dynamic Common Property Resources and 
Environmental Problems", JOTA, vol. 46, no 4, 471-481. 

[8] FEINSTEIN C.D. & D.G. LUENBERGER, 1981, "Analysis of Asymptotic Behavior of 
Optimal Control Trajectories: the Implicit Programming Problem", SIAM J. Control 
& Optimization, 19, 561-585. 

[9] HARTIGAN, J. & GEORGE, T., 1992, "The Rain That's Plain Goes Mainly Down 
The Drain", American City & County, September, 22-34. 

[10] HAURIE A., 1993, Environmental Coordination in Dynamic Oligopolistic Markets, 
Group Decision and Negotiation, to appear. 

[11] HAURIE A. & KRAWCZYK J., 1995, A Game Theoretic Model of River Basin En­
vironmental Management of Identifiable Source Pollution, Working Paper 14/94 of 
the Graduate School of Business and Government Management, Victoria University 
of Wellington, 24 pages. 

[12] HAURIE A., KRAWCZYK J., ROCHE M., 1994, "Monitoring Cooperative Equilibria 
in a Stochastic Differential Games", JOTA, vol 81, April, 73-95. 

[13] HAURIE A., & ROCHE M., ·1994, "Turnpikes and Computation of Piecewise Open­
Loop Equilibria in Stochastic Deifferential Games", JEDC, vol , , . 

[14] HAURIE A. & ZACCOUR G., 1995, Differential Games Models of Global En­
vironmental Management, Annals of Dynamic Games, (2), volume title: Game­
Theoretic Models of the Environment. Editors: Carrara, C. and Filar J. A. 

[15] KANTARDIJEFF, A & JONES, J.P., 1993, "Removal of toxicity and some noncon­
ventional pollutants by a dual power multicellular lagoon system", Water Environ­
ment Research, 65, (7), 819-826. 



September 4, 1996 34 

(16] KRAWCZYK, J.B., 1995, "Management of Effluent Discharges: A Dynamic Game 
Model", Annals of Dynamic Games, (2), volume title: Game-Theoretic Models 
of the Environment. Editors: Carraro, C. and Filar J. A., 337-356. 

(17] KRAWCZYK, J.B., 1996, "Modelling and Economics of Effluent Management in Mu­
nicipalities", In: Modelling Change in Integrated Economic and Environmental Systems. 
Editors: S. Mahendrarajah, A.J. Jakeman and M.J. McAleer, J. Wiley & Sons, 
forthcoming. 

(18] KRAWCZYK, J.B., 1995, "Controlling a Dam to Environmentally Acceptable Stan­
dards Through the Use of a Decision Support Tool", Environmental and Resource 
Economics, 5(3), 1-18. 

(19] KRAWCZYK, J.B., & G. ZACCOUR, 1995, "Pollution Management Through Levies 
and Subsidies", presented at the 1995 IFAC/IFORS/SEDC Symposium on Na­
tional & Regional Economies, Gold Coast. 

(20] KUSHNER, H.J., 1990, "Numerical Methods for Stochastic Control Problems in 
Continuous Time", SIAM J. Control and Optimisation, vol. 28, No 5, 999-1048. 

(21] MARTIN, W.E., R.H. PATRICK & B. TOLWINSKI, 1993, "A Dynamic Game of 
a Trans boundary Pollutant with Asymmetric Players", Journal of Environmental 
Economics and Management, vol. 24, 1-12. 

(22] ROSEN J.B., 1965, "Existence and uniqueness of equilibrium points for concave 
N-person games", Econometrica, 520-534. 

(23] RUBIN, D. H., POWERS M. B., SETZER s., BRADFORD H., 1992, "U.S. Faces a 
Draining Experience", ENR, vol. 229, Iss: 12, September, 34-38. 

(24] SHALL, J., GELLER, R. & HORTON, N., 1993, "New Generation of Solid Waste 
Plants", BioCycle, January, 46-51. 

[25] VAN DER PLOEG & DE ZEEUW A., 1992, "International Aspects of Pollution Con­
trol", Environmental and resource Economics, 2, 117-139. 

(26] B. TOLWINSKI, B. M. KENT & D.J. SHIELDS, 1995 Models for Conflict Resolution 
in Ecosystem Management Technical Report, Rocky Mountain Forest and Range 
Experiment Station, Fort Collins, CO. 

(27] VAN ORDEN, G. N. & UcHRIN, C. G., 1993, "The study of dissolved oxygen 
dynamics in the Whippany Rever, New Jersey using the QUAL2E model", Ecological 
Modelling, 70, 1-17. 

(28] XEPAPEDAS, A.P., 1992, "Environmental Policy Design and Dynamic Non point­
Source Pollution", Journal of Environmental Economics and Management, vol. 23, 
no 1, 22-39. 



THE GSBGM WORKING PAPER SERIES 

The main purpose of this series is to reach a wide audience quickly for feedback on recently completed 
or in progress research. All papers are reviewed before publication. 

A full catalogue with abstracts and details of other publications is available, for enquires and to be 
included in our distribution list, write to: 

Monica Cartner 
Research Progrannnes Co-ordinator, 
GSBGM, Victoria University of Wellington, 
PO Box 600, Wellington, New Zealand 

Tel: (04) 495 5085; Fax: (04) 496 5454 

Code in bold denotes order number, eg: WP 1/91 

--- Group denotes the author's academic discipline Group (note this does not necessarily define the 
subject matter, as staff's interests may not be confined to the subjects they teach). 

1990 - 1993 titles available on request. 

WP 1/95 Management Group 
Gilbertson, D.K., Wright, H., Yska, G, Gilbertson, D.W. and 1994 Students of MGMT 306 'Kiwi 
entrepreneurs: A study.' 
WP 2/95 Management Group 
Cavana, R. 'Policy issues related to coastal and international shipping in New Zealand' 

Shipping policy issues. Transportant: The Journal of the Chartered Institute of Transport in 
New Zealand 1995, Vol 25, No 2, 17-19. 

WP 3/95 Information Systems Group 
Bonner, Marcus 'On seeing information systems as bridges' 
WP 4/95 Management Group 
Cavana, Bob, Rob Crozier, Barrie Davis and Perumal Pillai 'A survey of academic staff attitudes 
towards the system of academic titles used in New Zealand universities' 

Attitudes Towards Reclassifying Academic Titles in New Zealand Universities. The Journal of 
Higher Education Policy and Management 1996, Vo! 18, No 1. 

WP 5/95 Econometrics Group 
Krawczyk, J.B. and G. Zaccour 'Pollution management through levies and subsidies' 
WP 6/95 Marketing Group 
Asbill, Nicholas and Malcolm Wright 'Marketing information systems - A review and 
reconceptulisation' 
WP 7 /95 Information Systems Group 
Casey, Mary-Ellen 'An exploratory study into the use of information technology as an important 
enabler of organisational differentiation in the financial sector' 
WP 8/95 Economics Group 
Boles de Boer, David and Lewis Evans 'The economic efficiency of teleconnnunications in a 
deregulated market: the case of New Zealand' 
WP 9/95 Management Group 
Mabin, Victoria J. 'Using spreadsheet optimisation facilities as a decision aid within the theory of 
constraints framework' 
WP 10/95 Economics Group 
M. Khaled, M.D. Adams and M. Pickford 'Estimates of scale and scope economies in the New 
Zealand life insurance industry.' 

WP 11/95 Economics Group 
John A. Carlson and Robert A. Buckle 'Price duration with two-sided pricing rules' 

In Karl Heinrich Oppenlaender and Guenter Poser (Eds.) Business Cycle Surveys: 
Forecasting Issues and Methodological Aspects. Aldershot, Avebury. 1996: 101-118. 



WP 12/95 Economics Group 
Ganesh Nana 'Developing a multi-sectoral CGE model of the New Zeland economy.' 
WP 13/95 Money and Finance Gronp and Economics Group 
Stephen Burnell, Lewis Evans and Shuntian Yao 'Network games: The optimal network contract 
and the efficiency of bypass in oligopolistic network industries under light regulation' 
WP 14/95 Economic History Group 
Gordon Boyce 'The Nickel Syndicate, 1901 - 1939' 
WP 15/95 Money and Finance Group 
Jan Whitwell 'Monetary disinflation with inflation inertia: Central bank autonomy in an open 
economy1 

WP 16/95 Economics Group 
Emery, H. Daniel V. Gordon and Doug McClintock 'On the efficacy of construction site safety 
inspections.' 
WP 17/95 Economics Group 
Ganesh Nana 'An inter-temporal CGE model with fiscal and sector balances' 
WP 18/95 Economics Group 
Jie Zhang 'Government debt, human capital, and endogenous growth' 
WP 19/95 Accountancy Group 
Zahirul Hoque and Manzurul Alam 'Quality management and accounting in a New Zealand service 
organisation: Towards an institutional perspective on management accounting' 
WP 20/95 Economics Group 
Paul Calco!! 'Can we test for supplier-induced demand by comparing informed with uninformed 
consumers? 1 

WP 1/96 Management Group 
M.W. Lee, J. Bennett, R.J. Taylor and R.Y. Cavana 'A dynamic simulation model for possum and gorse 
control on a farm woodlot.' 
WP 2/96 Economics Group 
Jie Zhang 'Optimal public investments in education, and endogenous growth' 
WP 3/96 Economics Group 
Paul Tompkinson 'The benefits of tariff reductions in the presence of psychological adjustments costs.' 
WP 4/96 Economics Group 
Shuntian Yao 'A note on the decision of a sales maximizer in response to the increase of per unit cost.' 
WP5/96 Economics Group 
Karen Palmer and Margaret Walls 'Optimal policies for solid waste disposal: taxes, subsidies and 
standards' 
WP6/96 Economics Group 
Margaret Walls and Jean Hanson 'Distributional impacts of an environmental tax shift: the case of 
motor vehicle emission taxes.' 
WP7/96 Economics Group 
Lloyd S Shapley and Shuntian Yao 'Dynamic properties of the Nash equilibrium.' 
WP 8/96 Accountancy Group 
Kamran Ahmed, Kazi Feroz Alam and Manzurul Alam 'An empirical study of factors affecting 
accounting students' career choice in New Zealand' 
WP9/96 Accountancy Group 
Andrew MC Smith and Paul V Dunmore 'Tax Avoidance and the Financial Structures of Non -Resident 
Controlled Companies in New Zealand' 
WPl0/96 
L Fraser Jackson. Relative Prices and Inflation.' 

Econometrics Group 

WPll/96 Public Policy Group 
Robert Gregory. 'Reserve Bank independence, political responsibility, and the goals of anti-democratic 
policy: A political 'Cri de Coeur' in response to an economist's perspective. 
WP12/96 Economics Group 
Robert A. Buckle and John A. Carlson. 'Inflation and asymetric price adjustment.' 
WP13/96 Econometrics Group 
J.B. Krawczyk, 0. Pourtallier and M. Tidball. 'Modelling and solution to the municipal effluent 
management problem. 


