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The Cross-Sectional Distributions of Financial Ratios: 
Theory, Evidence, and Implications 

Abstract 

Simple assumptions about the joint distribution of two accounting variables lead to the 
conclusion that the tails of the distributions of financial ratios follow power-law rather 
than exponential forms. Algebraic constraints on the accounting variables are reflected 
in different forms of the ratio tail distributions. The conclusions are largely supported 
for twelve ratios from large samples of U.S. manufacturers during 1974-1992; a shift 
towards greater long-tailedness occurred around 1980. Several statistical techniques 
which have been commonly performed using financial ratios are unsound because 
ratios have such long tails. Redefinitions of most financial ratios are proposed which 
may mitigate the problems. 

KEYWORDS: ratio; distribution; Hill statistic. 
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1. Introduction 

Empirical research on the cross-sectional statistical distributions of financial ratios has · 
not yet led to a coherent model for the distributions. Deakin [1976] reported that 
financial ratios are not normally distributed, the distributions being flat, skewed, or 
dominated by outliers. Square-root or logarithmic transformations sometimes made the 
distributions more nearly normal, but neither transformation was consistently superior 
to the other. Frecka and Hopwood [1983] started from a gamma distribution as their 
underlying model, but rejected that model (and an equivalent normal model for the 
square root of the ratio). After deleting data points that were identified as outliers 
relative to their model, they found that the remaining data passed tests for normality in 
about half of the samples; that finding, however, offers no understanding of the 
distribution of the population itself. McLeay [1986] showed that a t distribution was a 
better model than the normal distribution for the three ratios that he studied, but did 
not perform a goodness-of-fit test to see if the t distribution was itself adequate. 

It is important for the methodology of many accounting studies to be able to describe 
ratio distributions with confidence. Frecka and Hopwood's [1983] evidence on outliers 
points to a failure to understand the tails of the distribution in particular. Long
tailedness of a distribution typically causes the most severe problems with conventional 
statistical methods. Researchers have used various procedures to protect against these 
problems: Kennedy et al. [1992] list the use of logarithmic or square-root 
transformations, winsorizing, trimming, and (in many studies) ignoring the problem. It 
is not possible to determine the performance of these procedures without knowing 
something about the distribution of the population to which they are to be applied. 

The essential contribution of this paper is to present a simplified theory which makes 
testable predictions about the shapes of the tails of the cross-sectional distribution 
functions for financial ratios. The theory is based on the observation that any ratio is 
formed by dividing one financial variable by another, so that the distribution of the 
ratio can be inferred from the joint distribution of the numerator and denominator 
variables. Five classes of financial ratios are identified, based on different algebraic 
constraints on the numerator and denominator. A fairly general assumption about the 
joint distribution function allows specific conclusions to be drawn about the tails of the 
distribution of ratios in each class. 

The theory is incomplete, in that it does not lead to a description of the entire 
distribution; on the other hand, the tails are the most important parts of the distribution 
for analyzing certain commonly used methodologies. The theory does not make 
particular assumptions about accounting rules or about the economic and technological 
environment, and so its predictions should be capable of application to firms in any 
industry in any country at any time. 

When the value of a ratio is unbounded, the density function is predicted to fall off in 
the tail according to an inverse-power law. When the value is bounded (as for a ratio 
which can lie only between O and 1 ), the density function is predicted to follow a 
power law close to the bounds. Thus, most financial ratios have much longer tails than 
do the normal distribution, the gamma distribution, and others with exponentially 
decaying tails. The theory also predicts certain relations between the exponents 
applying to different ratio tails. 
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I test the predictions of the theory against ratios for US manufacturing firms for the 
years 1974-1992. In the great majority of cases, the data bear out the predicted fonns 
of the tails; in several cases, the tail extends virtually to the median without a 
detectable departure from the predicted form. The predicted relations between the 
exponents of different ratios are less well supported. It appears that the theory has 
substantial explanatory power, but that further refinement is needed. 

However, the finding that power-law tails are usually appropriate, together with 
empirical estimates of the exponents involved, justify the following important 
methodological conclusions. 

1 For some ratios, the population mean does not exist; for many, the population 
variance is infinite; for most, the population skewness and kurtosis are infinite. 
When a population moment is infinite or undefined, the corresponding sample 
statistic is inconsistent and meaningless (except as a trivial description of the 
particular sample). 

2 The distributional assumptions of multiple discriminant analysis are 
fundamentally unreasonable when financial ratios are the discriminating 
variables. 

3 Linear or quadratic combinations of financial ratios cannot generally be 
optimal predictors (of financial distress, for example). 

4 The usual theory behind factor analysis collapses for sets of financial ratios. 
The results of factor studies are at present uninterpretable. 

5 Observed outliers in financial ratios are one manifestation of a non-normality 
which has much deeper roots. Deleting the outliers and using the trimmed 
sample is not valid unless the entire procedure is known to be robust under 
the true population distribution. 

6 It is very doubtful that some commonly used statistical procedures are robust 
when financial ratios are used. Light trimming procedures such as outlier 
deletion are known to give poor location estimates for distributions which are 
highly skewed and have very long tails, which is exactly the case of financial 
ratios; thus trimming or outlier deletion cannot be simply assumed to be 
robust. Simulation experiments for the effects of non-normality in 
classification studies have found poor robustness, even though these studies 
have been very timid in the nature of the non-normality that they considered. 
Empirical studies based on the jackknife or other resampling procedures are 
not a sound guide to the true robustness of many techniques, because they 
cannot explore an important region of the sample space. 

7 None of the Box-Cox family of transformations (which includes the square
root, cube-root, and logarithmic transformations) can transform financial 
ratios to normality. The logarithmic transformation is to be preferred because 
it produces a short-tailed (but non-normal) distribution. 

These difficulties apply to all ratios except those which are bounded on both sides 
(usually between O and 1), such as the ratio of current assets to total assets. The 
distributions of such ratios are not normal, but all of their moments are finite. Thus, the 
non-normality should be much less severe in its consequences. 
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I propose below a simple set of redefinitions of almost any other ratio such that the 
redefined ratio is guaranteed to be bounded. The redefined ratios may be used instead 
of the conventional forms, with equivalent information content and much less reason 
for concern about unsafe inference or unintetpretable results.1 The only ratios which 
cannot be redefined are those for which the denominator may take either sign; the use 
of such a ratio may constitute model mis-specification, which requires correction rather 
than statistical accommodation. 

The remainder of the paper is organized as follows. In Section 2 I present the theory 
and describe the five classes of financial ratio. In Section 3 I describe an estimator due 
to Hill [1975], and use it to test the predictions of the theory for a set of twelve ratios 
for US manufacturing firms. In Section 4 I draw out the methodological consequences 
of the theory and present redefinitions of financial ratios in order to mitigate the 
problems. In Section 5, I suggest some directions for further research. 

2. A Partial Theory of the Cross-Sectional Distribution 

Consider a financial ratio z = x/y. The values of the numerator and denominator 
variables for any firm depend upon the size of the firm, its history (both management 
decisions and the external environment), and its choices of accounting policy. Cross
sectionally in a population of firms,2 there is thus a joint distribution of x and y, from 
which the ratio z is formed as a quotient. 

In general, if variables x and y (with y being restricted to positive values) have a joint 

distribution with probability density f(x,y), the density function of the quotient z = x/y 
is3 

f(z) = J Y f(zy,y) dy. 

0 

(1) 

If y can take either sign, then the cases y>O and y<O must be treated separately and the 
results combined. 

The distribution of the ratio z thus depends on the complete joint probability density 
functionf(x,y). To make progress, it must be recognized thatf(x,y) is nonzero only on 
a domain which depends on the nature of the algebraic restrictions on x and y. Five 
classes of ratio appear to be of imponance for financial ratios; they are defined in 
Figure I, which illustrates the domains and gives an example of a ratio in each class. 

For ratios in classes 1, 3, and 5,. it will be assumed that the function f(x,y) can be 
expressed in the form 

• 

1 If a theory specifies a particular fonn of a ratio, then a redefined version may not be an acceptable 
proxy. That situation has been rare in practice. 
2 The nature of the population is unspecified. It might comprise one or more industries, one or more 
countries, and a certain time period. For any such definition, there will be a corresponding joint 
distribution function of x and y. 

3 Kendall and Stuart [1977, p. 282] give the result for a quotient of independent variables, but the 
extension of their proof to the general case is immediate. 
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f(x,y) = :xa yh g(x,y) (2) 

where a and b are non-negative constants, g(x,O) and g(O,y) are nonzero, and g(x,y) 
can be represented by Taylor series about x = 0 and about y = 0 whose convergence 
properties justify the manipulations in the Appendix. 4.S These conditions are not very 
restrictive, although it is possible to construct functions which do not satisfy them 
Typically, a probability density function with no point masses and no discontinuities 
will satisfy the conditions, unless f(x,y) tends to zero as x • 0 (y • 0) faster than any 
power of x (y), or unless a is a function of y or b is a function of x. 

Ratios in classes 2 and 4 can be transformed to class 1 by a suitable change of 
variables, so an equivalent assumption need not be stated for classes 2 and 4. 

This assumption suffices to establish the following propositions, which are proved in 
the Appendix: 

Proposition 1. The probability density and cumulative distribution functions of a ratio 
z = x/y have tails which are asymptotically of the forms shown in 
Table 1 for the appropriate class of ratio. 

Proposition 2. The values of the constants a and b which appear in Table 1 are 
associated with the numerator or denominator variable alone, where an 
association is shown in the Table. That is, if a particular variable (say, 
CA) appears in several ratios, the exponent associated with CA will 
have the same value in each of those ratios. 

These propositions imply that all financial ratio distributions will have power-law tails 
(rather than exponential tails such as those of the normal or gamma distributions). The 
exponents for a particular ratio have accounting and economic content, and may vary 
from one ratio to another and from one population of firms to another. However, there 
are specific quantitative relationships between the exponents for different ratios. 

Since the propositions are asymptotic ones, the rapidity of convergence will be of great 
imponance. If convergence is slow, the propositions will be nearly true only for large 
values of the ratio. Correspondingly, very large samples may be required for the tails to 
show the predicted behavior. This fact, rather than the assumptions leading to equation 
(2), is likely to be the serious limitation on the model. 

If the propositions are correct (that is, if the underlying assumptions are descriptively 
valid), they ·have significant methodological consequences. Before exploring these, it is 
desirable to submit the propositions themselves to empirical testing. 

4 The motivation for requiring equation (2) rather than assuming that fl.x,y) itself has a Taylor 
expansion is that, although f(.x,y) must approach zero on the domain boundaries if it is continuous 
there, it need not do so linearly. Thus, fl.x,y) - --fx g(y) as x • 0 is quite reasonable behavior for a 
Class l ratio, but such anj(x,y) does not have a Taylor expansion aboutx = 0. 

5 Since x = 0 is not part of the domain boundary for a Class 3 ratio,f(.O,y) need not be zero and so a 
should be zero. Similarly, both a and b should be zero for a Class 5 ratio. 
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3. Evidence from US Manufacturing Firms 

A. Hill's Estimator 

Standard tests for goodness of fit cannot easily be used for testing these propositions, 
because the propositions do not specify the complete distribution. However, a statistic 
due to Hill [1975] may be used to determine whether a distribution has power-law 
tails, and if so to find the length of the tails and to estimate the exponent 

Suppose that a sample of size n comes from a distribution for which 

F(z) = 1 - k z-c (3) 

for z ;:: D; F(z) is unspecified for z <D. Here k, c and D are positive constants and D 
is known. Sort the sample to give the order statistics z(l) ;:: z(2) ;:: ••. ;:: Z(n) (this is the 

reverse of the usual ordering, but is convenient here). Define Vi= i /n[zci)/z(i+l)] for 
i = 1, 2, ... , r, conditional on Z(r+l) ;:: D. Then Hill (1975) showed that the Vi are 

independent exponentially distributed random variables with mean 1/c, and that the 
conditional maximum-likelihood estimator of c is 

r 
f:=r/I,vi (4) 

i=l 

Hill's estimator f: is known to be consistent and asymptotically normal (as n • 00 and 
r • 00 with r/n • 0) in more general situations, notably when (3) is asymptotically 
true as z • 00 without being exactly true for any finite z 6• 

In practice, D is unknown, but there is a rather vaguely defined tail region in which (3) 
may be a good approximation. Hill suggested exploiting the behavior of the Vi in this 
situation. If a goodness-of-fit test shows that all of the Vi for i :s; r can have been drawn 
from a common exponential distribution, then one may accept that the z(i) have all been 
drawn from the tail region, i.e. that Z(r+l) ;::D. 

Hill's procedure can thus be adapted to our problem. The behavior of the Vi values and 
the estimates f: are examined for various values of r, to decide whether equation (3) 
appears valid for a reasonably long tail segment. While (3) holds, the estimates f: will 
be independent of rand the Vi will be i.i.d. exponential. Dunmore [1993] found that it 
is commonly more powerful to examine a graph of f: against r, to determine whether 
there exists a tail region over which f: is approximately constant, rather than to test 
how many Vi appear to be i.i.d. exponential. 7 

Hill's procedure may be applied to each of the other forms of power-law tail shown in 
Table 1; all that is required is an appropriate redefinition of Vi· 

6 See Csllrgo et al. (1985], Goldie and Smith [1987], and Hsing (1991] for various extensions of 
Hill's result. 

7 This implies that there exists a formal test for the length of the tail which is more powerful than 
Hill's suggested procedure. However, the nature of that test is unknown. 
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B. Examples and Limitations of Hill's Estimator 

Because Hill's estimator is unfamiliar, I present some examples of its behavior in 
known situations: a distribution given exactly by (3); the normal distribution, as a 
typical short-tailed distribution; the normal distribution contaminated by outliers; and 
the t distribution with two degrees of freedom, for which (3) is only asymptotically 
valid. These examples provide reference points for examining actual financial ratios. 

Figure 2 presents Hill estimates for the left and right tails of the distribution 

{ 
0.6 z2 · 

F(z) = 1-0.4 z-3 
0.::;z.::; 1 
z;::1 

(5) 

based on a sample of 3,000 points, which is similar to the sample sizes in the empirical 
work. The vertical axis displays the Hill estimate, which should be 2 for the left tail and 
3 for the right tail. The bottom horizontal axis records the values of r and the 
corresponding values of z for the left tail; the scale for z is nonlinear. The top 
horizontal axis records r and z for the right tail, in reverse order so that the tip of the 
right tail is at the right edge of the graph. The solid line and the dashed line show the 
Hill estimates for the left and right tails respectively. The squares and crosses represent 
"local" Hill estimates based on 99-point moving averages, defined by 

r+49 
~,=99 j LV; (6) 

i=r--49 

The local estimates indicate the behavior of the tail around the point shown, while the 
Hill estimate ~ captures the average behavior from the point r to the tip of the tail. 
Local estimates are plotted every 100 points, so that they use non-overlapping data. 
The local estimates give a more rapid indication when there is a change in trend, but 
have higher variance: the standard error of the Hill estimate is about ~/--fr, while that of 
the local estimate is about 0.1 ~r 

Figure 2 clearly shows that the Hill estimates have the appropriate values and are 
independent of r for the tail sections plotted, when the assumed model is exactly true. 
Figure 3, in contrast, shows the very different behavior when the underlying 
distribution is normal, i.e. with exponentially varying tails. Since an exponential-type 
function tends to zero faster than any finite power, the Hill estimate becomes larger 
and larger towards the tips of the tails. There is no region where it is even roughly flat 

The case of a short-tailed distribution containing outliers is presented in Figure 4. The 
distribution is the "10% 1/U" distribution used by Andrews et al [1972], with about 
10% of the points coming from a much longer-tailed distribution. The data for the 
middle 90% of the sample is essentially normal, and the Hill estimate rises rapidly as in 
the normal case. This is particularly noticeable in the local estimates, which are less 
affected by what goes on in the tips of the tails. The last 150 or so points in each tail 
come mostly from the long-tailed component of the distribution; since smaller values of 
c in (3) correspond to longer tails, the Hill estimate falls sharply at the tips of the tails. 
A rising Hill estimate which abruptly falls near the tip suggests the presence of outliers 
in a shorter-tailed distribution, whereas a roughly flat graph suggests that equation (3) 
is a better model for describing the data. In practice, of course, there can be 
intermediate cases where it is unclear which description is better. 
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As a final example, Figure 5 is based on a t distribution with two degrees of freedom. 
The asymptotic distribution function is 

F(t) ~ 1 :... ½ r-2 + ¾ t---4 - ••• as t • oo (7) 

and so the Hill estimate should be 2. However, f: is not constant in Figure 5; instead, it 
falls slowly below 2 with increasing r. The reason is that the t---4 term in (7) cannot be 
neglected unless ltl is greater than about 4, and a sample of size 3,000 does not contain 
enough points with ltl > 4 to show a flat region in the graph. If equation (3) is only the 
leading term in an asymptotic expansion of F, then the Hill estimator is only 
asymptotically unbiased; a finite sample may be too small to reveal the asymptotic 
behavior. 

These examples show that the behavior of Hill's estimate may signal either that a 
sample is drawn from a long-tailed distribution such as (3), or that the distribution is 
essentially short-tailed with a longer-tailed component giving rise to outliers. However, 
if the sample is not large enough to reveal the asymptotic behavior of the tail of the 
distribution, the interpretation may be ambiguous and Hill's estimator may be biased 
Because of the need for judgrnent in interpreting the pattern shown by the graphs, I 
present below a complete set of empirical graphs for one year. 

C. The Empirical Sample 

I tested twelve ratios: eleven of these were the same as in the studies by Deakin [1976] 
and Frecka and Hopwood [1983], and I added Return on Equity to the set so as to 
include a ratio from Class 5. 

The sample covered the years 1974-1992, and comprised all U.S. manufacturing firms 
(SIC codes 2000-3999) for which data was available on Compustat in either the 
current or research files. If I could not compute a ratio because of missing data, I kept 
the firm in the sample for other ratios. Very rarely, I had to drop a ratio from a sample 
because its value was zero or infinite, so that V; could not be computed. 8 Table 2 lists 
the ratios and their definitions, and the largest and smallest sample sizes over the 
period. In a few cases, there is possible ambiguity about the definition of a ratio; since 
previous authors did not always describe the definitions that they used, there may be 
minor differences from those used here. The characteristics of ratios which I examine 
here should not be affected by . the precise definition. Conventional basic descriptive 
statistics are not presented because they are of no relevance to this study; indeed, as 
noted in Section 1, monient-based statistics may be purely sample-specific, not 
estimating any meaningful parameters of the underlying population. 

8 In some years, one firm in the sample had a negative value of Net Sales. I deleted these cases for 
ratios involving Net Sales, and treated Net Sales as being a variable which cannot be negative (i.e. as 
being a close approximation to Gross Sales). 
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D. The Empirical Shapes of Ratio Tails 

Graphs of the Hill estimates are presented for each of the twelve ratios for the year 
1992, so that the reader may assess the reasonableness of my interpretations. The 
graphs are representative of the study period generally, with the minor exceptions 
noted below. 

Current Assets/Sales (CNS, Figure 6, n = 2906). In the left tail, ~ and ~r rise steadily 
to about 4 near the tip. The behavior is like that of Figure 5, and suggests that the 
sample is not quite large enough to show the asymptotic behavior. In other years, this 
tail typically has a flat region extending to about r = 1000. The right tail is clearly long
tailed; the local estimate ~r suggests that the best description is that of a tail with ~ = 
0.9 until about r = 500. 

Quick Assets/Sales (QNS, Figure 7, n = 2934). The left tail is flat with~= 2.8 until 
about r = 700, after which the local estimate trends down. The behavior of the right 
tail is similar to that of CNS. 

Working Capital/Sales (WC/S, Figure 8, n = 2902). There are too few points in the left 
tail to allow any interpretation. The Hill estimate is only defined when Z(r) does not 
change sign, and the underlying model (3) does not allow z to change sign. The left tail 
of this sample therefore includes only 302 firms, those having negative values of 
Working Capital in 1992. The right tail estimates show a lot of scatter; the extreme 
300 or so points (the upper decile) appear to have~= 0.7. 

Current Ratio (CNCL, Figure 9, n = 2960). The left tail, particularly as shown by the 
local estimates, seems to be short-tailed with outliers. 9 The right tail is nearly flat, with 
~ = 1.5, until about r = 1500. Thus, this ratio has a power-law right tail which extends 
virtually down to the median without much change in behavior. The sudden rise at the 
tip of the tail does not appear in other years and is presumably a sampling fluctuation. 

Quick Ratio (QNCL, Figure 10, n = 2960). The left tail has a long flat region with 
~ = 1.9, plus some ~utliers. The right tail is nearly flat with~= 1.3; the rise at the tip of 
the tail does not appear in other years. 

Current Assets/Total Assets (CA/TA, Figure 11, n = 2960). The left tail is nearly flat 
with ~ = 2.3 until about the median. The right tail is nearly flat with ~ = 1.5. 

Quick Assets/Total Assets (QA/TA, Figure 12, n = 2991). Both tails seem to have a 
nearly linear trend, suggesting that the sample size is not large enough to expose the 
asymptotic behavior, but that the ratio does have power-law tails. 

Working Capital/Total Assets (WC/TA, Figure 13, n = 2963). The left tail has too few 
points for interpretation. The right tail is flat, with ~ = 2. 

9 The word "outlier" may seem inappropriate here, for the situation in which there are more 
companies than one would expect with current ratios between O and 0.1. Barnett and Lewis [1978, 
p. 4] define outliers as points which appear to be inconsistent with the remainder of the data. These 
companies are outliers in that sense, although their presence should not cause any statistical 
difficulties. If it had been conventional to use the current ratio in the equivalent form CL/CA, these 
companies would have had ratios greater than 10, and would have caused statistical problems. 
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Cash Flow/fotal Debt (CF/ID, Figure 14, n = 2659). The left tail has too few pointS 
for interpretation. The right tail is flat until about r = 1000, with f: z 0.7. 

Net Income/fotal Assets (Nl/fA, Figure 15, n = 3002). The left tail falls off linearly, 
suggesting that the sample size is not large enough to expose the asymptotic behavior, 
but that the ratio does have power-Jaw tails. The right tail appears to be short-tailed 
with outliers. 

Total Debt/fotal Assets (ID/fA, Figure 16, n = 2676). The left tail is flat, with f: z 

0.8. The right tail appears to be short-tailed with outliers. 

Return on Equity (NI/EQ, Figure 17, n = 3002). The left tail is flat, with f: z 1, until 

about r = 400. The right tail is flat, with f: z 1, until about r = 300. 

Of the 24 tails from these 12 ratios, then, 14 exhibit a tail region of at least 300 pointS 
which seems consistent with equation (3), and four more show a linear trend towards 
the tip, suggesting power-law behavior which is not fully displayed because the sample 
size is too small. In three cases, the best description appears to that the distribution is 
fundamentally short-tailed but with outliers. The remaining three cases have too little 
data to allow any conclusion to be drawn. The results for other years are similar, and 
so it appears that the prediction that ratios have power-law tails is borne out for most, 
but not all, financial ratios. 

E. The Values of the Exponents of Power-Law Tails 

Restricting attention now to the 18 ratio tails for which a power-law description seems 
appropriate, Figure 18 summarizes the estimates for the 19 years of the study. For each 
tail, the values plotted are the Hill estimates f: for r = 100, 200, 300, 500, and 1,000. 
When the values are very close together, the graph of f: against r is nearly flat until 
r = 1,000, indicating that the ratio has a power-law tail at least this Jong. When the 
values spread out in order, there is a linear trend, and the best (but possibly biased) 
estimate of the tail exponent is the value for r = 100, closest to the tip. 

Several features are apparent in Figure 18. First, the values for a given ratio vary only 
slowly from year to year. Second, the values differ between ratios, so that the values of 
a and b in equation (2) are not the same for all accounting variables. Third, there is a 
striking shift towards longer-tailedness for several ratios, which occurred over a period 
of a few years around 1980. The shift is not exactly contemporaneous for different 
ratios. 

Apparently, some economic or accounting change affected the financial structure of 
U.S. manufacturing firms at about that time, but it is not clear what kind of change 
would cause a shift to greater long-tailedness in several ratio distributions. · This is 
much subtler than a change in the location or dispersion of a distribution. The shift in 
tail exponents is not an artifact caused by any changes in Compustat's sample selection 
procedure: I found similar shiftS in the exponents when I repeated the calculations for 
CNS and CNCL using only firms which appeared in the Compustat file for every year 
from 1974 to 1992. 

-10-



Proposition 2 predicts cenain equalities between the exponents of different ratio tails. 
These are listed in Table 3 for the ratios under study, omitting those for which the 
power-law description seems invalid or there is insufficient data. It is obvious from 
Figure 18 that the exponents associated with CA are unequal, especially after 1980, 
and that those associated with QA are unequal. No statistical test is necessary to 
establish that the prediction fails for these ratios. However, the exponents associated 
with 1D appear nearly equal, those associated with S are all close together, which is 
especially striking because their values change substantially over time, and the two tails 
of NI/EQ appear to have exponents of about 1. 

As formal tests of the hypotheses that the exponents of the right tail of CF/ID and the 
left tail of 1D/fA are equal and that the exponent of each tail of NI/EQ is equal to 1, I 
performed paired t tests, 10 whose results are presented in Table 4. The values of ~ 
used in the test were for r = 100, since these should be least affected by bias if the 
sample size is not large enough. The only hypothesis rejected by the tests is that the 
exponent of the right tail of NI/EQ is equal to 1. Even in this case, the magnitude of 
the mean difference is less than 0.1. 

To test the hypothesis that the exponents associated with S are all equal, I performed a 
two-way analysis of variance, again using the Hill estimates for r = 100. The results are 
presented in Table 5. The hypothesis of equality is rejected at the 0.002 level; but the 
mean pairwise differences between the exponents in different tails are not more than 
0.16. 

F. Summary of the Empirical Evidence 

Two kinds of prediction are made by the theory: that ratio tails follow power-law 
distributions, and that there are cenain numerical equalities between the exponents. Of 
the 24 ratio tails examined, 18 appear to follow power-law distributions, three appear 
to follow shorter-tailed distributions but contain a fairly small number of outliers with 
unknown distributional properties, and three have too little data to admit of any 
conclusion. For the tails which do appear to follow power-law distributions, the 
estimated exponents are generally between about 1 and 3, or a little more for certain 
ratios, corresponding to values of a or b between about 0 and 2. The exponents do not 
change sharply from year to year, but several ratios showed a long-term change to 
smaller exponents (longer-tailed distributions) occurring around 1980. The equalities 
predicted by Proposition 2 can be rejected in most cases, but the departures from 
prediction are not large except for the tails associated with the variables CA and QA. 

It appears, then, that the theory has some substantial explanatory power, but that there 
is still much more to be understood about the nature of cross-sectional ratio 
distributions. However, the results seem to justify making methodological inferences 
from the theory. The next section of the paper draws these out. 

IO Under the null hypothesis, the Hill estimator is asymptotically normal. Thus a nonparametric test 
is not required. 
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4. Methodological Implications 

A. Population and Sample Moments of Financial Ratios 

If the distributions of financial ratios have the asymptotic behavior shown in Table 1, 
with values of a and b which are less than about 2, there are important consequences 
for the use and interpretation of ratios in Classes 1, 3, 4 and 5. These consequences 
can be sufficiently illustrated for a ratio in Class 1, and so the discussion will 
concentrate on that case. 

The population mean of the ratio z is given by 

E(z) = J zf(z) dz (8) 
0 

For z • co, the asymptotic behavior of the integrand is Boi-(b+l), so the integral 
converges only if b > 0. If b = o; the population mean is infinite. Assuming that the 
mean exists, the population variance is given by 

var z = J (z - E(z))2 f(z) dz (9) 

0 

and this integral converges only if b > l. If b s; 1, the population variance is infinite. 
Similarly, the population has infinite skewness or kurtosis if b s; 2 or b s; 3 
respectively. 

Of course, the mean and all higher moments for any finite sample from such a 
population must be finite. When the population parameter is infinite or undefined, the 
corresponding sample statistics behave inconsistently: the expected value and its 
variance both increase as the sample size increases. This explains the findings of Frecka 
and Hopwood [1983, Table 2] that the sample moments of ratio distributions show 
great instability from year to year. 

If the population mean does not exist, it is obviously impossible to draw inferences 
about its value. For example, Weetman and Gray [1991] define an index of 
'conservatism' for a country's accounting practices relative to the US. Their index is a 
Class 5 ratio, so that its mean presumably does not exist. Thus, hypotheses concerning 
whether the mean index is greater than or less than 1 (the US value) are not 
appropriate. Hypotheses concerning the median index are appropriate, however. 

If b s; 1, the population mean exists, but the Central Limit Theorem for the sampling 
distribution of the mean does not apply, because it requires that the population 
variance be finite. If b is not much greater than 1, the Central Limit Theorem applies, 
but convergence to the asymptotic limit will be very slow: sample-based estimates of 
the standard error of the mean will be greatly understated except in very large samples. 
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B. Multivariate Normality and Multiple Discriminant Analysis 

Multiple discriminant analysis has been largely replaced by probit and logit methods for 
financial distress prediction, but is still used in other types of classification studies. It 
requires two distributional assumptions: that the predictor variables are multivariate 
normal, and that their covariance matrices are equal for the various populations being 
classified. When the predictor variables are financial ratios with infinite variances, the 
covariance matrix contains infinite values; indeed, it may consist entirely of infinities. 
Thus, the assumptions of MDA are not matters that the empirical researcher should 
verify for his or her sample; they represent a fundamentally unreasonable description of 
the situation. 

The power of goodness-of-fit tests depends strongly on the sample size and the actual 
population distribution. Thus, moderate-sized samples of financial ratios may wrongly 
pass tests for univariate or multivariate normality.11 This is still more likely if several 
transformations are performed to see which transformation best improves the normality 
of the sample, or if the sample is trimmed or apparent outliers are deleted before use.12 

Whether the sample passes a test for normality, either before or after such treatment, is 
irrelevant to the issue: MDA requires that the populations have the prescribed 
properties. The theoretical model advanced here indicates that the populations do not 
have the required properties, and the properties of a particular sample do not alter that 
conclusion. 

C. Prediction Using Linear Combinations of Financial Ratios 

Linear combinations of financial ratios are often used to predict the classification of 
firms into two groups, such as bankrupt and nonbankrupt. A linear combination of 
variables minimizes the total cost of misclassification if the variables follow a 
multivariate normal distribution with the same covariance matrix for the two groups, 
even if the groups are of unequal size and the costs of Type I and Type II errors are 
unequal [Kendall et al. 1983, section 44.6]. If the variables do not follow a multivariate 
normal distribution, the optimal boundary separating the two groups need not be 
linear. 13 If the boundary is nonlinear in regions where the probability density is high, 
then linear combinations of the predictor variables are necessarily suboptimal 
predictors of group membership. 

11 Deakin [1976], Lee [1985] and Ezzamel and Mar-Molinero [1990] reported that normality was 
rejected less frequently in samples from single industries than in multi-industry samples. The theory 
presented here suggests that controlling for industry effects should have no effect on the general 
nature of the distribution, although it may affect the parameters. These authors did not control for 
sample size, and that by itself could account for their results. 

12 See Taffler [1982], Mutchler [1985], Hopwood et al. [1988], and Watson [1990] for examples of 
such procedures. 

13 The formula in the general case is given by equation (44.7) in Kendall et al. [1983]. 
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As a model for prediction using two Class 1 financial ratios, I computed the optimal 
boundaries between groups using two predictors of group membership which followed 
independent F distributions. Depending upon the distributional parameters and the 
relative cost of Type I and Type II errors, the optimal boundaries had a variety of 
shapes which were typically highly nonlinear. Thus it appears possible that linear 
combinations of financial ratios may be highly suboptimal predictors. This problem 
applies to logit and probit models as well as to discriminant analysis. 

D. Correlations and Factor Patterns Among Financial Ratios 

Much research with financial ratios has involved factor analysis, either to identify 
possibly important patterns in financial data or as a data reduction step so that 
identified factors may be used in subsequent analysis. Factor analysis normally begins 
with the Pearson correlation matrix (in some versions the covariance matrix is used). 
However, for a set of Class 1 financial ratios with b ~ I, the population covariance 
matrix contains infinities down the diagonal and perhaps elsewhere, and the correlation 
matrix does not exist. In any sample from such a population, of course, the covariance 
matrix is finite and the correlation matrix can be computed; thus, the data can be 
subjected to factor analysis. 

It is unclear how to interpret the results, however; they do not have the interpretation 
placed upon them in the factor-analysis literature. Further, it is not valid to assume that 
the factors so produced may be used as proxies for the variables which load on them. 
That assumption is usually justified by supposing that the factors represent latent or 
unobservable variables, which generate the observed variables as linear combinations. 
The factors may be inferred from a particular sample and, since these factors generate 
the observed variables, they may be used as data reduction tools in future studies with 
other samples. That view underlies all of the theory behind factor analysis.14 This paper 
emphasises that financial ratios must be thought of as being generated by division, and 
this view is not compatible with the latent-variable model. Thus, the theoretical 
justification for factor analysis is not applicable to financial ratios. 

There are, of course, many possible definitions of the correlation between two 
variables. It may be that some other correlation concept could be applied to financial 
ratios, and that factor analysis would give interpretable results using that correlation 
concept. However, the body of theory which would be necessary for that to happen 
does not now exist. 

14 If factors are being identified purely as a data reduction procedure within a single sample, as in 
Taffler [1982], no such view is required. However, if the population correlation matrix does not exist, 
there is no apparent reason for supposing that the sample correlation matrix is the right tool for 
identifying and removing redundant variables. 
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E. The Interpretation of Outliers 

There is a well-established link between the existence of extreme values in samples of 
financial ratios and the fact that those samples fail tests for normality. It has been 
inferred that non-normality is often the result of outliers [Frecka and Hopwood, 1983]. 
The theory presented here indicates that the causality runs the other way: the existence 
of outliers is one manifestation of a very deep-seated non-normality. For example, for 
each of the Class 1 ratios QNS, CNCL, or QNCL, the power-law tail is a good 
description of vinually the entire upper half of the distribution, not merely of a few 
extreme values. 

If a sample contains outliers which are unreasonable on the basis of some assumed 
probability model, there are two ways to proceed. One is to maintain the assumed 
model, and remove the outliers from the analysis on the grounds that they are not 
representative of the population or phenomenon that one is studying. The other is to 
decide that one's assumption rather than the data is defective, and adopt a more 
realistic model; this may perhaps lead to a decision that outlier deletion will form part 
of an analysis which will be valid under the more realistic model. Although each 
approach may involve outlier deletion, it is important to distinguish carefully between 
the two motivations, because they require different types of evidence if inferences from 
outlier-deleted data are to be accepted. 

If outlying values of financial ratios were caused by errors in the underlying data, there 
would be a clear case for correcting the errors if possible, and otherwise for deleting 
them. Also, if the outliers represented some identifiably different subpopulation, the 
entire subpopulation (not just the outliers) should be removed and treated separately15 

in order to improve the efficiency of the analysis. On the other hand, if the apparent 
outliers are consistent with, and emerge continuously from, the bulk of the distribution, 
then the assumed model should be abandoned, and statistical procedures adopted 
which perform satisfactorily under a more realistic model. These procedures might 
include trimming or outlier deletion as a first step, but the researcher must know the 
sampling distribution of the entire procedure under the realistic distributional model. In 
general, this is different from the sampling distribution under the originally assumed 
model; thus, results which are valid for samples from normal populations cannot be 
assumed to be valid in trimmed samples from non-normal populations. 

The theory of this paper leads to viewing "outlying" values as forming a natural part of 
a very long-tailed distribution, suggesting that maintaining the normality model and 
deleting or accommodating the outliers is not an appropriate response. Frecka and 
Hopwood [1983] point out that outliers arise from companies which have an unusually 
small denominator. However, small denominators merge imperceptibly into not-quite
so-small denominators and on into medium-sized denominators. There is no natural 
cutoff point; the entire ratio distribution has a severely non-normal shape. To make 
safe inferences from outlier-deleted data, it will be necessary to know the true 
population distribution and to study the robustness of outlier deletion theoretically and 
case by case. 

IS If the existence of a subpopulation is suspected but its members cannot be identified except by their 
appearance as outliers, then deleting the outliers approximates the effect of deleting the 
subpopulation. The approximation may or may not be a good one. 
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There may, of course, be outlying values even from a distribution as long-tailed as that 
given by equation (3). A very few points (less than 0.1 %) were deleted from the 
samples in the present study because the ratio value was infinite, which is not 
consistent with model (3). The issue must therefore be faced of whether to delete these 
firms or to alter the probability model again. I will suggest (below) a way of redefining 
the ratios that will allow safer analysis of samples which include even these infinite 
outliers. 

F. Robustness 

Outlier deletion may be regarded as an adaptive trimming procedure,i6 in that the 
extent of trimming in each tail is sample-dependent. Since typical rates of outliers 
found in practice are less than 5% and are unequal in the two tails, outlier deletion 
represents a light and asymmetric trim. Studies of the robustness of trimming 
procedures have usually been based on estimators of location, and the findings are not 
reassuring. It has long been known that lightly trimmed means are inefficient estimators 
of location from long-tailed distributions, and are biased when the distribution is 
skewed [Andrews et al. 1972, Exhibits 5-19 and 5-20; see also Huber 1981, pp. 72 
and 104-106]. Thus, the robustness of using an outlier deletion procedure on a Class 1 
financial ratio with b ~ 2, which has infinite variance and/or skewness, is highly 
questionable. Huber [1981, p. 4] gives more general reasons for preferring other 
robust procedures to outlier rejection followed by classical procedures. 

The performance of a proposed procedure cannot be determined empirically. Typically, 
the performance is related to the frequency of Type I and Type II errors or to the bias 
in estimating a parameter, and these cannot be established empirically since the true 
answer is unknown. An apparent exception is in classification studies, where 
Lachenbruch or other resampling procedures have commonly been used to estimate the 
misclassification rate. However, such estimates of performance are always misleading 
if the performance of a procedure is affected by the moments of the population 
distribution, because resampling procedures start from a sample whose moments must 
all be finite; if the population distribution has infinite moments, resampling procedures 
cannot fairly reflect the true sample space. Thus, it is unknown whether the findings of 
such studies reflect the actual performance of the techniques, even approximately.17 

16 Similar comments apply 10 an adaptive Winsorizing procedure, in which the detected outliers are 
not removed from the sample but are replaced with the largest non-outlying value. 

17 The method gives a good estimate of error rates with multivariate normal predictors [Lachenbruch 
and Mickey 1968]. 

-16-



There have been simulation studies of the effect of certain types of non-normality in 
classification studies [Lachenbruch et al. 1973, Richardson and Davidson 1983, Stone 
and Rasp 1991]. However, these have either started from a multivariate normal 
distribution and added a moderate amount of skewness and kurtosis, or have assumed 
distributional forms (such as the lognormal) which, while not normal, are not nearly 
long-tailed enough to be applicable to financial ratios.18 Even so, the results were not 
generally robust to non-normality; these findings can be expected to apply a fortiori to 
financial ratios. 

A different robustness question arises when the regression or other model being used is 
mis-specified. If the model is correctly specified, outlying values of the independent 
variables are highly desirable, because they fix the parameters of the model very 
accurately. If the model is mis-specified, its weaknesses are badly exposed by extreme 
values of the independent variables. The only really satisfactory treatment for this 
problem is to correct the model specification. However, since a wrong model may 
sometimes give a reasonable approximation to the correct model over a limited 
domain, restricting the range of the independent variables may sometimes allow an 
invalid model to be used. Any procedure which restricts the variables sufficiently is 
suitable; outlier deletion is only one possible way to achieve this. The performance of 
any procedure will be highly specific to the particular situation, including the nature of 
the model mis-specification. Kennedy et al. [1992] evaluate various procedures in 
several situations involving prediction by a linear model. 

G. Transformations 

Transformations are sometimes used in an attempt to improve the distributional 
properties of financial ratios. The most common transformations are the square-root, 
cube-root, and logarithmic transformations, which are special cases of the general Box
Cox transformation [Box and Cox 1964]: 

u = { (z"- - 1)().. 
In z 

(10) 

Applying this variable transformation to the limiting behavior of a Class 1 ratio, which 
is 

f(z) - Boz-l>-2 as z• oo 

shows that for A. > 0 the limiting behavior is 

f(u) - Bo(;\.u)-b'-2 

and that for A. = 0 the limiting behavior is 

f(u) - Boe--<b+l)u 

as u• 00, where b' = (b+l)()..-1 

18 The F distribution with a small number of denominalOr degrees of freedom would be a reasonable 
model distribution for the type of non-normality exhibited by a Class I fmancial ratio. This is not 10 
say that an F distribution would necessarily give a good fit 10 ratio distributions. However, both tails 
of the F(v1,v2) distribution have the power-law form, and for suitable v2 the mean or any higher 
moments can be made infinite. Thus the distribution has the correct properties 10 act as a known but 
realistic model distribution. 
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Thus, for ;\, > 0, the Box-Cox transformation produces a variable with inverse-power
law tails, but with a larger exponent (e.g. for the square-root transformation, where 
;\, = ½, the transformed variable has exponent 2b+ 1 ). Thus, the long-tailed nature of 
the distribution will be less severe after transformation, but the problems associated 
with the power-law tails are not completely cured. The logarithmic transformation 
produces a short-tailed variable with exponential tails; it is still not normally 
distributed, but the nature of the non-normality is not likely to have such severe 
methodological consequences. 

Previous work [Deakin 1976; Frecka and Hopwood 1983] has found that neither the 
square-root nor the logarithmic transformation produces normality; which 
transformation comes closer varies from sample to sample. These findings may now be 
understood, since neither transformation in fact produces normality. The logarithmic 
transformation is always preferable for Class 1 ratios because it produces a short-tailed 
population, even if a square-root or cube-root transformation appears to work better 
on a particular sample. 

The Box-Cox transformation cannot be applied to Class 3, 4 or 5 ratios. A sample
dependent version, in which a constant is first added to all of the values in the sample 
so that all values are positive, cannot be readily analyzed because it is not a 
transformation of the underlying variable. In principle, it might be possible to find the 
sampling distribution of various statistics resulting from the use of such a 
transformation, to see if these statistics are suitably robust. 

Statistics based on rank transformations lead to many well-known hypothesis tests 
which are nearly distribution-free and which may be used with financial ratios. Tests 
based on normal scores are less common, but are often more powerful. However, 
when estimates of some parameter are required in terms of original variables, the rank 
or normal score must be transformed back, and the results are no longer distribution
free. 

If F(x) is any continuous cumulative distribution function, then z' = F(z) is a monotonic 
transformation which ensures that z' lies between 0 and 1. All moments of z' are finite, 
and many of the previous difficulties do not apply to inferences about z'. However, 
there are interpretive difficulties in using z', and also a statistical difficulty: if the 
chosen distribution F is short-tailed (as in logit or probit procedures), then the 
probability density of z' is infinite at z' = 1 and perhaps also at z' = 0. Thus, z' is 
bimodal or trimodal, and its distribution is so far from being normal that conventional 
statistical inferences may be seriously invalid. (However, if a procedure is known to be 
robust when applied to dichotomous data, it may be applied to z' with some 
confidence.) If a transformation of this kind is to be used, the safest one may be the 
arc-tan transformation, z' = tan-1z, which bounds z between -rc/2 and rc/2. This 
transformation, based on the long-tailed Cauchy distribution, ensures that the density 
of z' approaches zero at the bounds in a smooth power-law manner similar to that of a 
Class 2 ratio. 
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H. Redefining Financial Ratios 

The problems described above for Class 1 ratios exist also for ratios in every class 
except Class 2. A Class 2 ratio has values which are bounded between O and 1; hence, 
all of the population moments are finite. The distribution must be non-normal, but the 
non-normality does not take the form of infinitely long tails. The tail behavior shown in 
Table 1 is consistent with a beta distribution, although the central part of the true ratio 
distribution might depart from the beta form. There will still often be outliers in any 
sample, as measured from a working hypothesis of normality, but the outliers will not 
usually have methodologically serious consequences. 

By a simple redefinition, any financial ratio in Class 1, 3, or 4 can be brought to a Class 
2 form. Since the current conventional definitions are arbitrary, the redefined versions 
of the ratios are in no way inferior: they contain the same information, are monotonic 
functions of the conventional form, and are just as easy to interpret. They have the 
considerable advantage, however, of having distributions which differ from normality 
only in relatively harmless ways. 

If the current ratio were defined, not as CNCL, but as CN(CA+CL), it would be a 
Class 2 ratio. Companies with good short-term liquidity would have values close to 1, 
and companies with liquidity problems would have values close to 0. This definition 
would have the benefits already described, and has an obvious interpretation, so that 
back transforming to express results in terms of CNCL is unnecessary.19 For any Class 
1 ratio z, the ratio z' = z/(1 + z) is an equivalent Class 2 form; that is, the Class 1 ratio z 
should be deflated by the factor 1 + z. 

A Class 3 ratio may be viewed as the difference between two Class 1 ratios and 
transformed accordingly. For example, if NI= R - E, where revenues R and expenses 
E are both positive, the ratio z =NI/TA= RITA -E/TA may be replaced by 

R E R•TA-E•TA NI•TA 
z' = R+TA -E+TA = (R+TA)(E+TA) = (R+TA)(E+TA) 

NI 1 
= TA (1 + R/TA)(l + E/TA) (11) 

where the last form shows that this redefinition simply deflates the ratio appropriately. 
For an arbitrary Class 3 ratio z = (x1 -x2)/y, the deflated form is 

, z 
z= 

(1 + X1/y)(l + x,jy) 
(12) 

which takes values between -1 and 1. The form (1 + z')/2 takes values between O and 
1, but there is no statistical gain from that refinement. 

A Class 4 ratio may be deflated in the same way as a Class 3 ratio, or it may be viewed 
as the difference between a Class 2 and a Class 1 ratio. The latter view, however, gives 
a more complicated form for the redefined ratio. For a Class 4 ratio, deflating 
according to equation (12) leads to values z' between -1 and½. 

19 Conventions can change, and textbook writers and teachers may be in a position to encourage the 
gradual replacement of statistically undesirable conventional ratio definitions. 
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No similar simple redefinition exists for a Class 5 ratio such as Return on Equity. The 
use of this ratio in a model implies that a finn which earns $20 million on a net worth 
of $200 million is in the same position, ceteris paribus, as one which loses $20 million 
on a net worth of negative $200 million. Unless this is expected to be true on 
theoretical grounds, the researcher should consider whether the use of Return on 
Equity comprises a mis-specification of the model. If so, the cure is to substitute a 
more appropriate ratio, not to seek a transformation. 

The redefinitions of financial ratios recommended here can deal easily with infinite 
values of financial ratios. Infinite values caused by a zero denominator cannot be 
reconciled with the model of equation (3) or with the results of Table 1. However, 
after redefinition, these values are equal to one of the bounds of the redefined ratio. 20 

Thus, they can remain in the sample and require no special handling. The limiting 
behavior of the redefined variable cannot be exactly as shown for a Class 2 ratio in 
Table 1, because the density cannot be quite zero at the bounds. However, since 
infinite values are very rare, the density is very nearly zero there. 

5. Directions for Further Research 

This paper has addressed the problem of describing the distribution of financial ratios 
by pushing it back one stage, to the joint distribution of the numerator and 
denominator variables. Since the predictions of the theory are largely but not entirely 
borne out, the assumption made in Section 2 about the form of the joint distribution 
may not be entirely correct, or more terms must be considered in the asymptotic 
expansion for some distributions. Better understanding of the distributions of financial 
ratios will therefore require · a better understanding of the joint distribution of 
accounting variables. The economic arguments which could assist that understanding 
are by no means evident; but both theoretical and empirical work are likely to be 
sharpened and clarified if they focus on the accounting variables, without adding the 
complexity caused by the division operation which produces a financial ratio. At the 
same time, since it is much easier to examine a univariate distribution than a 
multivariate one, and since the distribution of a ratio depends on the entire joint 
distribution of numerator and denominator, financial ratios may provide useful probes 
for studying certain hypotheses about the joint distributions. 

Although I have pointed out that the distribution of financial ratios makes many 
common practices statistically unsound, and have suggested that redefinitions of the 
ratios may mitigate the worst problems, research is still needed to determine the 
robustness of using the redefined ratios in typical research contexts. This research 
cannot be empirical; it must be either analytical or based on simulation studies. In 
either case, an appropriate assumption must be made as to the distributional form. For 
Class 2 ratios ( or other ratios which have been redefined), the most appropriate model 
distribution seems to be the beta distribution, which is bounded and has tails of the 
correct power-law form. 

2° Care may sometimes be needed to decide which is the correct bound. 
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Finally, if the joint distribution of accounting variables is in fact more fundamental than 
the distribution of financial ratios, it may be that many studies which have traditionally 
been performed with ratios would work better using accounting variables. Beaver 
[1968] noted that failed firms had 65% as much mean current assets and 65% as much 
mean sales as nonfailed firms, but this difference cancels out in the ratio CA/S. Some 
multivariate failure prediction models have included a size variable to supplement the 
use of ratios, but this is not the same as including all of the financial variables in raw 
form. It may be that bivariate plots of the probability density of current assets and sales 
would show a clear distinction between the regions occupied by bankrupt and 
nonbankrupt companies. If that turns out to be so, then the multivariate generalization 
would be worth exploring in the same way. 
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Appendix. Proof of Propositions 1 and 2 

This Appendix establishes the results given in Table 1 for the various classes of ratio. 
A given ratio z = x/y falls into only one class, and so only one of the following 
arguments applies. Accordingly, the notation has been kept simple by using the same 
symbol for analogous constants in different classes. The appropriate definition of the 
constants is given, or is immediately obvious, in each class. 

The first two terms of each series are computed below, but only the first term has been 
carried into Table 1, because this establishes the asymptotic behavior. 

Class 1 

Expand g(x,y) in a Taylor series aboutx = 0: 

g(x,y) = a0(y) + a1 (y) x + ... (A.l) 

where the coefficients an(y) could be expressed in terms of partial derivatives 
evaluated at x = 0. Then, using equations (1) and (2), 

00 

f(z) = f y (zy)a yb g(zy,y) dy 

0 

00 00 

= za f ya+b+l ao<Y) dy + za+l f ya+b+2 a1<Y) dy + ... 
0 0 

=Ao za +A1 za+1 + ... 

where the constants are given by 

00 

An= f ya+b+n+l an(y) dy 

0 

(A.2) 

(A.3) 

By assumption, g(0,y) > 0, so that ao(y) > 0 and hence Ao > 0. Integrating (A.2) gives 
the cumulative distribution function of z: 

z 

F(z) = f f(z) dz = ;_0
1 za+l + ;_2 za+2 + ... 

0 

Now expand g(x,y) about y = 0: 

g(x,y) = bo(x) + b1 (x) y + ... 

so that 

00 

f(z) = f y (zy)a yb g(zy,y) dy 

0 
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= = 
= zlZ f ya+b+I bo(zy) dy + zlZ f ya+b+2 b1(zy) dy + ... (A.6) 

0 0 

Make the substitution w = zy so that y = w/z (noting that z cannot be zero, so that the 
resulting series will be an asymptotic series as z • =, and not valid for all z); then 

= = 
f(z) = z--ir2 f wa+b+I bo(w) dw + z--ir3 f wa+b+2 b1(w) dw + ... 

0 0 

=Bo z--ir2 +B1 -z;--lr3 + ... (A.7) 

with the obvious definitions of the constants. Hence 

= 
F(z) = 1 - f f(z) dz = 1 - :..01 -z;--lrl - !2 -z;--lr2 - ... (A.8) 

z 

This establishes Proposition 1 for Class 1 ratios. For Proposition 2, note that equation 
(2) implies that the marginal distribution of x is 

= = 
f f(x,y) dy = xa f yb g(x,y) dy 

0 0 

= = 
=x<l J yh ao(y) dy +xa+I J yh a1(y) dy + ... (A.9) 

0 0 

which behaves like xa as x • 0. Similarly, the marginal distribution of y is 

= = 
J f(x,y) dx = yb J xa g(x,y) dx 
0 0 

= = 
= yb f x<l bo(x) dx + yb+I f x<l b1(X) dx + ... (A.10) 

0 0 

which behaves like yh as y • 0. The exponents a and b which appear in equations 
(A.2), (A.4), (A.7) and (A.8) are therefore characteristic of the marginal distributions 
of x and y respectively, and do not depend on the other variable in the ratio. Hence 
they must be the same in any Class 1 ratio involving the particular variable. 
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Class 2 

Make the variable transformation x' = y -x, y' = x, z' = x'Jy' = (1 - z)Jz. Then the Class 
2 conditions x ~ 0, y ~ x are equivalent to x' ~ 0, y' ~ 0 so that the ratio z' belongs to 
Class 1. Thus (A.2) and (A. 7) apply to z'; writing Ao' and A 1' for the constants in (A.2) 
and transforming the result back to a function of z, (A.2) becomes 

f(z) ~ {Ao' (z')a + Ai' (z')a+l + ... } I:• I 

{ (.1-i'f (.1-iy,+1 } 1 
~ Ao'\-,-) +Ai\-,-) + ··· z2 

~Ao' (l-z)a + {(a +2)Ao' +A1'} (1-z)a+l + ... 

~Ao (l-z)a +A1 (1-z)a+l + ... 

with the obvious definitions of Ao, A 1, etc. Then 

1 

F(z) = 1 - f f(z) dz 
z 

A A ~ 1-~(l-z)a+l _~(l-z)a+2_ ... 

Similarly, from (A.7), 

f(z) ~ {Bo' (z')---b---2 + Bi' (z')-b--3 + ... } l dzdz'I 

{ (.1 - z yL>--2 (.1 - z yL>--3 } 1 
~ Bo'\-,-) +Bi\-,-) + ... z2 

~Bozb+B1zb+l+ ... 

z 

so F(z) = f f(z) dz 

0 

B B ~ ~zb+l +.!::!..zb+2+ b+l b+2 ... 

as z' • o+ 

as z • 1-

as z • 1- (A.11) 

as z • 1- (A.12) 

as z' • oo 

as z • O+ 

(A.13) 

asz • 0+ (A.14) 

For a Class 2 ratio, the variables a and b characterize the marginal distributions of x' 
and y' respectively, in the same sense as before. Since y' = x, the variable b is 
characteristic of x, while a is not characteristic of either x or y. 
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Class 3 

Since the line x = 0 is not on the domain boundary,f(0,y) is nonzero and so a must be 
zero in equation (2). With that restriction, (A.S) still holds and (A.6) becomes 

00 00 

f(z) = J yb+l bo(zy) dy + J yb+2 b1(z y) dy + ... (A.IS) 

0 0 

If z > 0, the substitution w = zy leads to (A. 7) as before. If z < 0, write w = -zy = lzly; 
then (A.IS) becomes 

00 00 

f(z) = lzi--b---2 f wb+l bo(-w) dw + lzi--b---3 f wb+2 b1(-w) dw + ... 
0 0 

= Bo lzl--b---2 + B1 lzi--b---3 + ... as z • --00 (A.16) 

z 

and F(z) = f f(z) dz 

- !_0
1 lzi--b---1 + !_2 lzi--b---2 + ... (A.17) 

Since a = 0, the marginal distribution of y is 

00 00 

J f(x,y) dx = yb J g(x,y) dx 

....00 ....00 

0 00 00 

= yb { J g(x,y) dx + J g(x,y) dx } = yb J (g(x,y) + g(-x,y)) dx 

...co O 0 

00 00 

= yb f (bo(x) + bo(-x)) dx + yb+l f (b1 (x) + b1 (-x)) dx + ... (A.18) 
0 0 

which behaves like yb as y • 0. Thus bis characteristic of the variable y. 

Class 4 

Make the variable transformation x' = y -x, y' = y, z' = x'/y' = 1 - z. Then the Class 4 
conditions x ~ y, y > 0 are equivalent to x' ~ 0, y' ~ 0 so that the ratio z' belongs to 
Class 1. Transforming the result back to a function of z, (A.2) becomes 

f(z)-Ao (1-z)a +A1 (1-z)a+l + ... as z • 1- (A.19) 
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and (A.7) becomes 

f(z) - Bo' (1 -z)--h---2 + Bi' (1 -z)--h---3 + ... 

- Bo lzl--h---2 + B 1 lzi--b---3 + ... (A.20) 

and the expressions for F(z) follow immediately. 

For Proposition 2, note that bis characteristic of the variable y' = y. 

Class 5 

When y can take either sign, a more general form of (1) must be used (compare 
Kendall and Stuart, 1977, p. 285): 

f(z) = f Y f(zy,y) dy + f Y f(-zy,-y) dy (A.21) 

0 0 

Since the lines x = 0 and y = 0 are inside the domain, both of the constants a and b 
must be zero. The expansion (A.5) is valid, and so 

00 00 

f(z) = J Y bo(z y) dy + J y2 b1 (z y) dy + ... 
0 0 

00 00 

+ J y bo(-z y) dy- f y2 b1 (-z y) dy + ... 
0 0 

00 00 

= J Y [bo(z y) + bo(-z y)] dy + J y2 [b1 (z y) -b1 (-z y)] dy + ... (A.22) 

0 0 

If z > 0, put w = zy so that w > 0. Then (A.22) becomes 

00 00 

f(z) = z-2 J w [bo(w) + bo(-w)] dw + z-3 J w2 [b1 (w) -b1 (-w)] dw + ... (A.23) 

0 0 

=Bo z-2 +B1 z-3 + ... (A.24) 

If z < 0, put w = -zy = lzly so that w > 0. Then (A.22) becomes 

00 00 

f(z) = lzl-2 J w [bo(-w) + bo(w)] dw + lzl-3 J w2 [b1(-w)-b1(w)] dw + ... (A.25) 

0 0 
= Bo lzl-2 - B 1 lzl-3 + . . . (A.26) 

The constants Bo, Bi, ... are the same in equations (A.24) and (A.26). 
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TABLE 1. Theoretical asymptotic behavior of the probability density functionf(z) and the cumulative distribution function F(z) in the 
left and right tails, for various classes of the ratio z = x/y. The notation z• O+(l-) indicates the one-sided limit in which z approaches O 
from above (1 from below). The constants a, b, Ao, and Bo take different values for each class; however, if a variable occurs in more 
than one ratio, the values of a or b with which that variable is associated will be the same in each ratio. 

Variable Associated with 
Class I Left Tail Behavior Right Tail Behavior 

a b 

f(z) -A()Z" z• O+ f(z)-Boz-b---2 z• oo 
1 I 

F(z) _Aa..z<l+I F(z) - 1 _..&_rb---1 
a+I b+I 

X y 

f(z)-Bozb z• O+ /(z) -Ao(l-z)a z• l-
2 I 

F(z) _..&_zb+I F(z)- 1-~1-z)a+l 
b+I a+I 

X 

f(z) - B0!z!-b---2 z-+-oo f(z) - Borb---2 z• oo 
3 I 

F(z) - l _..&_lz!-b---1 F(z) - 1 - ..&_..-b---I 
b+I b+I 

y 

f(z) - B01z!-b---2 z-+-oo f(z) -Ao(l-z)a z• l-
4 I 

F(z) - 1 _..&_lz!-b---1 F(z) - 1-~1-z)a+l 
b+I a+I 

y 

f(z) - B01zl-2 z-+-oo f(z)-Bor2 z• oo 

5 I 
F(z)-1-Bolz!-l F(z) -1-Borl 
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TABLE 2. Ratios Used in the Study. The variable names used in the numerator and 
denominator are those of Standard and Poor's Compustat. 

Abbreviation Numerator Denominator Sample Size 
Range, 1974-92 

CNS Current assets - Total Sales (net) 2675-3094 

QNS Cash and Equivalents, Sales (net) 2675-3090 
plus Receivables - Total 

WC/S Current Assets - Total, Sales (net) 2673-3094 
minus Current Liabilities -
Total 

CNCL Current assets - Total Current Liabilities - Total 2682-3175 

QNCL Cash and Equivalents, Current Liabilities - Total 2681-3168 
plus Receivables - Total 

CNTA Current Assets - Total Assets - Total 2683-3174 

QNTA Cash and Equivalents, Assets - Total 2684-3170 
plus Receivables - Total 

WC[fA Current Assets - Total, Assets - Total 2682-3176 
minus Current Liabilities -
Total 

CF/ID Income before Debt in Current 2551-2920 
Extraordinary Items, plus Liabilities, plus Long-
Depreciation and Term Debt - Total 
Amortization 

Nl[fA Net Income (Loss) Assets - Total 2706-3185 

TD[fA Debt in Current Assets - Total 2558-2943 
Liabilities, plus Long-
Term Debt - Total 

Nl/EQ Net Income (Loss) Stockholders' Equity 2705-3185 
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TABLE 3. Predicted Equalities Between Exponents of Different Ratio Tails. 

Associated Variable Exponents Predicted to be Equal 

CA CNS left CNTAleft 

QA QNSleft QNCLleft QNTAleft 

TD CF/TD right TD/fAleft 

s CNSright QNSright WC/S right 

(Class 5) NI/EQ left ( = 1) NI/EQ right(= 1) 

TABLE 4. Paired t Tests of Relations Between Exponents. All tests are based on the 
Hill estimate f: for r = 100. 

Comparison Mean Standard t (18 d.f.) p (2-tailed) 
Difference Deviation 

CF/TD(right) = TD/fA(left) 0.010 0.209 0.21 n.s. 

NI/EQ(left) = 1 0.005 0.097 0.21 n.s. 

NI/EQ(right) = 1 -0.070 0.090 -3.40 .005 

TABLE 5. Two-Way Analysis of Variance to Test Equality of Exponents Associated 
with the Sales Variable. Based on the Hill estimate f: for r = 100. 

Source of Variation Surnof d.f. 
Mean F p 

Squares Square 

Between years 21.96 18 1.220 77.9 <.001 

Between ratios 0.25 2 0.125 8.0 .002 

Error 0.56 36 0.016 
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Figure 1. The five classes of financial ratios z = x/y, showing the domains of the joint 
distributions of the numerators and denominators and the limit which the 
ratio takes along various lines, and giving an example of each class. CA = 
current assets; CL = current liabilities; TA = total assets; NI = net income; 
EQ = shareholders' equity; WC = working capital. 

Class 1 (x ~ 0, y ~ 0) 
e.g. z =x/y = CNCL 

X 

Class 3 (y ~ 0) 

X 

Class 5 
e.g. z = x/y = NI/EQ 
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Class 2 (x~ 0, y ~x) 
e.g. z = x/y = CNTA 

X 

Class 4 (x .:s; y, y ~ 0) 

e.g. z = xfy = WC[f A 



Figure 2. Hill's estimator for a sample of 3,000 values from the distribution of 
equation (5). Values of rand z for the left tail are marked along the bottom 
axis, and values for the right tail along the top axis in reverse order; thus the 
tip of the tail is at the left edge of the graph for the left tail and at the right 
edge for the right tail. --Hill estimate for left tail; - - - for right tail. 

5.0 

4.0 

3.0 

2.0 

1.0 

z = 
r -

• • • Local 99-point moving average estimate for left tail; + + + for right 
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Figure 3. Hill's estimator for a sample of 3,000 values from the standard normal 
distribution. Description as for Figure 2. 
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Figure 4. Hill's estimator for a sample of 3,000 values from the." 10% 1/U" 
distribution, which is largely normal but with 10% contamination by a long
tailed distribution. Description as for Figure 2. 
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Figure 5. Hill's estimator for a sample of 3,000 values from the t distribution with 2 
degrees of freedom. Description as for Figure 2. 
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Figure 6. Hill's estimator for the ratio CNS for manufacturing firms in 1992. 
Description as for Figure 2. 
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Figure 7. Hill's estimator for the ratio QNS for manufacturing firms in I 992. 
Description as for Figure 2. 
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Figure 8. Hill's estimator for the ratio WC/S for manufacturing firms in 1992. 
Description as for Figure 2. 
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Figure 9. Hill's estimator for the ratio CA/CL for manufacturing firms in 1992. 
Description as for Figure 2. 
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Figure 10.Hill's estimator for the ratio QA/CL for manufacturing firms in 1992. 
Description as for Figure 2. 
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Figure 11.Hill's estimator for the ratio CA/TA for manufacturing firms in 1992. 
Description as for Figure 2. 
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Figure 12.Hill's estimator for the ratio QAffA for manufacturing firms in 1992. 
Description as for Figure 2. 
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Figure 13.Hill's estimator for the ratio wcrrA for manufacturing firms in 1992. 
Description as for Figure 2. 
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Figure 14.Hill's estimator for the ratio CF/TD for manufacturing firms in 1992. 
Description as for Figure 2. 
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Figure 15. Hill's estimator for the ratio NI/TA for manufacturing firms in 1992. 
Description as for Figure 2. 
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Figure 16.Hill's estimator for the ratio TDfI'A for manufacturing firms in 1992. 
Description as for Figure 2. 

2500 2000 1500 1000 500 0 • r 4.0 .,__ ___ ..__ ___ ,._ __ __,. ___ __._ ___ _,_~----1-

3.0 

2.0 

1.0 

0.01 0.1 0.2 0.3 

/ 
/ 

/ 

++ 
++ 

' ~ • + 
• \.e,.....,,,__ n n ~ • I • • .. 

• a I I i • ~ + I 

+ 
++ 

z 007 0.05 0.1 "b.2 0.3 0.4 

2000 r • 0 500 1000 1500 

0.4 0.5 0.9 • z 

+ + 

0.7 

2500 

+ 

,+ 
I 

Figure 17.Hill's estimator for the ratio NJ/EQ for manufacturing firms in 1992. 
Description as for Figure 2. 
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Figure 18.Hill estimates for the years 1974-92 for those ratio tails which exhibit 
power-law behavior. Values of the estimate 2 are plotted for various values 

ofr. • r=lO0; • r=200; •r=300; A.r=500; Lir=l000. 
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WC/S CA/CL 
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