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ABSTRACT 

Recent work by Sowell (1990) and Diebold and Rudebusch (1991a) show that 

Dickey-Fuller unit root tests can have low power under fractionally integrated 

alternatives. This paper proposes a locally best test designed particularly to 

detect such alternatives. The test is based on the asymptotic likelihood 

function in frequency domain. A Monte Carlo experiment shows that the test is 

quite powerful, even in small samples. 
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1. Introduction 

In recent years there have be an increase in interest in applying 

strongly dependent process models to economic time series. One such model that 

is often used is the autoregressive fractionally integrated moving average 

(ARFIMA(p,d,q)) process, which can be expressed in general as 

(1) 

where d can takes on integer or non-integer values, and 

~(z) = 1 - ~ z - ··· - ~ zp 1 p 

and 

e(z) = 1 + e z + ··· + e zq 1 q 

have roots that lie outside of the unit circle, L is the lag operator such 

that LXt = Xt-l' µ is an unknown constant, ~ is the unknown coefficient of 

time trend t and "t ~ (0, ,,.2) is white noise. Properties of ARFIMA(p, d, q) 

processes have been studied, for example, by Granger and Joyeux (1980) and 

Hosking (1981). Among others, Geweke and Porter-Hudak (1983) suggest a method 

of estimation of d which is asymptotically robust to the specifications of the 

polynomials ~(z) and e(z). Sowell (1992a) provides procedures of maximum 

likelihood estimation of d, ~ = (~1, e J, 
q 

2 and IJ' • 

Recent applications of the ARFIMA(p,d,q) model includes Diebold and Rudebush 

(1989, 1991b) and Sowell (1992b). For further details, see Brockwell and Davis 

(1987), Diebold and Nerlove (1990). 

The most important feature of the ARFIMA(p,d,q) model is that, by 

allowing d to take non-integer values, a wide range of long-run dependent time 

series can be modelled. The value of d captures quantitative extent of the 

persistence of a shock to the time series in that estimates (and therefore 

confidence intervals of estimates and forecasts) of parameters involved in (1) 
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converge at a rate which is dependent on the value of d. Many studies, for 

example those mentioned above, indicate that the range 0. 5 < d < 1. 5 is 

possible and of interest for many economic time series. The unit root 

hypothesis d = 1 is a special case in the ARFIMA(p,d,q) framework. 

If an ARMA or ARIMA model is fitted to an ARFIMA process, the estimates 

of parameters of the model are usually inconsistent. Consider, for example, 

fitting an ARIMA(l, 1, 0) model to an ARFIMA(l, 1. 2, 0) series. In practice, we 

usually start with taking first differences of the data, so effectively we are 

fitting an ARMA(l,0,0) model to an ARFIMA(l,0.2,0) series. The differenced 

series may be written as yt =. + ~lyt-l + ut, ut = (1-L)-
0

·
2
et. Obviously 

ut's are serially correlated, so least square estimates of• and ~1, ignoring 

this fact, are inconsistent. Thus needs arise as to testing the value of d. 

Sowell (1990) indicates that the Dickey-Fuller unit root tests under ARFIMA 

alternatives can have low power. This is supported by Diebold and Rudebusch 

(1991a) in their Monte Carlo simulation. This paper constructs a test which is 

particularly designed to detect ARFIMA alternatives. This is a locally best 

test based on the frequency domain asymptotic likelihood function of the 

periodogram. 1 Hypothesis testing based on this kind of likelihood function is 

discussed, for example, in Harvey (1989). 

In the next section we introduce the test. In the construction of the 

test, some properties of ARFIMA processes will be used. Section 3 reports the 

results of a Monte Carlo study on the power of the test. Concluding discussion 

is found in section 4. 

1Therefore values of p and q are assumed to be known. For testing values of d 

when p and q are unknown, see Wu (1992). 
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2. The Test 

Let Yt = (1-L)Xt and d = 1-d. Then (1) can be written as 

, -0.5 < d < 0.5. (2) 

The series {Yt} is stationary. Its moving average representation takes the 

form 

(X) 

v =?I+ [ "'·"t . C3l t i=O 1 -1 

where ½=olt/Jil < oo if -0.5 < d ~ O, and ½=olt/Jil = oo if O < d < 0.5 which 

indicates the long memory in {Yt}. Typically for an ARFIMA(O,d,0) series, the 

covariances can be expressed as 

rcct+kl rc1-2ctJ 
2 

?f (k) = ---------- <F 

rc1-ctJ r(k-ct+1J r(ctl 
(4) 

This expression will be used in the next section to generate the 

ARFIMA(O,d,O) series. 

In the frequency domain, {Yt} has the spectral density 

f(w) 
2 

= <F ll-e-iw
1
-2d 

2ir 

IEJ(e -iw) 
1
2 

l~(e-iw) 
1
2 

(5) 

where w is the frequency. It is assumed that JEJ(eiw) J21J~(eiw) 12 is bounded 

from above and away from zero. Note that (5) becomes the familiar spectral 

density of an ARMA(p,q) process when d = 0. Also lim f(w) = oo when O < d < 0.5 
<u-?O 

and lim f(w) = 0 when -0.5 < d < 0. 
<u-?O 

The hypothesis of interest is that of 

HO: d = 0 against H ct < 0, a 
(6) 

or 

-
HO: d = 0 against H : d > 0. 

a 
(7) 
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Consider hypothesis (6) first. Let the periodogram be 

where 

I (w.) 
J 

1 

n 

wj = 2irj/n, 

2 

j = 0, 1, · · ·, [n/2] 

(8) 

are Fourier frequencies and [x] is the integer part of x. When -0.5 < d :s 0 

the coefficients of the moving average representation (3) satisfy ½=ol~i[ < 

co. Thus for j = 0, 1, · · ·, m where m < [n/2], I (w.) converge in distribution 
J 

to random variables D., which are independent and exponentially distributed 
J 

(see Theorem 10.3.2 of Brockwell and Davis, 1987, p.337). Specifically, Dj has 

the density 

1 1 
---- exp(- ---- D j) 

2irf(w.) 2irf(w.) 
J J 

(9) 

where f(w.) is the spectral density as in (5). Obviously when j = 0 (9) is not 
J 

well defined as ~N f(w) = 0. So we exclude j = 0 from our observations of 

I(w.). From (9) the asymptotic log-likelihood function of dis 
J 

m m I (w.) 
log L = - [n/2] log 2ir - I log f(w .) - I J (10) 

j=l J j=l 2irf(w.) 
J 

Although we are considering the range of -0.5 < ct " 0 
' 

as we will see in the 

end of this section, the above likelihood function is also valid for O < d < 

0. 5. 

Given this likelihood function, one-sided LM tests can be constructed. 

One option is the Kuhn-Tucker test. However, this test involves inequality 

restricted maximum likelihood estimation of d which can be computationally 

very demanding. Instead, we construct an asymptotic locally best (ALB) test. 

In general, for testing H0: ~ = 0 against Ha: ~ < 0 (or~> 0), the one-sided 
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locally best critical region takes the form 

BlogL 

8/3 1/3=0 < c (or > c'), 

where c (or c' )is a constant such that the test has a prescribed size (see 

Ferguson, (1967, p. 235)). Applying this to (10), the ALB critical region is 

given by 

Note 

where 

BlogL 

s =---1 
m Bd d=O 

m f' (w.) 

[ = I J I (w.) - 2,rf(w.) 
2 J J j=l 2,rf(w.) 

J 

m 
log(2sin(wj/2)) (o--2

I(wj) = -2 I 
j=l 

< C 

that we can also 

BlogL m 

Bd 
= I 

j=l 

m 
= I 

j=l 

1 

2,rf(w.) 
J 

[ 

write 

f' (w. l 
J z. 

f (w .) 
J 

J 

-2log(2sinwj/2)) z . 
J 

withE(z.l = 0 and V(z .) = 1. Let 
J J 

m 

[ 
2 

2 
I -2log(2sinwj/2)) s = 

m 
j=l 

) ld=O 

l<!?(e-iwj) 12 

- 1] 
IB(e-iwj) 12 

(11) 

(12) 

2 
Since s is a constant for fixed m, the ALB test can be equivalently expressed 

m 
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as rejecting H0 for small values of 

s 
m w---

s 
m 

To establish the asymptotic distribution of w, let 

1 

2,rf(w .) 
J 

(13) 

Since I(wj) ~ Dj (we use~ to denote convergence in distribution), we have zj 

~ 2 .. Then 
J 

w = ( 

= 

using 

m 
I: 

j=l 

m 

I: 
j=l 

the Cramer-Wold device, w ~ W with 

f' (w.) 
J 

2 .1 )/ s 
f (w.) J d=O m 

J 

This argument holds for any fixed m and n • 00. Thus it is valid for any 

arbitrary large m as long as n/m • 00 as n • 00. Therefore we only need to 

establish the asymptotic distribution of W as m • 00 with m/n • 0. Noticing 

that l8(eiwjJl 2/l~(eiwjJl 2 is bounded away from zero, it can be shown that the 

Lyapounov's condition (see Billingsley, (1985, p.371), and the appendix) 

lim 
m• oo 

m 

I: 
j=l 

s~+o E[I( -2log(2sinwj/2)) 2jlct=ol
2

+
0
) = o 

m 

(14) 

holds for o = 2. Thus from the central limit theorem (Billingsley, op cit) W, 

and therefore w, has asymptotically the standard normal distribution. 

In practice, ~. 0 and ~2 in w of (13) may be replaced by their consistent 

estimates under H0 , using the standard procedure of fitting an ARMA(p, q) 

model. The asymptotic normality of w still remains. However as can be seen 

from (11), the ALB test basically involves comparing the estimated spectral 

density I(w.) with the theoretical density of an ARMA(p,q) process under the 
J 

7 



null hypothesis. But fitting an ARMA(p,q) model with data being generated from 

an ARFIMA(p,d,q) process will give biased estimates of~ and 0 such that the 

fitted model is forced to behave like an ARFIMA one. This can damage the power 

of the test. So it is preferred that~. 0 and ~2 in the test statistic (13) be 

replaced by their consistent estimates from fitting an unrestricted 

ARFIMA(p,d,q) model. ' Such estimates are available, see Sowell (1992a) and 

references therein. 

Consider now the hypothesis (7). As shown in Yajima (1989), the result of 

Theorem 10.3.2 of Brockwell and Davis (1987, p.337) still holds for O < d < 

0.5, 2 despite I7=ol~il not being bounded. Thus, all the arguments for the case 

-0.5 < d ~ O are still valid for O < d < 0.5. Eventually, the ALB test for 

(7) is to reject HO for large values of win (13). 

3. Empirical Power Evidence 

In this section, we report an empirical power result of the ALB test from 

a Monte Carlo experiment. The test is applied to the ARFIMA(O, d, 0) series, 

which corresponds to differenced data in applied work. To generate such 

series, the Cholesky decomposition of the covariance matrix based on (4) is 

found by the IMSL subroutine LFTDS. Then N independent Gaussian ARFIMA(O,d,0) 

series, each with length n, are generated by the subroutine RNMVN. To mimic 

the situations found in practice, each series has 2 added. Thus each series 

has mean 2 and covariances given in (4) with ~2 = 1. The above ARFIMA(O,d,0) 

series were generated in N = 5000 replications for each of the sample sizes n 

= 50, 100, 200, 400. For each sample size, three values of m were chosen with 

m = na, a= 0.4, 0.5, 0.6. This is an attempt to check changes in power of the 

test when the rate of increase of m relative to n changes. The power was 

2 Note that the periodogram at w = 0 is excluded from the likelihood function. 
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evaluated at the points d = -0. 4, -0. 2, -0. 05, 0. 0, 0. 05, 0. 2, 0. 4. In 

calculating the test statistic, 2 the only nuisance parameter rJ' involved is 

simply replaced by sample variance 
- 2 

~(Yt -YJ /n. This obviously is a valid 

estimate of ~(OJ in (4J under H0, but a biased estimate of '1'
2 when d ~ 0. As 

discussed before, this can distort the power of the ALB test. But since the 

bias is bounded compared to the magnitude of I (w. J which has no upper limit 
J 

ford> 0 and can be arbitrarily close to zero ford< 0, we may expect that 

the extent of any distortion is limited. 

In comparison to the ALB test, power of the augmented Dickey-Fuller (ADFJ 
~ 

test is also simulated. The ADF test is the t-test (, J of p = 1 in the AR(gJ 

' 
regression 

g-1 
+ I ~.nxt . + vt 

i=1 1 -1 

The ARFIMA(O,d,OJ series Xt with d = 1 +dare generated by Xt = Xt-l + 2 + 

Yt, x0 = 2. The orders of g are chosen as g = [4(n/100J 1/ 4 ]. [x] being the 

integer part of x. The critical values for n = 50, 100 are from Fuller (1976, 

p.372J. Critical values for n = 200, 400 are obtained using interpolation. 

The results of the ALB test are summarized in Table 1 on the next page. 

Consider first the case of testing against d > 0 alternatives. The ALB test 

has good sizes and remarkably good power. The sizes are generally only 

slightly larger than the nominal size of 0.05. In terms of the high power of 

the test, this difference between nominal and real size is negligible. The 

sizes do not seem stable over the range of sample sizes n = 50 ton= 200, but 

they have tendency to approach the nominal size. A referable feature of the 

result is that the ALB test is very powerful even in small samples. For 

example when n = 50, the test rejects the null hypothesis (d = OJ 10% of the 

time at d = 0.05, a point which is very close to the null hypothesis. At d = 

0.2, the power is above 0.4. As sample sizes increase, power also increases. 
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* Table 1. Power of the ALB tests against the ARFIMA(l,d,0) process 

(one-sided tests against d > 0 and ct < 0) 

n m d = .0 .OS .2 .4 ct = .o -.05 -.2 -.4 

50 5 . 058 .118 .430 .820 .003 . 005 . 020 .141 

7 . 054 .117 .434 .824 .002 .003 .029 .201 

10 . 056 .118 . 431 .826 . 003 .004 . 035 .197 

100 6 . 061 .149 . 657 .968 . 008 . 018 .162 .766 

10 . 056 .149 . 686 .980 . 009 . 026 .246 .899 

16 . 052 .146 . 693 .983 . 008 . 025 .272 .925 

200 8 .065 . 210 .848 . 999 . 015 .045 .542 . 998 

14 . 060 . 214 .894 1.000 .016 . 066 .710 1. 000 

24 . 055 .209 . 908 1. 000 .014 .070 . 782 1. 000 

400 11 . 063 .293 . 966 1. 000 .022 .102 . 920 1. 000 

20 . 058 .309 . 987 1. 000 .024 .143 . 979 1. 000 

36 . 053 .319 . 994 1. 000 .023 .164 .994 1. 000 

* Critical values are 1. 645 against d > 0, -1. 645 against d < 0 

alternatives, respectively. Maximum width of 95% confidence interval of 

estimates of power is smaller than +0.014. 

For example when sample size increased from n = 50 ton= 100, power improved 

from about 0. 43 to 0. 66 at d = 0. 2. Another feature of the test is that the 

power does not differ much as a (or m, with m = na) varies from 0.4 to 0.6. 

In the Monte Monte Carlo study, other values such as a= 0.1, 0.9 have also 

been attempted. But these choices of a (therefore m) produced very bad sizes, 

so the result is not reported here for the conciseness of the paper. Finally, 

from Table 2 on the next page, we notice that the ADF test has low power 

against fractional integrated alternatives, which echoes the finding of other 

authors mentioned in section 1. The power advantage of the ALB test over the 

ADF test in this case is obvious and remarkable. 

Next we examine the power of the ALB test against d < 0 alternatives. The 
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ARFIMA(O,d,0) * Table 2. Power of the ADF tests against the process 

(one-sided tests against d > 0 and d < 0) 

n ct = .0 . 05 .2 .4 ct = .o -.05 -.2 -.4 

50 . 064 . 087 .117 .165 . 046 . 052 . 083 .162 

100 .058 .066 .121 .175 . 048 . 052 .100 .279 

200 .049 .084 .158 . 233 . 051 . 062 .186 . 613 

400 . 050 . 082 .175 . 260 .045 . 068 .272 . 848 

* Critical values against d > 0 alternatives are -0. 87, -0. 90, -0. 9133, 

-0. 926 for n = 50, 100, 200, 400, respectively. For against d < 0 

alternatives, they are -3.50, -3.45, -3.4376, -3.424, respectively. 

Maximum width of 95% confidence interval of estimates of power is smaller 

than +0. 014. 

sizes of the test are well below the nominal size. However, as is expected 

from the theory, real sizes approach the nominal size as sample size becomes 

larger. Due to the lower real size, the test is not as powerful as against d > 

0 alternatives. This is particularly true uniformly over different sample 

sizes at d = -0.05, which is a very close alternative to the null hypothesis. 

For large samples and large absolute values of d, the powers in the two cases 

are compatible. Comparing the power of the ALB test to that of the ADF test, 

the ALB test dominates for n = 200, 400. For n = 100 where the real sizes of 

the ALB test are below 0.01, the test is still more powerful ford~ -0.2. As 

to the dependence of power on the choice of m, the situation is largely the 

same as in the case of against d > 0 alternatives. Al though it seems from 

Table 1 that larger values of a, like a= 0.6, may give slightly better power 

than the other two values of a, our Monte Carlo study shows (not reported 

here) that the choice of a values either close to zero or close to one 

produces severe distortion of the size of the test. 
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4. Further Discussion 

The evidence of low power of unit root tests against fractionally 

integrated time series suggests the need for tests designed particularly for 

these sorts of alternatives. This paper proposes one such test for 

ARFIMA(p, d, q) processes. The limited Monte Carlo experiment for the case of 

ARFIMA(O, d, 0) indicates that the test can be very powerful, even in small 

samples. Of course in actual applied situations, general ARFIMA(p,d,q) 

processes are more likely. In these cases, from its construction, the test is 

expected to continue to have its strong power as long as the nuisance 

parameters are estimated under the unrestricted model. One may start with 

identifying the polynomial orders p and q, following, for example, the 

procedure of Sowell (1992b). Then the ALB test can be applied to determine 

whether the unit root hypothesis is adequate to capture the long-run 

dependency of the time series. 
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Appendix 

To verify ( 14), 

the null hypothesis and therefore is bounded. Since D. follows the exponential 
J 

distribution with mean 2rrf(wj)' E(Z~lct=O) is also bounded. Thus we only need 

to establish 

lim m-
m 

I 
j=l 

1 
-4-

s 
m 

( -2log(2sinwj/2) )
4 

= O 

Let u = min. Then u • Oas n • oo. Noting that wj = 

as lim, for the numerator, 

2rrj/n, and lim is the same m-
n-

m 

I 
j=l 

1 

n 
( -2log(2sinrrj/n) )

4 
= a¼B Ju (-2log(2sinrrx))

4 
dx. 

0 

and for the denominator, 

1 
lim -- s 4 = limn 
n- m n-n 

m 

I 
j=l 

( -2log(2sinrrj/n) )
2 

]
2 

= a¼B-:- [ I: (-2log(2sinrrx))
2 

dx )
2 

(Al) 

(A2) 

Using the Lhopital's rule repeatedly, it is easy to verify that the right hand 

side of (Al) divided by the right hand side of (A2) is of order 0(1/m). 
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