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ABSTRACT 

A generalization of the autoregressive integrated moving average 

(ARIMA(p,d,q)) model is the autoregressive fractionally integrated moving 

average (ARFIMA(p, d, q)) model in which d is allowed to take non-integer 

values. The continuum of values of d represents differences in the degree of 

long-run dependency of the time series. This paper is concerned with testing 

whether a time series is integer integrated or fractionally integrated. 

Without loss of generality, the typical case of testing d = 1 against d > 1 or 

d < 1 is considered. A locally best invariant test, based on King and Hillier 

(1985), is constructed for the simple ARFIMA(O,d,O) case. The test is then 

modified to test the general ARFIMA(p,d,q) series. The power of these tests is 

investigated using the Monte Carlo method. Also investigated is the power of a 

test based on Geweke and Porter-Hudak (1983)'s method, and an augmented 

Dickey-Fuller test. The invariant tests proposed here can also be used to test 

different integer values of d, such as d = 2 against d = 1. n 

* I would like to thank Lew Evans, Max King, Peter Thomson, Fraser Jackson, 

Bill Mitchell and Nuno Crate for their discussion and comments on the 

paper. My thanks also go to participants at 1992 Australasian Meeting of 

the Econometric Society at Monash University when an early version of this 

paper was presented. All errors are my own. 
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1. Introduction 

Many time series are modelled as autoregressive integrated moving average 

(ARIMA(p,d,q)) processes: 

where 

•Hzl = 1 - </> z 1 

(1) 

and the polynomials have roots lying outside of the unit circle, Lis the lag 

operator such that LXt = Xt-l' µt is the mean of Xt and et is white noise with 

2 E(et) = 0 and V(et)= ~. 

Traditionally, dis restricted to be an non-negative integer, indicating 

that the data series is differenced before an ARMA(p,q) model is fitted. In 

recent years, there has been increased interest in generalizing this 

restriction. Possible non-integer values of d allow a much wider range of low 

frequency behaviour in the time series. Thus, long term dependency may also be 

modelled by (1) with a non-integer value of d. It is interesting to note that 

(1) includes the unit root process (integer value of d = 1) as a special case. 

The generalization to non-integer values of d has important practical 

implications for the quantitative extent of long-run persistence of any shock 

to a time series. A shock will be less persistent for a smaller value of d. 

This in turn indicates that confidence intervals of forecasts can have smaller 

growth rates. Model (1) provides a possible base, not only for testing whether 

a time series has long-term dependency, but also for comparing the extent of 

this dependency. Further more, the model can also be used to test the unit 

root hypotheses against the trend stationary alternatives. Since non-integer 

values of d indicate fractional integration, (1) is called an ARFIMA(p, d, q) 
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model. 

The early work on ARFIMA(p,d,q) processes and their properties includes 

Granger and Joyeux (1980) and Hosking (1981). Much research has investigated 

the estimation and application of the ARFIMA(p,d,q) model. For example, Geweke 

and Porter-Hudak (1983), Boes, Davis and Gupta (1989) provide methods of 

estimation of d based on the frequency domain. Sowell (1992a) outlines maximum 

likelihood estimation procedures. In terms of applications, Nerlove (1964), 

Granger (1966), Granger and Joyeux (1980), Diebold and Rudebush (1989, 1991a), 

Sowell (1992b) and others indicate that a value of d between O and 1. 5 is 

possible for some typical (often aggregate) economic time series. More 

detailed discussion can be found in a survey by Diebold and Nerlove (1990) and 

each section below of this paper. 

Results of Sowell (1990) and Diebold and Rudebusch (1991b) show that the 

Dickey-Fuller test can have low power against the ARFIMA(O,d,O) alternatives. 

Diebold (1989) investigated the power properties of variance ratio tests in 

the ARFIMA(O,d,O) framework. However, it is not clear whether such tests can 

be applied or what power properties they have when the underlining time series 

is a general ARFIMA(p,d,q) process. Obviously, tests designed to specifically 

detect ARFIMA(p,d,q) alternatives are required. 

This paper considers testing d = 1 in (1), i.e. a unit root hypothesis, 

against one-sided alternatives (d <1 or d >1) without knowledge of values of p 

and q. Two tests are considered with a focus on a new test proposed in this 

paper. This is a modified one-sided locally best invariant (MLBI) test for 

one-sided alternatives based on King and Hillier (1985)'s approach. An exact 

locally best invariant (LBI) test is constructed first for the ARFIMA(O,d,0) 

case. The test is then modified to test the general ARFIMA(p,d,q) 

alternatives. The second test is based on the estimate of d obtained using 
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Geweke and Porter-Hudak (1983)'s (GPH) method. The possibility of this 

approach was pointed out earlier by Diebold (1989). Also, in the Monte Carlo 

study later in this paper, we provide further evidence of the power properties 

of the augmented Dickey-Fuller (ADF) test in a wider setting. In the remainder 

of this paper, section 2 sketches properties of ARFIMA(p,d,q) process which 

will be useful for the development of tests in the sequent sections. The LB! 

and MLBI tests are constructed in section 3. Then follows a brief discussion 

of the test based on Porter-Hudak' s method in section 4. Section 5 reports 

the results of a Monte Carlo study on power of the tests proposed in section 3 

and 4, _as well as those of the ADF test. Further discussion on the usefulness 

of the MLBI test and other comments are found in section 6. 

2. ARFIMA(p,d,q) Series 

Let a= 1-L be the difference operator. Then (1) can be written as 

(2) 

where -0. 5 < d < 0. 5. Then d = 0 corresponds to a unit root process. Our 

interest is to test d = 0 against d < 0 or d > 0. Some properties of the 

ARFIMA(p,d,q) series {axt-aµt} defined by (2) are worth noting. 

When -0.5 < d < 0.5, the ARFIMA(p,d,q) process is stationary, causal and 

invertible. Its spectral density is 

f(w) 
2 

= ~ ll-e-iw,-2d 
27r 

= 
2 

~ 

2rr ( 2 . w J-2d 
Sln z 

where w is the frequency, and 

1ece-iw) ,2 

l4>(e-iw) J2. 

1ece-iw) ,2 
l4>(e-iw) 

1
2 

4 

(3) 



1ece-iwll2 

IJ(e-iwll2 

It is assumed that IS(eiw) 12/IHeiw) 12 is bounded from above and away from 

zero. When d = 0, (3) becomes the familiar spectral density of an _ARMA(p, q) 

process. Since lim f(w) = oo when 0 < d < 0.5, and lim f(w) = 0 when -0.5 < d < 
~o £u-?o 

0 (however f(w) has +oo at w = 0), it is clear that the ARFIMA(p,d,q) model 

allows a wider range of low frequency behaviour. This, for example, includes 

situations where a once-differenced series shows no power at w = 0 in its 

estimated spectral density, or still _exhibits a high peak at very low 

frequency. 

In the time domain, the above low frequency behaviour is reflected in the 

slow hyperbolically decaying autocorrelation function 

k • oo (4) 

k in contrast to fast exponentially decaying p(k) ~ c
2
h, 0 < h < 1, k • oo of an 

ARMA process. Here c
1 

and c2 are constants whose values depend on d, ~ and 9 

It is obvious from (4) that an ARFIMA(p,d,q) process and an ARFIMA(O,d,0) 

have the same high lag correlation structures. Lower lag structures are 

dominated by values of~ and 9, in addition to values of p and q. This aspect 

is exploited in constructing the MLBI test in section 3.2. 

Consider the moving average representation of axt-aµt' 

00 

(5) 

For -0.5 < d ~ 0, I:=ol~il < oo. Then from time series theory, periodograms of 

{8Xt -aµt} are asymptotically independent and exponentially distributed. The 

GPH method is based on this asymptotic result. When 0 < d < 0.5, ½=ol~il = oo. 
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In this case, although theorems assuming '"'° J •'• J Li=O "'i < oo are not directly 

applicable, Yajima (1989) show that the above asymptotic properties of 

periodograms still hold even when i:;=O JI/Ji J = oo, Thus the GPH method is 

justified also for O < d < 0.5. 

3. The Modified LBI Tests 

Although all the tests proposed in this section apply to general 

situations where aµt can be a function of time t, 1 in this paper we restrict 

attention to those situations where aµt = µ, an unknown constant. This 

corresponds to a level series {Xt} with mean E(Xt) = v + µt, v being a 

constant. In the remainder of the paper, we shall use the notation Yt = axt. 

3.1 The LB! Tests for ARFIMA(O,d,0) Model 

Consider first the stationary ARFIMA (O,d,O) model 

t = 1, n (6) 

iid 2 where et ~ N(O,~ ), and one-sided alternative hypotheses. Specifically, the 

testing problems are 

HO: d = 0 against H: ct > 0 (7) 
a 

or H: a d < 0 (8) 

Equivalently, the model can be written in vector form as 

Y = µ1 + u (9) 

where Y = (Y
1

, y ) , u 
n ' u ) ' with u n t 

-d 
= (1-L) et, and 1 is an 

1This is then a regression setting where other variables can enter the 

equation as regressors. Estimation of din linear regression models has been 

considered by Yajima (1988). 
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n x 1 vector of ones. Then the covariance matrix of u is 

V(u) 2 ~ ~ = <J' ,
0

(d)Q(d) 

where 

r(1-2d) 'oCctl = ----~ 
crc1-ctll 2 

and the ij-th element of Q(d), 

d(l+d) ... (k-l+d) 
pk(d) = ----------

(1-d) (2-d) · · · (k-d) 
k = Ji-jJ = 1, 2, 

(10) 

(11) 

n-1 (12) 

2 is the k-th order autocorrelation coefficient of {ut}. Since µ and <J' are 

nuisance parameters, we seek to construct a test based on a density of a 

certain random variable function of Yt which is invariant with respect to µ 

2 and <J' • 

Let M = I - 1(1'1)-11', P be an (n-1) x n matrix such that PP'= I 1 and n n-

P'P = M. The testing problems (7) and (8) are invariant under the group of 

transformations 

where ,
0 

and, are scalars with , 0 > 0. Then 

is a maximal invariant which is free fromµ and 2 
(J' ' 

where C = MY is the OLS 

residual from (9). Based on the density of v (see King (1980)), and following 

King and Hillier (1985), a LBI test against H is to reject the null for small 
a 

values of 

s = 
n-1 

= -2 I 
k=l 

where, noting that d,0 (ct)/ddJd=O = 0, 

( 13) 
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A = d ( ~ ~ ) - dd ~oCctJnCctl lct=o 

d ncctJ 
lct=O = 

dd 

0 1 1 
2 

1 
n-1 

0 1 1 
2 

- - (14) 
1 
2 

" 1 
0 

and 

n A A L u.u._k 
A j=k+l J J 
Pk = n 

L A2 u. 
j=l J 

( 15) 

is the sample autocorrelation coefficient. Note that the test statistic is a 

weighted sum of sample autocorrelation coefficients with more weight being 

given to the lower lags. For H, the LBI test is to reject the null for small 
a 

values of s' = -s. 

Given the ARFIMA(O,d,0) model, a locally best test is particularly 

appropriate to distinguish a unit root process (d = 0) from its close 

alternatives. The LBI test (13) is quite powerful for the given sample sizes 

2 as shown in Table 1 on the next page. 

3.2 The Modified LBI Tests 

The ARFIMA(0, d, 0) model has limited applicability in practice as with 

only one parameter d, it is impossible to capture a variety of short-run 

2 The procedure of Monte Carlo simulation will be discussed in section 5. 
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Table 1. Power of LBI tests against the ARFIMA(O,d,0) process 

(second row: power against H- using s') 
a 

n ct = .0 . 05 .2 .4 critical 
.0 -.05 -.2 -.4 values 

50 .050 .109 . 449 . 868 -0.36 
.050 .088 .348 .781 -0.56 

100 . 050 .145 .716 .990 -0.31 
. 050 .134 .650 .990 -0.41 

behaviour. However for an ARFIMA(p,d,q) series the s-test in (13) cannot be 

used directly. The weights are obtained from knowledge of the particular 

covariance structure (12) of Yt. For an general ARFIMA(p,d,q) process, its 

covariances are dependent on nuisance parameters </> and 0 in the AR and MA 

polynomials of (1), and knowledge of p and q. For example, since the pk's in 

(12) are all positive ford> 0 and ~k•s in (13) have larger weights for lower 

lags, the s-test will have larger size for an ARFIMA(l,d,O) series with <1>
1 

> 

0, and smaller size for <t>1 < 0. 

To tackle this problem we note that, although the short-run behaviour of 

an ARFIMA(p,d,q) process is characterized by</> and 0, it is obvious from (3) 

that the spectral density at low frequency (therefore long-run behaviour of 

dependency) is dominated by values of d. Thus one way to deal with the 

nuisance parameters is to discard the high frequency density and therefore 

make </> and 0 less relevant. This would mean applying a filter which only 

allows low frequency components of the series to pass. One simple procedure 

for this is to take a moving average of the series. After applying an equal 

weight moving average of order r, the transformed series will have the 

spectral density 
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f(w) 
2 

= a- I l-e-iw
1
-2d 

2rr 

1ece-iwll2 

l<t>(e-iw) 12 

_1_[ sin(rw/2) )2 

r 2 sin(w/2) 
(16) 

From the shape of the curve (sin(rw/2)/sin(w/2))/r2 , it is clear that f(w) is 

dampened quickly for large w when r becomes large. For any given lw0 1 > 0, 

f(w
0

) can be made arbitrary close to zero as r • oo. Thus only smaller 

neighbourhood of w = 0 will be effectively relevant for inference when r 

increases. The neighbourhood may be conveniently defined as the interval 

(-2rr/r, 2rr/r), as the filter (sin(rw/2)/sin(w/2))/r2 decreases monotonically 

and reaches zero for the first time at w = -2rr/r, 2rr/r when lwl increases from 

zero. Since 1ece-iwll 2/l<l>(e-iwll 2 has zero derivative at w = 0, an 

ARFIMA(p,d,q) process and an ARFIMA(O,d,O) process have the same local 

spectral power at w = 0 up to a constant scalar. However a LB! test 

constructed in the way of section 3.1 is invariant to this constant as it is 

2 invariant to values of a-. Based on this argument, a MLBI test, embedding the 

filtering structure, will be asymptotically robust to values of the nuisance 

parameters~ and 0. 

Let F be the matrix of a data series transformation which dampens the 

high frequency density. In the case of the equal weight moving average 

transformation with order r, Fis the (n-r+l) x n matrix 

1 · 1 

1 
1 1 0 

F = 
r 

0 
1 · 1 

Note that if r = 1, F becomes the identity matrix. Premultiplying F to both 

sides of (9), we have 

* * * Y = µ1 + u 

* * * where Y = FY, u = Fu and 1 = Fl. From (9) and (10) the transformed error 
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vector u• has the covariance matrix ~2,
0

(d)FQ(d)F'. Thus, following the same 

procedure as in section 3. 1, we get the MLBI test against H which will 
a 

reject the null for small values of 

where 

-

s = 
m 

* M is 

* * Y'F'M FAF'M FY 
* Y'F'M FY 

as M, but has dimension (n-r+l) X (n-r+l l. When 

H a' the MLBI test is to reject the null for small values of 

The question remains as to how to determine the value 

(17) 

r = 1, s = s. For m 

s' = -s m m 

of r. For any given 

sample size n, a large value of r is not necessarily good because not many 

effective observations will be available to ensure reasonable power. Yet a 

value of r which is not large enough indicates that the tests can not be 

sufficiently robust to the influence of nuisance parameters~ and e. Thus the 

conditions r • oo and r/n • 0 as n • oo are necessary for the robustness and 

power considerations. 
a. In our Monte Carlo study, r = n 0 <a.< 1 is used. 

Finally we note that there is trade-off in gains of robustness of the 

MLBI test to the nuisance parameters~ and e. The test would be less powerful 

than the LBI test when applied to an ARFIMA(O,d,0) process. 

4. The Regression Method 

Geweke and Porter-Hudak (1983) proposed a method of estimation of d 

based on frequency domain approach. Let 

I(w.) = _! I E y e-iw}I 
J n t=l t 

be the periodogram where 

w j = 2rrj/n, j = 0, 1, · · ·, [n/2] 

are Fourier frequencies and [x] is the integer part of x. Also let 
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g(w) = 
2 

IJ' 

2rr 

1ece-iw) 12 

Jw(e-iw) 12 

so by (3) f(w) = l1-e-iwl-2dg(w), and 

~ -iw -2 log f(w) = log g(O) + d,log 11-e I + log (g(w)/g(O)) 

To use the periodogram, this expression can be written as 

~ -iw 2 log I(w.) = log g(O) + d(- log Jl-e jl ) + log (I(w.)/f(w.)) + 
J J J 

log (g(w.)/g(O)) 
J 

(18) 

When w. is close to zero the last term in (18) is negligible compared to other 
J 

terms. As discussed in section 2, I(w.)/f(w.) are asymptotically independent 
J J 

over j when -0. 5 < d < 0. 5. Th.en (18) can be viewed as a simple regression 

model 

(19) 

where the meaning of each term is obvious, and the OLS estimated is d. The 
e 

calculation is based on w. with j up to m(n): m(n) being a function of n such 
J 

that m(n) • oo and m(n)/n • 0 as n • oo. Geweke and Porter-Hudak show that there 

exists such m(n) which ensures plim d = d. If further m(n) also satisfies 
e 

2 . 
(log n) /m(n) • 0, then 

( 

2 m(n) 2 1) 
d ~ AN d, ~ ( L (x.-x) )-

e 6 j=l J 

where rr2/6 is the variance of the asymptotic distribution of the error term e. 
J 

= log(I(w.)/f(w.)). 
J J 

A one-sided t-test, termed GPH test, then can be used to test d = 0. 

However there is no obvious way to determine the function m(n). It is not 

guaranteed that any function m(n) satisfying m(n) • oo, m(n)/n • 0, (log 

2 n) /m(n) • 0 will ensure consistency and asymptotical normality. Simulation 
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1/2 results of Geweke and Porter-Hudak (1983) indicate that m(n) = n may be a 

good choice for their particular case of simulation. Our Monte Carlo study in 

the next section provide further evidence on this. Finally we note that the 

t-test test is also invariant to the nuisance parametersµ and ~2 

5. Empirical Power of the Tests 

This section reports some simulation results on the power of the MLBI 

test, the GPH test and the ADF test. 

5.1 Experiment Set-up 

For the MLBI test, ex we tentatively choose r = n and report the power 

result for ex= 0.4, 0.5, 0.6. For the GPH test, we use m = r. The sample sizes 

are set at n = 100, 200, 400. 

Experiments were carried out with respect to the following four 

ARFIMA(p,d,q) processes: 

p1: (1 - 0.3L)(l - L)d (Yt - µ) = "t 

p2: (1 + 0.3L)(1 - L)d (Yt - µ) = "t 

p3: (1 - 0.2L)(l - L)d (Yt - µ) = (1 + 0.6L)et 

p4: (1- 0. 7L + 0.5L2 )(1-L)d (Yt - µ) = "t 

These represent a variety of situations. When d = 0, pl has a spectral density 

which attains maximum at w = 0. Thus, it is expected that the size of the LBI 

test will be biased upward in testing against d > 0, and downward against d < 

0 alternatives. The opposite situations are expected for p2. Bias of the MLBI 

test is expected to be much smaller, as ex increases. The ARFIMA(l,d,1) process 

p3 is a slightly more general case. For p4, the theoretical spectral density 

has a peak at the frequency w = 1.018 (see Harvey 1981, p.73). This 
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corresponds to a cycle of around 6.2 years for yearly data. The purpose is to 

examine the influence of. short-run cycles on the power of the tests 

considered. 

Since the LBI and MLBI test statistics are in ratios of quadratic form in 

normal variates, the power of these tests may be evaluated by the subroutines 

used in calculating p-values of the Durbin-Watson statistic. However, to 

conform to the power evaluation needs of the GPH test, we use the Monte Carlo 

method throughout the simulations. To generate the required ARFIMA(p, d, q) 

µ) = B(L)et, we setµ= 0 and ~2 = 1 since the MLBI 

tests and GPH test are invariant to values of these nuisance parameters. We 

first calculate the covariances 'u(j) 

(11) and (12). Writing the model as Yt 

the covariances of Yt are calculated as 

0, 

I ~(kl, (h-k) 
k=-oo u 

where 

0, 

~(k) = .I t/Jjt/Jj+k' 
J=-oo 

~ ~ -ct = , 0 (d)p j (d) of ut = (1-L) et' using 

= <li(L)-
1
8(L)ut = 'll(L)ut = ½=Ot/Jjut-j' 

see Hosking (1984) or Brockwell and Davis (1986, p.470 and p.91). Once the 

covariance matrix of Y, say V(Y), is calculated, its Cholesky decomposition 

V(Y) = R'R is then found by the IMSL subroutine LFTDS. The subroutine RNMVN is 

then used to generate the Gaussian ARFIMA series. The number of replications 

is N = 5000. Power is calculated for points of d = -1.0, -0.4, -0.2, -0.05, 

0.0, 0.05, 0.2, 0.4. The ARFIMA(p,-1,q) series are obtained by taking the 

first order difference of the ARFIMA(p,0,q) series generated. 

The ADF test (,) is the t-test of p = 1 in the regression 

' 
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d * Table 2. Power of the tests against (1-0. 3L) (1-L) (Yt-µ) = "t 

(one-sided test against ci > 0 and d <OJ 

n r d = .0 .05 .2 .4 ci = .o -.05 -.2 -.4 -1.0 

100 6 .112 .160 .408 .697 . 018 .027 .107 .464 1.000 
.048 . 053 .124 .253 . 053 .055 .093 .181 . 554 
. 057 . 065 .114 .163 . 049 .054 . 089 . 210 

10 . 082 .109 .266 .474 . 024 . 035 .094 .358 1. 000 
. 059 .084 .218 . 492 . 041 .057 .123 .279 .859 

16 . 073 . 082 .182 . 321 .033 . 040 . 088 .279 1.000 
. 093 .143 . 398 . 763 . 030 . 041 .126 .381 .980 

200 8 .107 .189 .531 . 870 .018 . 034 .216 . 821 1. 000 
. 040 . 058 .138 .340 .051 . 066 .120 .255 .687 
. 050 . 083 .146 .211 . 052 .057 .153 .499 

14 . 076 .144 . 366 .668 . 027 .040 .189 .682 1. 000 
. 052 .079 . 249 . 612 . 048 .068 .177 .440 . 952 

24 . 065 . 097 .232 . 408 . 037 . 049 .137 . 486 1. 000 
. 085 .138 .476 . 884 . 035 . 052 .227 . 649 .999 

400 11 . 097 . 221 .681 .959 .018 .047 .410 . 992 1. 000 
. 037 .066 .177 .474 . 052 .072 .171 . 354 .762 
.050 .081 .167 .240 . 047 .067 .240 .773 

20 . 070 .144 . 478 .799 . 030 . 060 .318 .942 1. 000 
. 044 . 087 .327 . 758 . 050 .082 . 357 .642 .984 

36 . 063 .116 . 293 . 554 . 040 .066 . 240 .769 1. 000 
. 066 .147 .584 .955 . 038 . 077 .378 . 894 1. 000 

* MLBI test first row, GPH test second row, ADF test third row. Maximum width 

of 95% confidence interval of estimates of power is smaller than +0.014. 

g-1 
I /3.llXt . 

i=l l -1 

The ARFIMA(p,d,q) series Xt with d = 1 +dare generated by Xt = Xt-l + 2 + 

Yt' x0 = 2. The values of g are chosen as g = [4(n/100)1/4], [x] being the 

integer part of x. The test is one-sided. The critical values for n = 100 are 

from Fuller (1976, p.372). Critical values for n = 200, 400 are obtained using 

interpolation. 
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(1+0.3L)(1-L)d(Yt-µ) * Table 3. Power of the tests against = "t 

(one-sided test against d > 0 and d <0) 

n r d = .0 .05 .2 .4 d = .0 -.05 -.2 -.4 -1.0 

100 6 . 021 . 050 . 234 .593 . 121 .191 . 571 . 979 1. 000 
. 042 . 046 .107 .231 .055 . 062 .104 .184 . 405 
. 058 .066 .124 .187 . 048 . 053 .109 .324 

10 . 027 .052 .185 . 423 .084 .121 . 369 .873 1. 000 
. 040 .057 .155 .407 . 057 .080 .156 . 330 . 752 

16 . 034 . 050 .144 . 296 . 076 . 101 . 233 . 648 1. 000 
. 029 . 047 . 202 . 579 .075 .098 .242 .576 . 963 

200 8 . 021 . 067 . 380 . 817 . 116 . 212 .783 1. 000 1. 000 
. 039 .055 .131 .331 .054 . 067 .122 . 254 .464 
. 048 .083 .164 .245 . 049 . 064 . 206 . 680 

14 . 032 .079 . 298 .630 . 080 .124 . 536 .984 1. 000 
. 039 . 062 . 212 . 567 . 057 . 081 .197 . 457 . 829 

24 .039 . 068 . 202 . 395 . 069 .093 . 309 . 857 1. 000 
. 039 . 066 . 320 . 795 . 064 .105 .342 .774 .989 

400 11 . 013 . 026 . 111 . 294 . 111 .258 . 929 1. 000 1. 000 
. 036 .065 .173 . 467 .053 .073 .172 .347 . 533 
. 052 .083 .182 . 273 .045 .072 . 298 . 881 

20 . 035 .089 . 394 . 777 .073 .152 . 686 1. 000 1. 000 
. 039 .077 . 301 . 735 .057 .089 . 278 . 636 .879 

36 . 041 . 087 .272 . 544 .064 .109 .420 . 975 1. 000 
.039 . 090 . 468 .924 .063 . 118 . 469 .921 1.000 

* MLBI test first row, GPH test second row, ADF test third row. Maximum width 

of 95% confidence interval of estimates of power is smaller than +0.014. 

5.2 Size and Power of the Tests 

The results are given in Tables 2 to 5. Critical values are given in 

Table 6. Consider the size first. The sizes of the MLBI test are typically 

either above or below the nominal size, which is 0.05. The differences are not 

large. However it is conceivable that if a= 0 (or r = 1, so the MLBI test 

becomes the LBI test) were chosen, the size would be seriously distorted. With 

a fixed sample size n, the size of the test becomes closer to 0.05, when a (or 

r) increases from a= 0.4 to a= 0.6. Fixing the value of a at a= 0.5 or 0.6, 
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(1-0.2L)(l-L)d(Yt-µJ=(l+0.6L)ct * Table 4. Power of the tests against 

(one-sided test against ct > 0 and d < OJ 

n r d = .0 .05 . 2 .4 ct = .o -.05 -.2 -.4 -1.0 

100 6 .130 .178 . 424 . 701 . 014 . 019 . 077 . 346 1. 000 
. 047 .053 .124 . 251 . 053 . 057 . 095 .184 .576 
. 047 .050 .091 .134 .071 . 085 .125 .266 

10 . 088 .116 . 273 . 477 . 022 . 032 . 076 . 292 .999 
.058 . 082 .215 .488 .042 .057 .125 .283 . 878 

16 .076 .085 .184 .321 .029 . 036 .080 .242 . 993 
. 099 .149 . 409 .770 . 027 .039 .122 .374 . 985 

200 8 .118 .203 . 540 . 872 . 016 . 026 .173 .721 1. 000 
. 039 .057 .138 .339 . 051 . 065 .120 .258 . 722 
.037 .064 .112 .174 . 073 .088 . 210 .561 

14 . 084 .150 . 370 .671 .025 . 037 .164 . 605 1. 000 
. 050 .078 .248 .609 .048 .068 .180 .444 . 967 

24 . 067 .099 . 232 . 408 . 035 . 046 .124 . 439 1. 000 
. 086 .135 . 476 .884 .035 . 052 .230 .656 1. 000 

400 11 .106 .233 . 686 .960 . 015 . 039 .357 .977 1. 000 
. 037 .066 .176 .471 . 052 . 073 . 171 . 359 . 812 
.059 . 091 .177 . 253 . 036 . 053 .186 .689 

20 . 073 .147 . 450 . 798 . 028 .056 .288 .913 1. 000 
. 043 . 086 . 323 . 755 . 052 . 082 .260 . 646 . 991 

36 . 065 .118 . 294 . 552 . 038 .064 .224 . 735 1. 000 
. 064 .143 .578 . 955 . 039 . 079 .381 .895 1. 000 

* MLBI test first row, GPH test second row, ADF test third row. Maximum width 

of 95% confidence interval of estimates of power is smaller than +0.014. 

the size also generally approaches 0.05 as n increases. The exception happens 

at a= 0.4 for cases p2 and p4 as can be seen from Tables 3 and 5. For the GPH 

test, its sizes are generally closer to 0.05, compared to the MLBI test. For 

fixed n, the size either increases or decreases as a increases, and a= 0.4 

often gives the closest size to 0.05. In general, as a increases, the size of 

the MLBI test improves while the size of the GPH test worsens. 

One feature of the results is that the ADF has uniformly lower power than 

the MLBI test and the GPH test in testing against d > 0 alternatives. However 
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2 ct * Table 5. Power of the tests against (1- 0.7L + O.SL )(1-L) (Yt-µ) = "t 

(one-sided test against d > 0 and ct < 0) 

n r d = .0 .05 .2 .4 d = .0 -.05 -.2 -.4 -1.0 

100 6 . 019 .040 .185 .512 . 121 .173 .440 . 883 1. 000 
. 031 .035 . 086 .200 . 067 . 072 .121 . 212 .508 
. 058 .064 .137 .203 . 046 . 058 .126 .376 

10 . 020 .037 .149 .370 . 116 .157 .383 . 806 1. 000 
. 018 .025 . 075 .266 .102 .131 .253 .471 . 896 

16 .025 . 041 .124 . 267 . 093 .118 . 252 . 593 1. 000 
. 002 .004 . 027 . 213 . 274 .361 .624 . 883 .998 

200 8 . 014 .043 .296 . 754 .166 . 272 . 782 . 998 1. 000 
. 033 .050 .117 . 310 . 060 . 075 .134 .272 .591 
. 046 .084 .176 . 268 . 050 .063 . 233 .745 

14 . 025 .060 . 252 .592 . 113 .165 .568 .974 1. 000 
. 022 . 040 .154 .486 . 077 .108 .264 .540 . 934 

24 . 030 .056 .183 .380 . 082 .112 .334 .825 1. 000 
. 005 . 010 .105 .543 .193 .276 .640 .937 1. 000 

400 11 . 010 . 056 . 457 . 920 .176 .348 .942 1. 000 1. 000 
. 033 . 062 .164 . 457 .054 . 077 .177 . 360 . 647 
. 049 .084 .188 . 286 . 044 . 070 .314 .906 

20 . 025 .068 . 353 . 758 .106 .202 . 724 .999 1. 000 
. 030 .059 . 259 . 694 .071 .108 . 314 . 685 .956 

36 . 035 .076 . 253 . 535 . 074 .128 .452 . 967 1. 000 
.010 .030 .292 . 845 . 142 .237 .662 .996 1. 000 

* MLBI test first row, GPH test second row, ADF test third row. Maximum width 

of 95% confidence interval of estimates of power is smaller than +0.014. 

for testing against d < 0, the result is not unambiguous. Depending on the 

values of a, relative power of the ADF test and the MLBI test or the GPH test 

differs. While size of the MLBI test improves as a increases from a= 0.4 to a 

= 0.6 for fixed n, the test becomes generally less powerful for ldl * 0. For 

example, from Table 2, ford= -0.2 and n = 100, the power of the MLBI test 

drops from 0.107 to 0.088, despite improvement in size from 0.018 to 0.033. It 

is not so ford= -0.05, as at this value, the power is sensitive to the size. 

Exactly the opposite situations happen to the GPH test. From these 

18 



test 

ADF 

GPH 

MLBI 

* Table 6. Critical values of the tests at 5% significance level 

n = 100 (r = 6, 10, 16) 200 (r = 8, 14, 24) 400(r = 11, 

-0.90 -0.9133 -0.926 
-3.45 -3.4376 -3.424 

1. 645 1. 645 1. 645 
-1. 645 -1. 645 -1. 645 

20, 

-2.98 -3.54 -3.83 -3.42 -4.10 -4.68 -3.87 -4.72 -5.40 
1. 33 1. 42 1. 26 1. 85 2.03 1. 90 2.39 2.66 2.64 

* Testing against H: d > 0 on first row, against H: d < 0 on second row. 
a a 

36) 

observations, one possible approach, in practice, is to use the MLBI test with 

a= 0.6 or the GPH test with a= 0.4 in testing against either d > 0 or d < 0 

alternatives. The ADF test may be used in testing against d < 0 only. 

Finally, we note that at d = -1, the MLBI test is very powerful. It has 

power exceeding 0.99 in all the cases (and is uniformly not less powerful than 

the GPH test). This indicates that the MLBI test can also be used to test, for 

example, d = 2 against d = 1. Further usefulness of this test is discussed in 

the next section. 

6. Remarks 

Lo (1991) suggests a modified R/S test for long-run dependency, that is 

robust to short-run behaviour, in a rather general framework. As he pointed 

out, specialization to parametric models may reveal more evidence of long-run 

memory in time series. Our paper develops a class of locally best invariant 

tests for the particular ARFIMA(p, d, q) models. They can be used to test 

whether a time series is integer integrated (having unit root) or fractionally 

integrated. A test based on the GPH method is also included in the Monte 

Carlo power study. 

Unless it is specifically known that a time series can be modelled by an 
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ARFIMA(O,d,0) process, the exact LBI test is subject to a serious size 

problem. With the MLBI test, the wrong real size is largely corrected. 

Although the real size is still not very reliable in small samples, simulation 

results for our particular cases show that this problem is diminished as the 

order of smoothing r becomes large. When the sample size n becomes larger at 

1-a the faster rate n/r = n with O <a< 1, reasonable power is also achieved. 

For -0.5 < d < 0.5, there is no dominance of the MLBI test over the GPH test 

or vice versa in any case. Both can be used in the way described in the last 

section. The merit of the two tests lie in their robustness to the nuisance 

parameters ~ and 0, and polynomial orders p and 3 q, that characterize 

short-run behaviour, while maintaining reasonable power. Our Monte Carlo 

results also reveal clear power advantage of the MLBI test and the GPH test 

over the ADF test for the ranged> 1. When 0.5 < d < 1, the ADF test has 

competitive power. 

Additional advantages of the ARFIMA(p,d,q) framework and the usefulness 

of the tests proposed in this paper should be mentioned. Since d nests integer 

values, and because the MLBI test and the GPH test are invariant to the mean 

of time series, hypotheses such as d = 2 (or d = 0) against d = 1 (or d = -1) 

may be tested formally, using the two tests. In this case, our Monte Carlo 

study shows that the MLBI test is very powerful. This is a significant result. 

As is well known, see for example Sowell (1992b, pp.281-282), if {Xt} is a 

unit root process with draft, then ~(L)(6Xt - µ) = 8(L)et. If {Xt} is a trend 

* * * (time trend with coefficient µ ) stationary process, then ~ (L) (6Xt - µ ) = 

* (1-L)8 (L)et, so a moving average unit root is present. Note that* indicates 

that the mean of 6Xt can be different under the different hypotheses, and 

different short-run characteristics may be mingled with different trends, 

3 When p and q are known, a more powerful test (see Wu (1992a)) is available. 
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namely, stochastic and deterministic trends. Testing the unit root hypothesis 

against the trend stationary hypothesis, is equivalent to testing an 

* * ARFIMA(p,0,q) process against an ARFIMA(p ,-1,q) process. Since the the MLBI 

test is invariant to mean and is robust to short-run behaviour, it is very 

suitable for such problems. The high power of the test revealed in our 

experiment guarantees its usefulness. Some applications of the test in this 

context and tabulated small sample critical values of the test are found in Wu 

(1992b). 
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