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ABSTRACT 

Phillips (1988a) has demonstrated that the long run parameters of a 
continuous time error correction model (ECM) involving non­
stationary variables can be estimated from a corresponding discrete 
time ECM. He suggests Hannan efficient and band spectral frequency 
domain procedures for estimation and inference, anticipating they 
would provide significant advantages over the parametric methods 
traditionally used for continuous time models. A further advantage of 
Phillips' proposed methodology is that conventional asymptotic chi­
squared hypothesis testing can be carried out. 

This paper provides an early successful application of that 
methodology, using Australian consumption and income data. The 
spectral regression estimates are relatively straight forward to compute, 
with only a few iterations being required. The spectral estimates are 
not sensitive to alternative initial estimates. The application also 
highlights the potential importance of non-parametric estimators. 
Empirically, the long run consumption function estimates obtained are 
sufficiently realistic for it to be worthwhile exploring conditional short 
run dynamic relations and other macroeconomic data sets. Our 
hypothesis testing procedures are consistent across the aggregate and 
disaggregated data sets used, and between the unit root and 
cointegration stages of the investigation. A surprising result is that the 
null of no cointegration between aggregate real consumption and 
household disposable income cannot be rejected. 

Keywords: Long run equilibria, Cointegration, Unit roots, Regression with non-stationary variables, 
Spectral regression, Continuous time, Australian consumption 



LONG RUN EQUILIBRIUM ESTIMATION AND INFERENCE: 

A Non-Parametric Application 

V.B. Hall and R.G. Trevor' 

1. Introduction 

Phillips (1988a) has demonstrated that the long run parameters of a continuous time 

error correction model (ECM) involving non-stationary variables can be estimated 

from a corresponding discrete time ECM. He derives theoretical results for a first 

order stochastic differential equation system, driven by quite general stationary 

errors. The vector of variables is integrated of order one (an I(l) process), with the 

multiple long run relationships being given by the cointegrating vectors. This 

theoretical work is an extension of Phillips (1988c) results for a discrete time ECM 

with a single cointegrating relationship. 

He suggests frequency domain procedures of the type due to Hannan (1963) for 

estimation and inference, anticipating they would provide significant 

computational advantages over methods traditionally used for continuous time 

models. l In particular, he considers the very significant problems associated with 

temporal aggregation (see, for example, Bergstrom (1984)), the problems of selecting 
short run dynamics, and the complexities of non-linear estimation would not arise. 

This is due to the generality afforded by the non-parametric treatment of regression 

errors in frequency domain procedures. 

A further key element of Phillips' paper is that spectral estimates of the 

cointegrating parameters are asymptotically equivalent to the corresponding 

maximum likelihood estimates. Moreover, the nuisance parameters introduced 

into the limiting distributions by the presence of non-stationary processes have 

* 

1 

We are grateful to Peter Phillips and three referees for their perceptive comments on earlier versions. The paper 

also benefited in its initial stages from comments made by Lew Evans, Arthur Grimes, and John McDermott 

during a presentation to the February 1990 Conference of the New Zealand Association of Economists. 

Major contributions to the continuous time literature have recently been reviewed in Phillips (1988a, Section I) 

and Bergstrom (I 988). The complexities of formulating and estimating empirical macroeconomic models have 

been illustrated for the United Kingdom, Australia, and New Zealand in Bergstrom and Wymer (1976), Jonson, 

Moses and Wymer (1977) and Bailey, Hall and Phillips (1987). 
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only scale effects. It is therefore possible to carry out conventional asymptotic chi­

squared hypothesis testing. 

· In light of the above, the principal aim of this paper is to present some initial 

estimates and inferences based on Phillips' theoretical results and suggested 

empirical procedures. The innovative aspects are: 

• it provides an early application of this methodology to macroeconomic 

time series data2, thereby giving initial evidence on both the potential 

gains and difficulties relative to traditional methods; 

• it extends the Engle and Granger (1987) type scalar cointegration methods 
to vector cases, in a way which is not conditional on the precise modelling 

of short run dynamics (as is required, for example, in the maximum 

likelihood procedure developed by Johansen (1988) and Johansen (1989)); 

and 

• it illustrates the outcome of some simple hypothesis tests on the long run 

parameter values. This is possible because Wald test statistics involving 

coefficients on the I(l) regressors are not misleading. It therefore 
overcomes a major limitation of the Engle-Granger procedure. 

More specifically, our application is to a vector of Australian data on household 

disposable income, and aggregate and disaggregated consumer expenditure. The 

long run consumer expenditure equations estimated could help to underpin a full 

continuous time or discrete time macroeconometric model, once satisfactory long 

term relationships have been developed in•other key areas. 

We have chosen a restricted vector of Australian data as suitable for this study, as it 

is not the purpose of this paper either to estimate a "best" long run (or short run) 

consumption function, or to test alternative forms of underlying consumption 

theory. Previous Australian studies, such as those undertaken by Freebairn (1976), 

2 During the revision stages of this paper, it was brought to our attention that Corbae (1990) has recently reported 

empirical results based on the techniques suggested in Phillips (1988c) for a single cointegrating vector ECM. 

Corbae examines a permanent income hypothesis consumption function, similar to that estimated by Campbell 

(1987) in the time domain. A principle result from Corbae's Monte Carlo work was the powerful support for 

" ... the bias and efficiency gains from conducting [Phillips (1988c)] systems spectral estimation over [Engle 

(1974)] single equation estimation" (Corbae (1990, p. 176)). 
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Williams (1979), Anstie, Gray and Pagan (1983), Johnson (1983), and McKibbin and 

Richards (1988), have not focussed on long run cointegrating relationships. 

Hence, the three stages in our empirical work involve: 

• firstly, testing each variable for its order of integration and for the presence 

of any deterministic trend; 

• secondly, testing for the number of cointegrating relationships amongst 

the variables; and 

• thirdly, from the discrete data set, estimating and conducting tests on the 

coefficients of the appropriate cointegrated system. The two methods used 

are the Hannan efficient and band spectral estimators suggested by 

Phillips. 

A fourth stage, that of estimating the corresponding short run dynamic equations 

conditional on these non-parametric estimates of the long run relationships, is left 

for future work. 

From a methodological point of view, we have employed consistent hypothesis 

testing procedures whenever possible. At the first (unit root) stage, this involves 

checking to ensure results are consistent for the real, nominal and implicit deflater 

forms of each consumption and income variable. At the second (cointegration) 

stage, this means using non-univariate cointegration tests for both aggregate and 

disaggregated data sets, and relying on unit root test findings with respect to trend 

and drift. 

Relevant aspects of the econometric theory and estimation procedures are the 

subject of Section 2, empirical results are presented in Section 3, and our concluding 

comments appear in the final section. 

2. Econometric Theory and Estimation Procedures 

Following the treatment in Phillips (1988a), let y(t) be an n-vector 1(1) process in 

continuous time and let µ(t) be an n-vector stationary time series. The vectors y(t) 

and µ(t) are partitioned into the n1 and n2-subvectors as follows 

(1) [
Yl (t) ] 

y(t) = y2(t) 
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On the assumption that there are n1 cointegrating relationships between these n 

variables (that is, there are n1 linearly independent linear combinations of the n 
elements of the y(t) vector which are stationary), the data generating mechanism for 

y(t) is therefore the cointegrated system 

Equation (2) gives the long-run relationship between the variables. This 

relationship is perturbed by stationary deviations, which may represent short-run 

(or stationary) dynamics, measurement error and temporal aggregation errors as 
well as the innovations. Differentiation of equation (2) (in the sense of Phillips 

(1988a, pp. 3-4)) leads to 

which may be combined with equations (2) and (3) to yield 

(4) Dy(t) = -EAy(t) + co(t) 

where 

E =[~] A= [I, -BJ 

Equation (4) is a continuous time analogue of a triangular format ECM. In this 

formulation, the matrix E is known; it is only the B submatrix of the coefficient 

matrix A which is to be estimated. 

Phillips proves that every continuous time ECM of the form of equation (4) 

generates an exact discrete model that may be written in the discrete time triangular 

ECM format 

(5) llyt=-EAYt-1 +Et 
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where the discrete data are recordings of the instantaneous data at equispaced points 

in time, and Ll. is the difference operator.3 

The long run equilibrium coefficients B, incorporated in the matrix A, are the same 

in both the continuous time and discrete time ECM's. There are no identification 

or aliasing problems. The only requirements on the error processes are stationarity 

and the existence of a continuous spectral density matrix. In particular, any short­

run dynamics are absorbed into these error processes. 

Equation (5) could be estimated by maximum likelihood or instrumental variables. 

Both of these techniques would require a precise formulation of the residual 

processes. However, given the quite general conditions placed on these processes, a 

non-parametric treatment of the residuals is appropriate. Hence, spectral regression 

methods provide a suitable estimation strategy. 

Two such estimators are suggested in Phillips (1988a). These are the Hannan 

efficient and band spectral estimators. Equation (5) may be reduced to 

(6) Zt = EBxt + Et 

where 

[
Ylt ] 

Zt = Ll.y2t Xt = Y2t-1 

Now if~ is defined as the column vector containing the stacked rows of B, then the 

Hannan efficient estimators are 

(7) 

3 The proposition also has a converse. For every discrete time cointegrated system such as equation (5), there is 

an underlying continuous system such as equations (2) and (3) which gives rise to it. Phillips (1988b) shows 

that all that is required for optimal estimation of the long run coefficients is consistent estimation of the long 

run covariance matrix of the system residuals. Hence, given the estimation technique used here, it matters little 

for the estimation of the long run parameters whether the underlying dynamics are continuous or discrete. 

However, everything depends on the estimation procedure used. 



(8) 

In these equations, the F( •) functions denote smoothed periodogram estimates of 

the respective spectral density matrices, using a rectangular window and a band of 

width 1t/M for M integer. Correspondingly, f(•) is the vectorisation of F(•) obtained 

by stacking the rows of F( •) into a column vector. 

This estimator is essentially generalised least squares (GLS) applied in the frequency 

domain; the 'covariance matrices' of the variables are adjusted for the 'covariance 

matrix' of the residuals. This is done by averaging over the whole spectrum. The 

role of the E matrix is simply to pick out the relevant rows and columns of equation 

(6) which correspond to the long run coefficients in the B matrix. 

Asymptotically, the important parts of the GLS weighting scheme are those that 

incorporate the long run behaviour of the data. Accordingly, band spectral 

estimators based on spectral estimates at the origin may be used, and can be written 

as 

Phillips (1988a) shows that these estimators are asymptotically equivalent to the 

maximum likelihood estimator of B in equation (5). They therefore share all the 

advantages of maximum likelihood, with one major additional advantage. 

Maximum likelihood requires explicit modeling of the error process in equation (5). 

In particular the estimates would be conditional on a specific parameterisation of 

the short run dynamics-a subject on which economic theory is often silent. 

The limit distributions of these two spectral regression estimators involve nuisance 

parameters due to the presence of integrated processes. However, the nuisance 

parameters involve only scale effects, so conventional asymptotic Wald tests may be 

constructed. 
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The null hypothesis R~=r may be tested by the statistics 

(11) S = (Rj3-r)'[Rvar(j3)R1 -1(Rj3-r) or - - 1 -s0 = (R~ 0-r)'[Rvar(~ 0)R1 - (R~ 0-r) 

corresponding to the two estimators. Each statistic has a x2 distribution with 

rank(R) degrees of freedom. 

Three additional issues are of particular importance for the implementation of this 
approach. These involve: establishing effective procedures for computation of the 

spectral regressions; determining the order of cointegration; and choosing initial 

estimates of the residuals for the GLS procedure. 

Hannan (1970) provides formulae for spectral regression which are computationally 

more tractable than equations (7) through (10). For instance, the Hannan efficient 

estimator in equation (7) may be more conveniently computed by 

where 

vec [~±°I< { E'uEE( • k 2 x< •) - E'v EE(• )qzx< •) }] 

k=O 

1 
F(•) =ic(•)-iq(•)) 

u = (c + qc-lqtl 

V = -clq(c + qc-Iqtl 

k,,O,M 

k=O,M 

On the issue of the number of cointegrating vectors, Johansen (1988) and Johansen 

(1989) provide a likelihood ratio test capable of determining the order of 

cointegration. His method can also provide estimates of, and hypothesis tests on, 
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both long run and short run parameters. A potentially important limitation of his 
procedure is that the maximum likelihood estimates produced are conditional on 

the specific parameterisation of the model. For instance, Johansen's theory allows 

only for VAR-type dynamics. However, in the absence of a well developed non­

parametric test for multiple cointegrating relationships, in this study we have relied 

on Johansen's cointegration tests. 

Finally, both spectral estimators require an initial estimate of Bin order to construct 

the residual spectral density estimate Fee(•). This also raises the question of iterating 
on the estimate of B. Such choices, together with the choice of method to calculate 
the spectral density matrices, may affect the finite sample performance of the 

estimators. They will not, however, affect the asymptotic properties of the 

estimators. For the purposes of this application, it was decided to use both OLS and 

Johansen estimates as initial values for B, and to examine the implications of 

multiple iterations.4 

3. Empirical Results 

3.1 Data 

It seemed appropriate to commence with estimating some long run relationships 

between consumption expenditure and income. This was not only because it could 

reasonably be expected from recent work by Engle and Granger (1987) (and by a 

number of others) for the United States that such series would be I(l), but also 

because it is widely believed that long run relationships exist between consumption 

and income variables. The general long run equations (13) and (14) specified below 

are consistent with a variety of economic theoretic specifications, including forms of 

Keynesian and permanent income hypotheses.5 

Some theoretical models postulate a long run relationship between real permanent 

income, and real consumption of non-durables and service flows from durables.6 

As no official measures of these variables exist for Australia, household disposable 

income and consumption expenditure series were used. This choice will not affect 

4 

5 

6 

We do not explicitly examine differing methods of constructing the spectral density matrices. Nevertheless, we 

do control for some of the choices available by using both the Hannan efficient and band spectral estimators. 

For example, equation (13) is consistent with the long run equilibrium of the continuous time consumption 

function specified in Bergstrom and Wymer (1976, pp. 269-72). 

See, for example, Hall (1978), Flavin (1981) and Campbell (1987). Note that the error correction modelling 

structure we use is consistent both with present value models and with models that postulate adjustment to long 

run equilibrium. See, for example, Campbell and Shiller (1987) and Campbell and Shiller (1988). 
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our parameter estimates, given the non-parametric nature of our estimator and 

provided the measurement errors are stationary. 

The fourteen variables we consider are defined in Table 1. Each series consists of 118 
quarterly (seasonally adjusted) observations in logarithmic form, from 1959(3) to 

1988(4). The constant price series are at average 1984/85 prices.7 

Variable 

C 
CHO 
CMV 
CND 
YHD 

C$ 
CHO$ 
CMV$ 
CND$ 
YHD$ 

PC 
PCHD 
PCMV 
PCND 

Description 

Tablet 
Variable Descriptions 

Aggregate real private final consumption expenditure 
Real private consumption expenditure on household durables 
Real private consumption expenditure on motor vehicles 
Real private consumption expenditure on non-<iurables 
Real household disposable income(= YHD$/PC) 

Aggregate nominal private final consumption expenditure 
Nominal private consumption expenditure on household durables 
Nominal private consumption expenditure on motor vehicles 
Nominal private consumption expenditure on non-<iurables 
Nominal household disposable income 

Implicit deflator for aggregate private final consumption expenditure 
Implicit deflator for private consumption expenditure on household durables 
Implicit deflator for private consumption expenditure on motor vehicles 
Implicit deflator for private consumption expenditure on non-<iurables 

Possible long run relations amongst our variables at the aggregate level would 

include 

(13) C = ~1 YHD 

and its nominal equivalent. 

7 The data are taken from the dX NIF data set supplied by EconData. The non-durables series are the sums of the 

series for food, rent and other non-durables. The real, nominal and implicit price deflator series were double 

checked for consistency with each other, as were the aggregate and disaggregated consumption expenditure series. 

All the econometric calculations were carried out on a microcomputer using the programming facilities of the 

RATS package. 
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The corresponding vector form for real disaggregated consumption would be 

(1-0 [5 l•[~ ]rYHD] 

Two particular advantages of equation (14) for our purposes are that it provides a 

useful illustration for the Phillips estimation procedures in multivariate form, and 

allows for the testing of a range of restrictions on the parameter values (e.g., ~1=1; 

~2=~3=~4; and ~2=~3=~4=1). 

3.2 Unit Root Tests for Stationarity 

Testing for the order of integration of individual data series is seldom a straight 

forward exercise (see, for example, Pagan and Wickens (1989, s. 1.2.1)). Broadly 

speaking, it is known that the tests are sensitive to the presence of deterministic drift 

or time trends, and to departures from residuals which are independently and 

identically distributed (iid). 

Based on a general equation of the form 

(15) Wt= 8 + yt + CXWt-1 + Ut 

our procedure was to test each series (and their first and second differences) for a 

unit root, with and without drift and linear time trends, under a sequence of nested 

hypotheses. Particular care was taken to ensure our unit root test results were 

consistent for the real, nominal, and implicit deflater forms of each consumption 

and income variable, as this kind of consistency check seldom seems to have been 

reported in previous empirical work. 

Many of the tests available in the literature are modifications to the original Dickey­

Fuller (Dickey and Fuller (1979) and Dickey and Fuller (1981)) tests, for situations 

where the residuals are not iid.8 

However, consistent with the non-parametric approach adopted in this paper, we 

employed initially the tests as modified by Phillips and Perron (Phillips and Perron 

(1988) and Perron (1988)). To test a given order of integration, say one unit root 

8 These include extensions to adjust for seasonality. See, for example Dickey, Hasza and Fuller (1984)'. Engle, 

Granger and Hallman (1989) and Hylleberg, Engle, Granger and Yoo (1990). Because our quarterly data are 

seasonally adjusted, conventional unit root tests are employed. 
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versus none, we start by estimating equation (15). First the hypothesis that a=l is 

tested by the Z(a) and Z(ta) statistics; it would be rejected if the statistic were more 
negative than the critical value. If this hypothesis is not rejected, the joint 

hypothesis that a=l and y=O is tested by the Z(<I>3) statistic; it is rejected if it exceeds 
the critical value. In the event that this hypothesis is not rejected, the joint 

hypothesis that a=l, y=O and o=O is tested by the Z(<I>2) statistic; it is rejected if it 
exceeds the critical value. If this hypothesis also is not rejected, equation (15) is re­

estimated under the constraint that y=O. Based on the constrained estimates, the 

hypothesis that a=l is again tested by Z(a) and Z(ta) statistics (with different critical 

values). If this hypothesis is not rejected, the joint hypothesis that a=l and o=O 

would be tested using the Z(<I>1) statistic. 

In all cases the hypotheses of two or more unit roots were unambiguously rejected 

by the Phillips-Perron (PP) tests. Under the conditions of equation (15), empirical 

results for the single unit root case are therefore presented in Table 2. The lags 
reflect the number of terms in the Newey and West (1987) variance calculation used 

in the PP adjustments. At lag zero, the statistics are essentially the unadjusted 

Dickey-Fuller statistics. 



Test Lag C 

a · .9955 

Z(a) 0 -.47 

5 -.67 
10 -.43 
15 -.28 

Z(tal 0 -.25 

5 -.33 
10 -.23 
15 -.15 

Z(<f>3) 0 2.68 

5 2.45 
10 2.74 
15 2.98 

Z(<f>2) 0 47.59 

5 42.92 
10 48.64 
15 53.19 

12 

Table2 
Phillips-Perron Unit Root Test Statistics 

CHD CMV CND YHD C$ CHD$ 

.9659 .9423 .9956 .9701 .9652 .9543 

-3.82 -6.46 -.45 -3.35 -3.99 -5.21 

-7.09 -6.51 -.35 -2.52 -5.12 -7.45 
-7.79 -5.73 -.25 -2.62 -5.90 -8.81 
-7.74 -4.54 -.24 -2.64 -6.33 -9.15 

-1.32 -1.82 -.24 -1.31 -4.12 -2.98 

-1.84 -1.83 -.19 -1.14 -2.86 -2.71 
-1.93 -1.72 -.14 -1.17 -2.70 -2.75 
-1.93 -1.54 -.13 -1.17 -2.67 -2.77 

.87 2.68 2.79 2.13 17.36 6.90 

1.69 2.68 2.95 2.35 6.69 4.68 
1.86 2.63 3.12 2.31 5.41 4.52 
1.85 2.64 3.14 2.31 5.04 4.52 

11.62 2.26 58.09 14.11 307.20 49.82 

7.30 2.26 61.71 18.60 90.99 21.46 
6.89 2.29 65.38 17.93 61.89 16.49 
6.91 2.45 65.85 17.80 52.69 15.67 

CMV$ CND$ 

.8425 .9674 

-17.68 -3.74 
-19.15 -4.78 
-18.44 -5.50 
-16.21 -5.94 

-3.12 -4.31 

-3.23 -2.84 
-3.18 -2.66 
-3.00 -2.62 

4.80 20.03 

5.17 6.89 
4.99 5.44 
4.43 5.00 

7.86 383.91 

7.72 103.19 
7.78 68.98 
8.09 57.60 

Critical values are given in Fuller (1976) and Dickey and Fuller (1981). At the 1% level 

they are -29.50, -3.96, 8.27 and 6.09 for Z(a), Z(ta), Z(<f>3) and Z(<I>2) respectively. 

YHD$ 

.9622 

-4.30 
-4.90 
-5.83 
-6.40 

-2.38 

-2.32 
-2.32 
-2.34 

4.76 

4.10 
3.68 
3.59 

103.92 

76.41 
54.51 
46.54 

Results in Table 2 show that all the series are I(l) with drift (and no time trend), 

except for the CMV series which is I(l) with no drift. The latter result is confirmed 

by the statistics derived from the restricted version of equation (15), the point 

estimate of the root from the constrained model being 0.9556. As a consistency 

check, tests were conducted on the (log-levels) of the implicit price deflater series. 

In all cases these were found to be I(l).9 

Further consistency checks, involving the augmented Dickey-Fuller (ADF), Dickey­

Pantula (ADP), and Stock-Watson (SW) tests were then undertaken.10 These tests 

are parametric extensions to the original Dickey-Fuller tests. Each of these tests 

requires an autoregressive (AR) parametric adjustment in order to adjust for serial 

9 For the series PCMV, the outcome was 1(1) with a time trend. 

10 See Said and Dickey (1984) and Dickey, Bell and Miller (1986); Dickey and Pantula (1987); and Stock and 

Watson (1988). 
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dependency in the residuals of equation (15). Following Schwert (1987) we used AR 

adjustments of length four and twelve.I 1 

The ADF and ADP results show our variables to be 1(2) in almost all cases for an AR 
• 

correction of 12, and in about half of the cases for an AR correction of 4. However, 

there was a marked lack of consistency in the inferences drawn from these tests 

applied to each set of real, nominal and implicit deflator measures. For example, 

the ADF tests with an AR correction of 4 suggest that the logs of nominal. and real 

consumption of household durables are 1(1), but that the log of the implicit price 

deflator is 1(2). Since these variables are related by a simple identity, at least one of 

these inferences must be erroneous.12 

Given this outcome, results from a univariate version of the SW qf test were then 
examined. For AR corrections of both 4 and 12, variables were consistently 1(1), 

thereby confirming the outcomes from the PP tests. 

It can therefore be said with reasonable confidence that all the real, nominal and 

implicit deflator variables of interest to us are 1(1).13 For the second stage of our 

empirical work, this meant that the following groupings of variables were then 

examined: 

• real aggregate consumption C YHD; 

• real disaggregated consumption CHD CMV CND YHD; 

• nominal aggregate consumption C$ YHD$; and 

• nominal disaggregated consumption CHD$ CMV$ CND$ YHD$. 

11 Based on a Monte Carlo analysis, Schwert suggests correcting for an AR of order k, where k=int{4(T/IOO)lf4J 

or k=int{ 12(T/IOO) 114 ], and T is the number of observations. 

12 The inconsistency of the inferences from ADF tests on the components of identities between (the logs of) 

aggregate nominal, real and implicit price deflator data for Australia may be found in other studies also. (See, 

for example, the results reported in Table 2 of Hargreaves (1990).) This is a puzzling result, and the stochastic 

properties of the Australian data are worthy of further investigation. Peter Phillips has suggested a possible 

explanation, based on Phillips and Ouliaris (1990). The ADF test is asymptotically equivalent to the PP Z(ta) 

statistic. Both have less power than the Z( a) test, as the rate of divergence under the alternative is greater for 

Z(a) than the ADF. 

l3 All further calculations were performed on data in demeaned form. 
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3.3 Testing for the Number of Cointegrating Vectors 

For a long run relationship to exist between a set of variables which are 1(1), there 

must be one or more cointegrating vectors. In the context of our application, failure 

to find one cointegrating vector for C and YHD (or C$ and YHD$) would mean a 

simple aggregate long run consumer expenditure equation is not estimable. On the 

other hand, the finding of one cointegrating vector allows estimation to proceed 

legitimately. Similarly, establishing the existence of three cointegrating vectors for 

either the real or nominal disaggregated groups of variables would support the 

estimation of three equations. 

Johansen's (Johansen (1988) and Johansen (1989)) trace and maximum eigenvalue 

likelihood ratio tests were used to establish the number of cointegrating vectors, and 

the corresponding estimates of the cointegrating vectors were also used as one set of 

starting values for the spectral estimation procedure results reported in sub-section 

3.4. 

As was done in Johansen's empirical work (Johansen and Juselius (1988) and 

Johansen and Juselius (1990)), we first determined the order of the VAR model for 

each group of variables, using a likelihood ratio test.14 For the four cases above, the 
outcomes were V AR(l), VAR(3), VAR(2) and V AR(3) respectively. In line with our 

research strategy of conducting the same hypothesis tests consistently across our 

aggregate and disaggregate data sets, non-univariate cointegration tests were used in 

the two aggregate cases where there could at most be a single cointegrating vector. 

Johansen's tests for the number of cointegrating vectors were applied to each of 

these VAR models. Initially one uses the trace statistic to test the null hypothesis 

that there are at most zero cointegrating relationships. Should that be rejected, tests 
for successively higher orders of cointegration are applied until an acceptance 

occurs.IS Maximum eigenvalue tests are used in conjunction with this sequence of 

trace tests. Each maximum eigenvalue statistic is used to test the null hypothesis 

that there are P cointegrating vectors against the alternative that there are P+l 

cointegrating vectors. 

14 We considered a maximum of six lags and applied the small sample correction of Sims (1980). 

15 The maximum number of cointegrating relationships within a group of I(l) variables is one less than the 

number of variables. Should no acceptance be found in the sequence of tests, the inference would be that the 

variables arc I(O). This would call into question the results of earlier unit root tests. 
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Results are presented in Table 3. Each order of cointegration statistic presented in 

the table is the value of the trace statistic for the null hypothesis of at most P 

cointegrating vectors. The difference between the values at P and P+l gives the 

value of the maximum eigenvalue statistic for the null hypothesis of P 

cointegrating vectors. 

p 

-
-
0 
1 

Table3 
Johansen's Order of Cointegration Statistic 

Aggregate Disaggregated Critical Values 
Trace Max. Eigenvalue 

Real Nominal p Real Nominal 2.5% 5% 2.5% 

0 60.08 79.60 50.4 47.2 29.3 
1 35.45 32.90 32.3 29.5 23.0 

10.21 31.57 2 17.22 13.45 17.3 15.2 15.8 
4.68 .02 3 3.65 .05 5.3 4.0 5.3 

Critical values are given in Johansen (1989) and Johansen and Juselius (1990). The 
statistic tests the hypothesis that there are at most P cointegrating vectors. 

5% 

27.2 
20.8 
14.0 
4.0 

Conditional on the particular V AR corrections for serial dependence, the outcomes 

of these tests at the 5 per cent level of significance are16: 

• there is no evidence against no cointegration between aggregate real 

consumption and household disposable income; 

• for the real disaggregated group of variables, there are three cointegrating 

vectors; 

• aggregate nominal consumption is cointegrated with household 

disposable income; and 

• for the nominal disaggregated group of variables, the evidence is less clear 

cut. There are either two or three cointegrating ·vectors. For· the 

maximum eigenvalue statistic of 13.4, the null hypothesis of two 

cointegrating vectors is narrowly unable to be rejected, the critical value 

l6 We followed the convention that tests can only reject or fail to reject null hypotheses. Evidence against a null 

hypothesis need only be provided by either of the two tests. 
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being 14.0. However, both test statistics clearly fail to provide evidence 

against three cointegrating vectors. 

Consequently, for real consumer expenditure an aggregate equation should not be 

estimated, but a vector equation including three disaggregated components should 

be estimated. 

In contrast, results for the nominal variables suggest that it would be appropriate to 

estimate the aggregate model. A disaggregated model including either two or three 

cointegrating vectors could be estimated. We proceeded with three cointegrating 

vectors.17 

However, before turning to the spectral estimates and tests of long run coefficients 

work in sub-section 3.4, it is necessary to comment further on what is perhaps our 

major surprising result-the- finding of no cointegration between aggregate real 

consumption and household disposable income.18 There are two main puzzles: 

whether this result is consistent with that for the aggregate nominal variables; and 

whether it is consistent with economic theoretic notions of a long run relationship 

between consumption and income. 

There would seem at least the following possible explanations: 

• the real variables, as measured, are in fact not cointegrated over the 

sample period; 

• despite substantial progress having occurred in recent years, existing tests 

are still inadequate to cover all situations; 

• the long run relationship between consumption and income depends on 

other non-stationary variables; and 

• there are sizeable (non-stationary) measurement errors in the real data 

set. These could be in the deflators for consumer durables during periods 

of rapid technological change, and/ or in the household disposable income 

variable during periods of significant inflation. 

17 Johansen and Jusclius (1990), when analysing their Finish data, were faced with a similar situation. They also 

chose the higher order of cointegration. 

18 The result continues to hold when our aggregate data are expressed in per capita terms. This finding is not 

inconsistent with the conclusion cautiously expressed in McKibbin and Richards (1988, pp. 11, 25-26). 
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The deflator for durable goods view is based on there having been substantial 
technological innovation in consumer durables. For example, technological 

innovations in household durables over our estimation period include: clothes 

washers and dryers; dish washing machines; microwave ovens; home 

entertainment centres; video machines and computers; and central heating and air 

. conditioning. There are likely to have been significant changes in the degree of 

durability of some items. Perhaps more importantly, there are likely to'be severe 

problems in measuring the real expenditures on these goods-the same constant 

dollar amount buys a much higher quality item today than it did previously. The 

latter case has been argued in principle and demonstrated empirically by Baily and 

Gordon in the context of measurement of investment in computers. For example, 
as expressed in Baily and Gordon (1988, p. 386): "Goods where technological 
progress has been rapid have falling relative prices and increasing sales volumes. 
The use of base-period prices overweights the growth of these dynamic 
commodities in years following the base year and underweights them in years 
preceding the base year: ... Constant-dollar base-weighted investment series imply 
that the computer industry disappears as you go back a few years, and it explodes and 
takes over the total as you go forward in time." 

The income based view of mis-measurement has been argued and illustrated 

empirically for Australia by Anstie, Gray and Pagan (1983). Real "economic" income 

is defined by them as that income which may be consumed while leaving real 

wealth intact. In essence, they argue that the Australian Statistician's definition of 

household disposable income is inadequate in the face of inflation and that it 

should be modified by an inflation adjusted wealth measure. That is, measured. 

income needs to be adjusted downwards by the value of the inflation tax on 

nominal assets. However, our unit root results suggest that the log of the implicit 

price deflator is I(l), so inflation will be a stationary variable and an unlikely 

explanation for the lack of cointegration between the real aggregate variables. 

Unfortunately, neither of these two sources of mis-measurement are unique to the 

Australian data. Moreover, any complete explanation of our no cointegration result 

also needs to resolve the puzzle of the inconsistent aggregate real and nominal 

outcomes. These outcomes of no cointegration in the real case, and cointegration in 

the nominal case, would only be consistent if the nominal long run income 
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elasticity is not unity.19 However, all the estimates of this elasticity presented in 

Table 4 are unambiguously unity, and cointegration of the real variables is also 

rejected when a unitary elasticity is imposed. 

Our finding in sub-section 3.2 of inconsistent inferences arising from parametric 

ADF unit root tests on the components of identities between (the logs of) aggregate 

nominal, real and implicit price deflater data, suggests that a similar problem may 

be occurring with the parametric Johansen tests for the number of cointegrating 

vectors in the aggregate real and nominal data sets. Figure 1 shows the log levels of 

real aggregate consumption and real disposable income, as well as the estimated 

(non-stationary) residual from the Johansen 'cointegrating' relationship. Figure 2 

shows the analogous variables from the nominal aggregate data set, where the 

cointegrating residual is stationary. The two residuals are compared fn Figure 3. 

11 

10 
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Figure 1 
Cointegrating Equation: Real Aggregate Data 
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with the additional 1(1) term (P·l)PC. 



11 

9 

7 

0.1 

0 

-0.1 

19 
Figure 2 

Cointegrating Equation: Nominal Aggregate Data 
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Visually, there appears to be little difference in the stationarity of the two residuals, 

yet the Johansen test results infer otherwise. This suggests that some parametric 

adjustment (such as introducing a polynomial in time) to the V AR model of the 

real aggregate data underlying the Johansen procedure may produce different 

inferences. Yet such adjustments would not satisfy the criteria of internal 

consistency-there is no evidence of time trends in our unit root tests, and the 

existence of a deterministic trend in the real cointegrating relationship would imply 

that a similar trend existed in the nominal cointegrating relationship. 

Consequently, for the purposes of this paper, these puzzles have to remain 

unresolved. For the sake of completeness, however, we will present the estimation 

and hypothesis testing results from the 'non-cointegrated' real aggregate data set 

along with the results from the cointegrated real disaggregated and nominal 

aggregate and disaggregated data sets. 

3.4 Spectral Estimates and Tests of Long Run Coefficients 

Given the number of cointegrating vectors established in the previous sub-section, 

it is now necessary to make a normalisation of these in order to write models in the 

form of equations (2) and (3). Since the spectral estimates are not maximum 

likelihood, they will not be invariant to normalisation-this, of course, is a feature 

shared with other potential estimators. It seemed sensible in our application to 

make the standard normalisation that consumption is a function of income, as 

illustrated in equations (13) and (14). The disaggregated cointegration vectors can be 

written with each disaggregated consumption component as a function of the other 

two components and income. These can be solved for the 'reduced form' in which 

each consumption component is a function of income only. 

For each model, two obvious restrictions that we test are that the income elasticities 

of consumption expenditure are jointly unity and that they are jointly equal. 

As indicated in section 2, both spectral techniques require an initial estimate of the 

coefficients. Two sets of initial values are used: one being the OLS estimates of 

equation (6)20; the other being the Johansen estimates of the cointegrating vector 

(appropriately normalised). In each case, the effects of multiple iterations were 

evaluated by taking .the number of iterations to nine. Empirical results from the 

final iteration are presented in Tables 4 and 5. Table 4 provides the band spectral 

and Hannan efficient parameter estimates and relevant standard errors, for each of 

20 These estimates will differ slightly from those of Engle and Granger (1987) since our regressors are lagged. 
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the two sets of initial values. Wald test statistics for the two types of restrictions are 

presented in Table 5. 

Table4 
Long Run Parameter Estimates 

OLS Initial Values Johansen Initial Values 

Equation OLS Band Hannan Johansen Band Hannan 
Estimate Soectral Efficient Estimate Soectral Efficient 

( 

C .9841 .9890 .9649 .9527 .9890 .9649 
(.0790) (.0134) (.0790) (.0134) 

CHD 1.4008 1.4008 1.2999 1.4160 1.4008 1.3000 
(.1752) (.0295) (.1752) (.0295) 

CMV .8970 .9127 .9251 .7785 .9127 .9252 
(.3889) (.0706) (.3889) (.0706) 

CND .9580 .9630 .9582 1.1075 .9630 .9583 
(.0901) (.0130) (.0901) (.0130) 

C$ 1.0057 1.0054 1.0011 1.0151 1.0054 1.0011 
(.0225) (.0048) (.0225) (.0048) 

CHO$ .9756 .9758 .9472 .9596 .9758 .9472 
(.0539) (.0080) (.0539) (.0080) 

CMV$ .8047 .8045 .8177 .7981 .8045 .8177 
(.0536) (.0172) (.0536) (.0172) 

CND$ 1.0180 1.0176 1.0209 1.0314 1.0176 1.0209 
(.0290) (.0045) (.0290) (.0045) 

Each entry is the point estimate of the coefficient on household disposable income in the 
relevant equation. Where Wald test statistics are asymptotically x,2, estimated standard errors 
are given in parentheses. For the spectral methods, the estimates are from the ninth iteration. 

On methodological issues, it can be concluded that: 

• our estimates are not substantially affected by iterations beyond the first. 

For example, for the Hannan efficient estimates based on OLS initial 

values, there was only one parameter which changed by more than one 

percent between the first and ninth iterations-the change was actually 

less than two percent; 

• even though two of the three initial values given by the Johansen and 

OLS estimators differ substantially in the real disaggregated case, this has 

negligible effect on the frequency domain estimates; 
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• the band spectral estimates appear less precise, in the sense that they have 

larger standard errors. This is because an adjustment has been made to 
take into account that there are effectively 'fewer' observations used in 

their estimation21; and 

• the V AR parameterisation inherent in the Johansen estimator can have 
significant impacts on the estimates of long run parameters. There are, for 

example, a number of non-trivial differences between the (parametric) 

Johansen and the (non-parametric) spectral estimates in Table 4. 

Table5 
Wald Tests of Restrictions 

All Coefficients Unity All Coefficients Equal 

OLS Johansen OLS Johansen 
Band Hannan Band Hannan Band Hannan Band Hannan 

Spectral Efficient Soectral Efficient Soectral Efficient Soectral Efficient 

.8892 .0089 .8892 .0089 - - - -

.0339 .0000 .0339 .0000 .0267 .0000 .0267 .0000 
disagg. 

Nominal .8101 .8181 .8101 .8181 - - - -
agg. 

Nominal .0006 .0000 .0006 .0000 .0066 .0000 .0066 .0000 
disagg. 

Each entry is the marginal significance level of the test statistic. At the 5% level of 
significance, a hypothesis with a marginal level of significance less than .0500 would be rejected. 

With respect to the economic implications of our results: 

• it is generally the case that the estimated long run income elasticities of 

consumption are sensible in magnitude, ranging from around 0.8 to about 

LO; 

21 Fewer is in the sense that only a small part of each observation is used, namely that part which corresponds to 

the Jong run trend. In our case this adjustment increases the standard errors approximately tenfold. 
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• in the case of real disaggregated consumption, the various estimates of the 

income elasticity for expenditure on household durables are all 

substantially larger than unity. This is consistent with the view in sub­

section 3.3 that the lack of cointegration between the real aggregate 

variables could be due to measurement errors in the deflators for 

consumer durables during periods of rapid technological change. Perhaps 

not surprisingly, both the hypotheses of equality and of unity of the 

coefficients are rejected by the joint tests. When these two tests are redone 

on the non-durables and motor vehicles coefficients alone, the hypothesis 

of equality cannot be rejected for either set of estimates, but that of unity 

can be rejected for the Hannan efficient estimates22; 

• the long run nominal income elasticity of consumption is unambiguously 

unity; and 

• the nominal income elasticity estimates for disaggregated consumption 

are distinctively different from those for their real counterparts. The two 

of most interest are for household durables and motor vehicles. The 
lower nominal estimates are consistent with our comments about possible 

measurement problems in the real durables data. In each case the 

hypotheses of equality and of unity of the coefficients are unambiguously 

rejected. 

4. Concluding Comments 

We have taken an important first step towards evaluating empirically whether the 

theoretical framework and methods suggested by Phillips (1988a) should be used to 

estimate long run relations (in continuous time). 

In terms of statistical procedures adopted, it has been demonstrated that the spectral 

regression estimates were relatively straight forward to compute, that a few 

iterations of the spectral estimators may be all that is required, and that the spectral 

estimates have not been sensitive to alternative initial estimates. 

Our application has also highlighted the potential importance of non-parametric 

estimators. In the univariate case, for parametric (autoregressive) based corrections, 

22 For the band spectral and Hannan efficient estimators, the marginal significance levels for the hypothesis of 

unity of the two coefficients are .8002 and .0010 respectively, while those for the hypothesis of equality are 

.9097 and .6579. 
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the unit root test results were somewhat confusing and internally inconsistent. 
This is in complete contrast to the results from the (Phillips-Perron) tests with non­

parametric corrections, which were internally consistent. In the multivariate area 

also, a number of the non-parametric (spectral regression) estimates of the long run 

coefficients were markedly different from the parametric (vector autoregressive) 

Johansen estimates. Monte Carlo work, building on the contributions of Schwert 
(1987), Phillips and Ouliaris (1990) and Corbae (1990), would allow an evaluation of 

conditions under which the non-parametric methods might be more generally 

superior. 

Empirically, the long run consumption function estimates obtained are sufficiently 

realistic for it to be worthwhile exploring conditional short run dynamic relations. 

A number of cautionary comments about data measurement had to be made along 

the way, and careful judgement had to be exercised during the course of several of 

the test procedures. The test procedures we used were consistent across our 

aggregate and disaggregated data sets, and between the unit root and cointegration 

stages of our investigation. This methodological stance could have contributed to 

our major surprising result, namely that the null of no cointegration between 

aggregate real consumer expenditure and household disposable income cannot be 

rejected. Some unresolved empirical issues relating to aggregate real consumer 
expenditure have been referred to in sub-section 3.3. However, overall the 

outcomes have certainly been sufficiently encouraging for the examination of other 

macroeconomic and financial data sets to be justified, and for the testing of long run 

relationships more rigorously grounded in economic theory. Setting such relations 

more explicitly into a fuller macroeconomic model with either discrete or 

continuous dynamics could also be considered. 
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