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Fish of the family Galaxiidae are renowned for two particular 

features: their Gondwanan distribution and their movement 

between rivers and the sea (diadromy) (McDowall 1990). Adults 

live, breed and lay their eggs in streams, but larvae are flushed 
out to sea on hatching. Juveniles (whitebait) return to streams 

5–6 months later, where they spend the rest of their lives. They 

are an important component of New Zealand’s biodiversity and 

key players in freshwater ecosystems.

Some 25 species of galaxiids live and breed in New Zealand 

streams (McDowall 2000). Five of these species maintain the 

marine juvenile phase, but the others have lost it, becoming 
non-diadromous, completing their entire life cycle in fresh 

water. Many of these stream-resident species derive from a 

koaro (Galaxias	 brevipinnis)-like ancestor (Burridge et al., 

submitted.) This fact is in keeping with the propensity of koaro 

to climb waterfalls and penetrate deep into river systems, includ-

ing glacial and volcanic lakes and alpine tarns. This trait may 

have promoted repeated propagation of stream-resident forms:  

G.	paucispondylus,	G.	prognathus,	G.	divergens,	G.	cobitinis,	
G.	macronasus and the	G.	vulgaris	group.

Population genetic differentiation in 
diadromous vs non-diadromous species

Species of fish that go to sea as juveniles have the opportunity 
to maintain gene flow over a wide area. In support of this pre-

diction, there is no evidence for population genetic structuring 

within diadromous New Zealand galaxiids (Barker & Lambert 

1988; Allibone & Wallis 1993; Waters et	al. 2000a), so gene flow 
among river systems is large enough to overcome genetic dif-

ferentiation resulting from any natal homing that might exist.

In stark contrast, our work on non-diadromous G.	vulgaris, a 

South Island endemic, revealed extensive genetic differentiation 

among catchments (Figure 1)(Allibone & Wallis 1993), in keep-

ing with long-term isolation in river systems. Concordant dif-

ferentiation for isozymes (Allibone et	al. 1996), mitochondrial 

DNA (Waters & Wallis 2001a,b) and morphology (McDowall 

& Wallis 1996; McDowall 1997, McDowall & Chadderton 

1999) has led to G.	 vulgaris (sensu	 lato) being replaced by 

a complex of at least six species (McDowall 2000) and four 

other evolutionarily significant units (ESUs) (Waters & Wallis 
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2001a,b). In one case, broad sympatry of a species pair (Waters 

et	al. 2001b) confirms species status under a biological species 
concept (Mayr 1942). In another case, there is long-term coexist-

ence in parapatry, with only minimal hybridisation (Allibone et 

al. 1996). In several other cases, two or more of these species 

are found in the same river system with little or no evidence 

of hybridisation, although the opportunity for parapatry and 

sympatry must have been extensive before the introduction of 

salmonids fragmented distributions (Crowl et	al. 1992).

How many losses of diadromy?

The resolution of a large number of closely related species begs 

the question: ‘How did these species evolve?’ One extreme 

scenario is that each species represents an independent loss of 

diadromy from a koaro-like ancestor. In contrast, maybe dia-

dromy was only lost once, and most speciation took place within 

the freshwater environment. This question can be answered 

using a phylogenetic approach: the first scenario predicts that 
G.	brevipinnis branched off at the base of the evolutionary tree 

leading to the G.	vulgaris group; the latter predicts a ‘comb-like’ 

tree structure of non-diadromous species branching of a koaro 

like-lineage, with koaro nested inside at the crown of the tree, 

sister to the last species that it ‘spawned’.

Mitochondrial DNA analysis suggested that the real answer 

lay somewhere in between – namely that the radiation of the  

G.	vulgaris species complex was consistent with three losses of 

diadromy (Figure 2)(Waters & Wallis 2001a). This phylogeny 

was based on an extensive dataset of 5039 bp, and all nodes in 

the tree had good statistical support.

A central tenet of molecular systematics is that gene trees 

reflect species trees. As lineages undergo cladogenetic events, 
their respective genes cease to exchange genetic information, 

and start to accumulate new mutations independently of each 

other. If the rate of molecular evolution is high compared to the 

rate of proliferation of new lineages, then this expectation is 

usually met. Consequently, there is generally good agreement 

among gene trees tracing the evolution of orders of insects or 

mammalian families (Penny et	al. 1982), for example. If, how-

ever, we are attempting to resolve numerous speciation events 

over a short time frame, there may be inadequate information 

to resolve branching patterns. Furthermore, retention of dif-

ferent ancestral polymorphisms by different lineages (‘lineage 

sorting’) can lead to disagreement among gene trees (Pamilo 

& Nei 1988). This situation can be made much worse by ei-

ther hybridisation or selection. These three processes lead to a 

decoupling of gene histories both from each other, and from 

species histories (Ballard & Whitlock 2004).

More recent analysis of the molecular phylogenetics of the 

G.	vulgaris group has included three nuclear genes (S7,	RAG-1,	
Numt), and in contrast to the earlier mtDNA paper, now place 

G.	brevipinnis sister to the G.	vulgaris group (Figure 3; Waters 

et	al. in prep). That is, if the broader nuclear gene analysis is to 

be believed, only a single loss of diadromy is invoked. But is 

this biologically plausible? Once a non-diadromous lineage has 

evolved in isolation, how can it spread and diversify into other 

freshwater systems if its young no longer migrate to sea?

Allopatric speciation by vicariant 
geological processes?

The answer may lie in the turbulent geological history of New 

Zealand, and of South Island in particular. Our position on the 

Pacific and Indo-Australian tectonic plate boundary has led to 
extensive faulting and uplift. Through rapid uplift, erosion, and 

Figure 1. UPGMA phenogram based on Nei’s genetic distance (Nei 
1972) among seven population samples of Galaxias brevipinnis 

(BRE 1-7) and eight population samples of the G. vulgaris complex 

(VUL 24-31). (Redrawn from Allibone & Wallis 1993)

Figure 2. Summary mtDNA tree for nine lineages of the Galaxias 

vulgaris complex, showing their relationships with G. brevipinnis 

from New Zealand and Australia. The asterisk represents the 
common ancestor of a monophyletic New Zealand group. The 
arrows represent the minimum number independent losses of 

diadromy required, assuming that the trait is not reversible. This 

phylogram was derived by maximum likelihood analysis (GTR + I + 
Γ) of 5039 bp of mtDNA. (Redrawn from Waters & Wallis 2001)
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Figure 3. Summary nuclear gene tree for nine lineages of the 
Galaxias vulgaris complex, showing their relationships with  

G. brevipinnis from New Zealand and Australia. Note that in contrast 
to Fig. 2, G. brevipinnis is monophyletic and sister to the G. vulgaris 

complex, implying a single loss of diadromy. This phylogram was 

derived by Bayesian analysis of 4131 bp of nuclear DNA (Waters 
et al., in prep).

wholesale tilting of surfaces (individually or in combination), 

one river catchment can ‘capture’ the headwater of another 

(Bishop 1995; Mortimer & Wopereis 1997; Craw et	al. 2003,  

2008). Such geological scenarios can be tested by asking wheth-

er species distributions match ancient or current connections 

(Mayden 1988). With DNA sequence data, one can make more 

fine-scale predictions and potentially apply molecular clocks 
to compare genetical and geological timing. We have looked 

at multiple locations around New Zealand where headwater 

capture is anticipated from geological evidence, and confirm 
that headwater capture in association with faunal capture has 

happened several times (Waters et	al. 2001a, 2006; Burridge et 

al. 2006, 2007, 2008b; Craw et	al. 2007).

Calibrating the molecular clock using 
geological timing

Studies of molecular phylogenetics are often thwarted by an 

absence of knowledge of rate of molecular evolution specific 
to the genes and species in question (Arbogast et	al. 2002). 

Some classic studies have made use of major geological events 
to calibrate the clock, such as the emergence of the Panama 

Isthmus (Knowlton & Weigt 1998) or formation of the Hawai-

ian islands (Beverley & Wilson 1985; Fleischer et	al. 1998). 

These processes are, however, quite inexact with respect to the 

timing of biotic splits. The isthmus arose over a long period of 

time: when exactly did gene flow between Pacific and Atlantic 
populations cease, and could it be different for different species? 

Although the formation of each of the islands of the Hawaiian 

chain may be well dated, how long was it before colonisation 

took place, and did gene flow continue for a while? In contrast, 
headwater capture events constitute fairly quick and clean sever-

ance of gene flow; a headwater does not flow into two different 
catchments for very long. Additionally, a galaxiid headwater 

population is likely to be small (compared with major ocean 

or Hawaiian island populations anyway), and therefore have 

little genetic variation. Coalescence within a population should 

be recent, and sorting of ancestral polymorphisms should not 

constitute too much of a problem.

Calibration of a molecular clock for galaxiid mtDNA in 

this way revealed an interesting result. In keeping with some 

recent observations by other researchers, the estimated rate of 

molecular evolution depends on the time-frame over which di-

vergence is measured (Ho et	al. 2005). That is, when divergence 

is measured using recent events (< 2 Ma), inferred rates are 

higher than when measured over longer time periods (Lambert 

et	al. 2002; Waters et	al. 2007). One possible explanation for 

this ‘lazy-J effect’ (Penny 2005) is that over short time periods, 

distances among haplotypes are inflated by deleterious substitu-

tions that tend not to be incorporated into long-term evolutionary 

lineages. This explanation is problematic as it requires high N
e
 

(Woodhams 2006). Calibration from any one single event (in 

this case, the Kaituna river capture) is still open to considerable 

error, because of uncertainty of geological timing. One way to 

minimise such error is to use multiple dates to calibrate diver-

gence, which can tightly constrain a line of best fit (Wilson et al. 
1987). More recent analysis of galaxiids using nine calibration 

points, including six river captures/reversals, showed that this 

rate increase is restricted to the last 200 Ma (Burridge et	al. 
2008a). This initial apparent accelerated rate could be due to 

the sorting of polymorphisms after splitting (Peterson & Masel 

2008). The larger effect seen with ancient DNA studies (Lambert 

et	al. 2002; Ho et	al. 2005; Hay et	al. 2008) may reflect popula-

tion replacement, technical problems recovering sequences or 

artifact of simulations (Emerson 2007).

Speciation at the molecular level – what 
makes a fish stay at home?
We now have a wealth of data on the geographic distribution of 

lineages of non-diadromous galaxiid fishes, the nature of the ge-

netic differences among them, and some geological hypotheses 

for their range and spread. But what is the underlying genetic 

cause of loss of diadromy? Over thirty years ago, it was sug-

gested that protein sequence differences between humans and 

chimps were likely to be too trivial to explain the differences in 

anatomy and behaviour, and instead, differences in gene expres-

sion may be important (King & Wilson 1975). This perceptive 

and prophetic view is gaining traction as our understanding of 

molecular genetics improves. Adaptation and speciation may 

be mediated more by changes in transcription factors, binding 

sites, promoters, enhancers and micro RNAs, than by changes in 

structural genes. It appears that both structural gene changes and 

their regulation both require consideration when searching for 

the molecular basis of speciation (Hoekstra & Coyne 2007).

New technologies are giving us the ability to look at both 

DNA sequence and gene expression across the entire genome, 

even in non-model organisms (Vera et	al. 2008). Pyrosequenc-

ing of DNA allows us to assess the abundance and sequence 

of mRNAs from any particular tissue of any organism, giving 

access to any transcriptome that we want. As loss of diadromy 

has occurred repeatedly in galaxiids, it is our hope that com-

parison of related diadromous and non-diadromous pairs of 

species via pyrosequencing of amplified cDNAs might reveal 
the genetic mechanism of this life history shift. Initial data 

reveal some large differences in gene expression between the 
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first pair of species sequenced (Table 1), but this work is in its 
early stages, and differences need to be confirmed by real-time 
quantitative PCR.

General implications for New Zealand 
endemism

Genes modulating such a change can be though of as ‘speciation 

genes’, since they cause genetic isolation of populations and 

ultimately lead to speciation. It is clear that most New Zealand 

biodiversity has not been evolving independently of other austral 

species since our isolation from the rest of Gondwana 85 Ma, 

but largely derives from migrants that have crossed the Tasman 

(Pole 1994; Winkworth et	al. 2002; Waters & Craw 2006). Our 

biota is therefore dominated by lineages of waifs and strays that 

happen to be good dispersers. New Zealand’s limited freshwater 

fish fauna is a case in point, entirely deriving from species that 
possess a marine life history phase (McDowall 2000; Waters 

et	 al. 2000b, 2002). If migration continues, then endemism 

will be lower; two of our diadromous galaxiids (koaro, inanga) 

also occur in Australia. It is only after cessation of gene flow, 
resulting from the types of genetic change that we are trying to 

identify, that speciation of local endemics ensues.
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