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Advances in digital computing continue to have large effects on 
all aspects of life and society, including science. These advances 

are possible because we have computer languages that translate 

directly into computational steps that can be implemented in 

computer hardware. Here, I draw attention to changes that are 

affecting the theory and practice of data analysis, with a focus 

on methodologies that feature in expositions of data mining and 

machine learning. The R language and system is playing an 

increasingly important role in making the new abilities readily 

accessible at the scientific workbench. 

The computer language revolution

Human language makes possible the rich fabric of human cul-

ture, of which mathematics and science are a part. Computer 

language provides a powerful mechanism for describing compu-

tational talks, now with the bonus that talk translates directly into 

action. These tasks may now, with the software and hardware 

that is available in 2011, include text processing, mathematical 

tasks, image and auditory processing, communication, and much 

else besides. The scientific and mathematical imagination has 
been stimulated to conceive and carry out tasks of previously 

unimagined complexity.

Application oriented language

There are huge advantages in working with a language or 

languages whose terminology closely mirrors what specialists 

find appropriate when describing a computation. Here, note 
the language implemented by the R system, which has become 

the environment of choice for implementing new statistical 

methodology, and for much else besides. Figure 1 demonstrates 

the use of R code for plotting and for fitting a regression line. 
The inset shows R code that gives a simplified version of the 
figure. Relative to languages such as Fortran, C and Java, R is 
very high level. Many of the R packages rely heavily on code 

that has been written in C or Fortran. These earlier languages 

remain important, but their role has changed. 
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The R system has many attractions. It is free. It is open 

source, so that anyone can inspect the underlying code and 

check that its commands do what they claim. It is readily and 
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Figure 1. Record times for road and track races, as at 

August 2006, are plotted against distances.  Logarithmic 

scales have been used on both axes, with equal distances 

showing a change by a factor of 10.  The slope of the line 

is 1.125, indicating that the relative rate of increase of Time 

is 1.125 times that for Distance.  The data (in the dataset 

worldRecords) can be made available, from an R session, by 

installing the DAAG package for R and typing library(DAAG).  

Code is shown that gives a simplified version of the graph.  
The supplementary materials include further investigation 

of these data. (Although the line appears a good fit, two of 
the points deviate by more than 12% from it. Relative to 

times that vary by a factor of  around 9000, a change by a 

factor of 1.12 appears slight.)
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seamlessly extensible, so that its abilities can be the basis 

for computations that are tailored to the demands of pretty much 

any area of science or commerce. Witness its use by Google 

and others for mining web data. Its 3300+ ‘packages’ extend 

the base system to give access to an unsurpassed and widening 

range of abilities. The R Task Views web page (http://cran.r-

project.org/web/views/) gives an idea of the range. Extensive 

tutorial and expository material is available on the internet. 

There are more than 100 books that expound R, or that describe 

its use for a particular area of application. A Python specialist 

could perhaps use Python to illustrate similar points. There is, 

however, no direct equivalent of the R Task Views web page, 

suggesting a more limited penetration into field and laboratory 
bench science.

Abilities that are immediately available in R make it possible 

to bring together data from different sources, do preliminary 

checks, extract analysis output in various alternative forms, 

apply checks to the output, provide graphs and tables, and use 

output (perhaps combined with other data) for further analysis. 

Access can be provided, from R, to programs that were initially 

designed to run as independent programs. Thus, note the R 

interface to the Weka data mining software (Witten & Frank 

2005). Note also the extensive spatial analysis abilities, most of 

them added since 2003. These have relied heavily on interfaces 

to other systems, including the widely used GRASS system 

that must be installed outside of R. Bivand et al. (2008) give an 

overview, now somewhat dated, of what is available. There is 

currently no R equivalent of the impressive graphical interface 

to GRASS that the QGIS system (www.qgis.org/) provides.

Point and click interfaces are well suited to some tasks. In 

general, however, analyses that meet high professional standards 

will require some use of steps that are spelled out in computer 

language. The grunts and gestures on which non-human apes 

rely severely limit what can be communicated. Point and click 

interfaces overcome these limitations, to some extent, by using 

language to indicate where and to what end the user can click 

or type. For use for statistics courses at school and beginning 

university level, note the R-based iNZight GUI, developed by 

Christopher Wild and Dineika Chandra at Auckland University 
(http://www.stat.auckland.ac.nz/~wild/iNZight/).

The focus of the discussion will now narrow somewhat, to con-

sider statistical or (though I have reservations about the term) 

data mining analyses.

Data analysis challenges

Data, data everywhere

Alongside advances in computing hardware and software there 

has been, over the past decade, a steady growth in the scope and 

detail of datasets that are available for scientific use, in large 
part because of advances in automatic data capture. This is not 

without problems. The size of the collection does not guarantee 

quality, or relevance to some particular question, or representa-

tiveness. Nonetheless, the massive datasets now available open 

new vistas, and will be a large part of the future of science. 

Genomic data provide much more detailed information 

about some parts of the genome than about others, much more 

information about some species than about others. Some of this 

has to do with ease of collection, some with perceived relevance 

to questions of biological interest, and some with accidents of 

circumstance. This matters more for some purposes, less for 

others. How should the different pieces of evidence be weighted 

for purposes of taxonomic classification? Is a taxonomic tree the 
right way to characterise biological relationship. What of hori-

zontal gene transfer? Is there risk that traditional tree-structured 
classification systems will force the data into an alien mould?

An interesting development, with large potential implica-

tions for the handling of data analysis, has been the develop-

ment of the Kaggle platform (http://www.kaggle.com/) for data 

prediction competitions. This allows organisations to post their 

data and have it scrutinised by teams that relish such a challenge. 

Maindonald (2005) argued for making it standard practice to 

expose to open scrutiny all datasets that are the basis for scien-

tific claims. The kaggle initiative may be even more effective 
in serving the same purposes.

Extensive computation, and large datasets

Increasingly, advances in science seem likely to rely on a mix 

of extensive computation that brings together existing scientific 
theory in new ways, and the use of very large datasets. The Lytro 

camera (http://www.lytro.com/), due to come on to the market 

later this year, demonstrates how well-understood physical proc-

esses, combined with the power of modern computation, can 

be marshalled to create a radical innovation in the marketplace. 

With this camera, the picture is taken first and focused later, so 
that the only shutter lag is that due to the human operator. Global 

Climate Models provide another example. They use extensive 

computation to account for many different physical processes, 

different in their importance and in the precision with which 

their effects can be modelled. They rely on data from many 

different sources.

New traditions of data analysis

The invention of new names that reflect specific application 
areas has a long tradition – theory of errors, psychometrics, 

biometrics, biostatistics, geostatistics, chemometrics, and so on. 

The word statistics, used to describe the theory and methodol-

ogy that underpins the analysis of data, is perhaps 200 years 

old. Problems in robotics, in speech and image recognition, and 

in related areas of engineering have spawned the discipline of 

machine learning. The term data mining has come from the com-

puting community. Machine learning, prior to about 1980 on the 

fringes of Artificial Intelligence, has moved to occupy a central 
place. It has moved from an initial focus on symbolic logic to 

use a theory and methodology that are thoroughly statistical. 

There is nothing in Bishop (2006) that would be markedly out 

of place in an advanced statistics course. Its traditional focus 

has been robotics and pattern recognition in an engineering 

context, but that may be changing. 

Expositions of data mining often place emphasis on the 

methods, or algorithms, that it offers. Its only theoretical ba-

sis is that of the statistical theory to which some data mining 

texts make vague reference. It may be best seen as a name that 

emphasises the new challenges that arise from the very large 

datasets that are now presenting themselves for management and 

analysis. Data mountaineering might now be a better description. 
See Maindonald (2006).

Features of data analysis challenges

However described, the analysis challenges have common 

features. I will illustrate with a subset of a dataset that has been 

widely used for demonstration in statistics and data mining texts. 
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It relates to glass fragments that were collected in the course of 

forensic work. Numbers of pieces of glass of each of the glass 

types that are included in Figure 2 are:

 Window float (70)   Window non-float (76) 
 Headlamps (29)   Containers (13) 

Variables are percentages of Na, Mg, . . ., plus refractive index. 

In all there are 214 rows of data (observations) by 10 columns 

(variables). The aim is to find a rule that predicts the type of any 
new piece of glass. Figure 2 is a visual summary of the result 

from the use of a simple form of classification methodology, 
with the name linear discriminant analysis.

First, two points about the graph:

It reflects the performance of the methodology for classify-

ing the data used to develop the model. This may lead to an 

overly favourable view of its performance.

As there are four groups, there are three dimensions of sepa-

ration. Separation in the third dimension requires a second 

graph. In this respect, use of Figure 2 on its own gives an 

overly unfavourable view of performance.

Ideally, the classification accuracy should be estimated for new 
data that reflects the context in which results will be used. With 
data that accumulate over time, historical accuracies for fore-

casts that were made one year ahead may give a good indication 

of the accuracy of prediction for the following year. Here, it is 

necessary to make do with the data that we have, noting the ac-

companying caveats. With such a small dataset, a split between 

training and test (and perhaps validation) sets would be a poor 

use of the available data. Hence the use of cross-validation, 

which uses repeated splits into training and test data. 

A simple version of cross-validation leaves data values out 

one at a time, fits (trains) the model using the remaining data, 
and makes a prediction for the omitted point. When the proc-

ess is complete, predictions are available for all points that are 

independent of the data for the point. Use of such a leave-one-

out cross-validation process gives, for the present data, a 70% 

accuracy. The accuracy is, however, different for the different 

glass types. Table 1 tells a more complete story. The classifica-

tion accuracy is highest (86%) for headlamp glass, as Figure 

2 might suggest.

Questions, for any use of the results (e.g. to identify glass on 

a suspect), are:

How/when were the data generated? (1987)
Are the samples truly representative of the various categories 

of glass? (To make this judgement, we need to know how 
data were obtained.)

Are they relevant to current forensic use? (Glass manufac-

turing processes and materials have surely changed since 

1987.)

What are the prior probabilities? (Would one expect to find 
headlamp glass on the suspect’s clothing?)

•

•

•

•

•

•

These data are probably not a good basis for making judgements 

about glass fragments found, in 2011, on a suspect’s clothing. 

Too much is likely to have changed since 1987. This 1987 source 

population is unlikely to be a good match for the glass fragments 

that one might expect to find now in 2011.  

In practice, the only available data may be from a population 

that is a less than perfect match to the population to which re-

sults are to be applied. All available checks should be applied 

to investigate the closeness of the source/target match. Issues 

of this sort are crucial once one moves from such engineering 

applications as robotics where the data that are needed may be 

generated at the time of use, to an area such as forensic data 

analysis.

Structures of variation

Data often have a structure. For example, data on mortality 
rates of patients in critical care might be collected across some 

hundreds of hospitals. A result that generalises across hospitals 

must account for variation between hospitals. An algorithm that 

uses historic data to detect email spam becomes, unless regularly 

updated, increasingly less effective as time proceeds. In com-

merce, financial shocks wreak havoc with assessments that are 
based on pre-shock data. Taleb (2004) makes this point force-

fully and at length. Issues of this type are widespread. None of 

the software I know that has a data mining focus addresses this 

issue, short of making summary information for each hospital 

the unit of analysis. The machine learning literature shows some 

awareness of such issues; cf. Bishop (2006). Books that have 

statistical learning or data mining in their title, whether written 

by statisticians or computer scientists, mostly ignore it. The 

otherwise excellent text by Clarke et al. (2009) gives the issue 

a passing mention that grossly downplays it, then proceeds to 

ignore it.

Table 1. Different accuracies for different types 

of glass. 

Actual  Predicted (cv)  

 WinF   WinNF   Con   Head

WinF  0.71 0.29 0 0

WinNF  0.26 0.67 0.07 0

Con  0 0.46 0.46 0.08

Head  0.03 0.07 0.03 0.86

Figure 2. Visual summary of the result when the linear 

discriminant analysis methodology is applied to a forensic 

glass dataset, as described in the text.  As there are four 

types of glass, there are three dimensions of separation, 

and the figure shows the two-dimensional projection that 
best distinguishes the four types.
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Are the new methods better?

Trees, neural nets and Support Vector Machines (SVM) have 

been the stock-in-trade of Data Mining and Machine Learning, 
for data such as were used to create Figure 2. Do they do better 
than the more traditional linear discriminant analysis approach 

that was used above? Sometimes! Beware though of exaggerated 
claims, such as have appeared in some of the Support Vector 

Machine literature. See Ambroise & McLachlan (2002) and 

Zhu et al. (2006).

A generally preferable alternative to leave-one-out cross-

validation is k-fold validation, where k = 10 is a common choice. 

This splits the data into 10 parts, then leaves out each of the 10 

parts in turn, fits the model to the remaining 9 parts, and makes 
predictions for the omitted data. At the end of the process, pre-

dictions are available for all the data. Different splits of the data 
into 10 parts will give different accuracies. This can be useful, 

because re-runs of the cross-validation process provide an indi-

cation of the statistical uncertainty in the accuracy estimate. R’s 

rpart function for tree-based classification gave accuracies for 
the forensic glass data that varied between 71% and 76%. Sup-

port Vector Machines, used as implemented in the svd function 

in R’s e1071 package and without any tuning, gave accuracies 

between 76% and 81%. Note again that these accuracies are for 

the population from which the original sample was taken. The 

only obvious continuing relevance of the forensic glass data is 

to forensic archaeology!

Where there are large numbers of variables, some prelimi-

nary variable selection may be needed. As noted in Ambroise & 

McLachlan (2002), this complicates the estimation of accuracy. 

The same is true for the tuning that SVM commonly requires 

to work well. There must be new selection or tuning at each 

cross-validation fold.

Tree-based classification, which mimics the classification 
keys that are used by botanists, differs more radically from the 

mainstream of statistical methods than any of the other meth-

ods mentioned. Figure 3 is an example. Splits are optimised 

over existing nodes, over variables, and (for each variable) the 

threshold for the split. Because rpart has a built-in procedure 

that assesses the cross-validation accuracy following each 

new split, the tree that is formed will vary from one run to an-

other. The tree that is shown had an estimated cross-validation  

accuracy of 74%. 

Random forests

The random forests method (Breiman 2001) warrants mention 

for two reasons – as a classification method it is hard to beat, and 
it introduces some novel ideas. It has relatively recently started 

to attract attention in the data mining literature. Its disadvantage 

is that it functions pretty much as a black box. Getting insight 

into why it delivers its results may not be easy.

When classification trees are formed, each individual split 
is optimal, given previous splits. The tree that is finally formed 
may be far from optimal. The random forests methodology 

aims to overcome this by simulating the taking of repeated 

random samples from the source population, with a tree formed 

for each such sample. More than 500 such samples might be 

taken. The classification is decided by a majority vote over all 
500 or more trees.

The effect of taking repeated random samples from the 

source population is simulated by taking from the source sample 

repeated bootstrap samples that are of the same size as the source 

sample. In a bootstrap sample, each sampled observation is put 

back after it has been taken, so that it is available for selection 

when the next observation is taken. The end result is that some 

sample values, on average slightly less than 37% of the total 

in a large sample, are left out, while the same proportion of 

those that remain are repeats. For each split of bootstrap sam-

ple (called a bag), there is also a random sampling of variables 

– taking the square root of the total number of variables often 

works well. For each such sample, a tree model is fitted to the 
in-bag data and predictions are made for the out-of-bag (OOB) 

data. For the forensic glass data, this method gave accuracies 

in the range 85–87%. 

Maindonald & Braun (2010) have an introduction to  

classification trees and random forests that is aimed at non-
specialists.

Which method is best?

Predictive accuracy, as measured by cross-validation, estimates 

accuracy for the population from which the sample was derived. 

Differences of a few per cent between different methods are 
unlikely be of much practical consequence. This is especially 

true in the common situation where the source population is 

unlikely to be a very precise match to the target population. It 

is often hard to get a good handle on the differences that matter 

for the intended use of results! Comments in Nilsson (2010, 

p.425) do not go quite far enough: 

 Some methods work better for some problems than for oth-

ers, but often these differences are only marginal, and most 

people in the field agree that having lots and lots of data 
is, in the end, more important than the particular machine 

learning algorithm used.

Many analysts will find a choice between linear discrimi-
nant analysis and random forests all that they need. Even more 

important than having lots of data is to have data that are im-

mediately relevant. 

Figure 3. The inverted ‘tree’ is a visual representation of 

the classification rule given by R’s rpart function (in the 
rpart package), for the forensic glass dataset. The tree has 

been pruned back to remove branches whose inclusion, 

as estimated by cross-validation, reduced classification 
accuracy. At each node, the left branch is taken if the 

condition is true, and otherwise the right branch. The tree 

that is shown gave an estimated cross-validation accuracy 
of 74%.
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Statistical learning methods

Statistical learning methods automate the choice of an optimal 

model from some suitably large class of models. The random 

forests method is a good example. It can be extended for use 

with continuous outcome data also, but is not for this purpose 

a method of choice.

Consider now Generalised Additive Models. As imple-

mented in R’s mgcv package, these can fit smooth curves with 
automatic choice of smoothing parameter. Figure 4 was based 

on data from 155 sites in the flood plain of the river Meuse 
in the Netherlands. It shows contours of equal estimated lead 

contamination, averaged over effects from flooding frequency 
and soil type, as a smooth function of distance from river and 

height above river. The methodology does not completely 

protect against over-fitting, so that checks are desirable. Based 
on the use of ordinary cross-validation, accuracy is about 14% 

less than for a model that fits log(zinc) as the sum of smooth 
functions of elevation and distance, plus effects due to flooding 
frequency and soil type. Figure 4 may thus be an over-interpre-

tation of the data. See Wood (2006) for extended discussion of 

the methodology.

Note that the methodology tries to find a fitted surface such 
that deviations from the surface appear as close as possible to 

statistical noise. If the residual variation can indeed be reduced 

to what looks like noise, the fitted surface should be effective 
for spatial interpolation. If there is remaining spatial pattern, 

some form of kriging may give improved spatial predictions. 

For an account of kriging as available in R packages, see Bivand 

et al. (2008).

Resampling methods

A feature of the discussion to date has been the heavy reliance on 

cross-validation or similar assessments of accuracy. These can 

be used when theoretically based assessments are not available 

or are of doubtful validity. The role of bootstrap sampling in 

random forests was noted. In modern statistical methodology, 

various forms of bootstrap sampling have wide-ranging applica-

tions, providing alternatives to methods that rely more strongly 

on theoretical assumptions.

Finally, note the use of simulation. As the term is used here, 

this refers to the generation of repeated simulations of data that 

follow a theoretical model. The model is fitted to each set of 
simulated data. The results give insight into the distribution of 

fitted model statistics under the theoretical assumptions. Simula-

tion is sometimes called the parametric bootstrap, reflecting the 
fact that the resamples are taken from a theoretical distribution 

rather than (as with the bootstrap) from available sample data. 

It gives information on the properties of the theoretical model, 

where cross-validation and bootstrap methodology provide 

information on the behaviour of the fitted model under repeated 
sampling. 

Careful analysts will use simulation to check out the proper-

ties of any methodology that departs from the strict assumptions 

of the classical theory, as reflected for example in the output from 
regression software (including R’s lm function). The classical 

theory assumes a single known model. If the model is selected 

from a wide class of models, or there is extensive variable se-

lection, there may be serious bias in the choice of model and/or 

the model fit. Figure 5 uses extensive simulation to illustrate the 
extent of such effects. Data are pure noise; there is no relation-

ship between explanatory variables and the dependent variable. 

When three variables are taken out of three, the nominal p-values 

for the three coefficients are spread out around 0.5.  The solid 
line is designed to go through the median of the p-values. Notice 

that when the number of variables is around 18 or greater, the 

median nominal p-value will on average be around 0.05. These 

nominal p-values thus become seriously misleading.

Figure 4. Contours of equal estimated lead contamination 

in the floodplain of the river Meuse in the Netherlands, 
averaged over effects from flooding frequency and soil 
type, as a smooth function of distance from river (scaled to 

lie between 0 and 1) and height above river. The contours, 

based on data from 155 sites, were derived using R’s gam 

function, in the package mgcv.

Figure 5. p-values, versus number of variables available 
for selection, when the ‘best’ 3 variables were selected by 

exhaustive search. The fitted line estimates the median 
p-value.
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This illustrates well the light that simulation can shed on a 

methodology. The backward and forward and other variable se-

lection methods that have been widely used for several decades 

are well designed to give specious results, unless simulation or 

another method that achieves the same effect is used to adjust 

for model selection bias. 

The wider world of statistical methodology

The methods that have been described in this paper are a small 

part of what is available in R. They have been chosen for at-

tention because they are widely used in the data mining and 

machine learning literature, because it is easy to illustrate their 

use and usefulness, and because they provide a good context in 

which to demonstrate the importance of computationally inten-

sive methods. Resampling and other computationally intensive 

methods have moved into the statistical mainstream, reducing 

somewhat the former reliance on theory.

While describing those methods, I have tried to give a sense 

of the power that the high-level commands of the R language 

puts in the hands of researchers who have the skills needed to use 

them. There is every reason why scientists whose work involves 

substantial statistical analysis or other computation should start 

using R, or something better when it comes along, early in their 

education. The ideal place to start is at senior secondary school 

level. There is a wider educational value. Anyone who claims to 

be well-educated should have some sense of the extent to which 

advances in science and the technology are a result of the new 

power that computer language has placed at the fingertips of 
those who are suitably skilled. I find support for this general 
view in Bishop (2010). Bishop contrasts Information and Com-

munication Technology (ICT), widely taught in British schools, 

with Computer Science, using the car as an analogy. ICT, which 

focuses on spreadsheets and word processing and other such 

applications, is analogous to learning to drive, while “compu-

ter science would be the equivalent of understanding how the 

engine and other elements of the car work, as well as how to 

design new cars”. Actually there are a large number of places, 

increasingly important in science, that a driver who knows only 

spreadsheets and word processing is unable to go.

The history of R

In 2008, Associate Professor Ross Ihaka from the University 

of Auckland was awarded the Royal Society of New Zealand’s 

Pickering Medal for his work on the development of R, under-

taken in collaboration with Robert Gentleman while he also was 

at the University of Auckland. It implements a dialect of the S 

language that was developed by John Chambers and others at 

Bell Laboratories. The introduction to Chambers (2008) has a 

good summary of the history.

Supplementary materials

The website http://www.maths.anu.edu.au/~johnm/nzsr/taws.

html will have links to information and references that are 

relevant to this paper, including R code for all the graphs, 

supplementary graphs and calculations, and links to further 

relevant web pages. 

Executables that will install R can be downloaded from http://

cran.r-project.org (in New Zealand, use the mirror site http://

cran.stat.auckland.ac.nz/). Lillis (2011) has extensive further 

details on R. For citation, refer to the current version of R De-

velopment Core Team (2011).
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