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New Zealand’s main qualification system for senior secondary 
school comprises the three levels of the National Certificate of 
Educational Achievement (NCEA). These qualifications were 
introduced progressively, Level 1 first becoming available in 
2002, Level 2 in 2003, and Level 3 in 2004. Additionally, the 
present system for awarding New Zealand Scholarship was first 
implemented in 2005. The NCEA system has several features 
that are quite unique, and that afford schools the opportunity to 
develop their own assessment programmes for a wide variety of 
courses in traditional, emerging, and cross-disciplinary subject 
areas. Those features of the NCEA system that afford this flex-

ibility also present challenges from the psychometric point of 
view. In this paper, we describe a range of statistical modelling 
and analyses undertaken by the New Zealand Qualifications 
Authority (NZQA) to meet these challenges. 

The NCEA system is criterion-referenced rather than norm-
referenced. This means that assessment results depend on the 
performance of candidates against set criteria, rather than being 
determined relative to the performance of other candidates. 

Criterion-referencing is not unique to NCEA. Indeed, a 
movement from norm-referenced to criterion-referenced assess-

ment is evident in many assessment systems around the world 
(e.g. Australia and the United States). Criterion-referenced as-

sessment results and qualifications arguably carry greater inher-
ent meaning than those based on norm-referencing because, if a 
candidate meets the criterion for a particular result, it is possible, 
within the limits of the reliability and validity of the assessment, 
to certify him or her as competent in the specific skill or knowl-
edge associated with that criterion. Under a norm-referenced 
system, the only information that can be inferred validly from a 

demonstrated higher or lower performance.
From a psychometric perspective, running a high-quality 

criterion-referenced system is more challenging than running a 
norm-referenced system. Under the latter, all that is required is 
an accurate rank-order of the candidates, with normative scaling 
used to allocate final results on the basis of that rank order. Dif-
ferences in the difficulty of an assessment (for example, a formal 
examination) from year to year do not affect outcomes unless 
these would result in a different rank ordering of candidates.

Under a criterion-referenced system, however, the standard 
of performance commensurate with the criterioa must be main-

tained over time. Under any assessment system the connection 
between candidates’ performance in an assessment and the final 
results must entail expert judgement, and cannot be established 

referenced system such as NCEA, professional judgement 
requires a great deal of statistical and psychometric support if 
criteria are to be applied consistently across different assessors 
and over time.

Perhaps the most unique aspect of NCEA is its decomposi-
tion of assessment into units known as ‘standards’. Whereas, 
under most secondary assessment systems internationally, 
candidates receive a single result for each subject they have 
studied, under NCEA candidates receive multiple results, each 
certifying specific skills and knowledge. For example, there 
is a trigonometry standard, called Solve right-angled triangle 

problems, and another pertaining to English-language literacy 
called Read and understand unfamiliar texts.
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candidate’s result are the percentages of other candidates who 

on a purely statistical basis. However, in a large-scale criterion-  
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It is this aspect of NCEA that affords its great flexibility, 
because schools can choose standards that best reflect the content 
of their courses, and can assess cross-disciplinary courses by 
selecting relevant standards from more than one subject area. 
Nonetheless, maintaining consistency of assessment judgements 
over the approximately 700 standards that are derived from 
the New Zealand curriculum presents a difficult psychometric 
problem. In part, this is because there are so many standards, but 
mainly it is because the assessment for each standard is neces-

sarily of shorter duration and entails a smaller volume of work 
than would be the case if assessment were conducted at the level 
of the subject. The difficulty that this situation presents is one of 
maintaining assessment reliability - shorter and smaller-volume 
assessments tend to have poorer reliability than longer or larger 
volume assessments (assuming similar assessment quality).

In this paper we describe a number of statistical processes 
that assist NZQA to meet the challenges posed by the design of 
NCEA in relation to external assessment; that is, assessment pro-

cedures designed and administered by NZQA, a large majority 
of which are time-limited examinations. Internal assessments, 
those designed and conducted in schools and moderated by 
NZQA, also comprise a very important component of NCEA, 
and NZQA does have procedures for monitoring the reliability of 
teachers’ internal assessment judgements. However, discussion 
of these procedure is beyond the scope of the present paper. 

The processes we discuss here are as follows: the develop-

ment and use of Profiles of Expected Performance (PEPs), used 
as a guide to maintain standards during the marking of external 
assessments; a set of post-hoc analyses of NCEA examination 
results, carried out annually following each external assessment 
round in order to assess the performance of examination items 
and papers; and statistical procedures used to assist in the al-
location of results for New Zealand Scholarship assessments, 
as well as analysis of the quality of these examinations.

The analyses described here are used to inform, rather than 
replace, expert judgement. Collectively, these procedures pro-

vide assessment practitioners with support for their professional 
judgement, and with information that enables them to maintain 
and improve their consistency in applying the various assess-

ment criteria of each standard.

Profiles of expected performance
In the early years of NCEA it was found that, for many externally 
assessed standards, the proportions of candidates receiving each 
grade fluctuated from year to year. Given that the system was 
very new, some variations were to be expected. However, the 
size of the variation was, in many cases, large even in light of 
the circumstances. It soon became evident that some form of 
statistical support for professional judgement was required to 
maintain consistency in the application of the standards over 
time.

Profiles of Expected Performance (PEPs) were introduced 
in 2005 to address the problem of variations from the expected 
results distributions from one year to the next. The PEP gives 
a percentage range into which each grade – Not Achieved (N), 
Achieved (A), Merit (M) and Excellence (E) – is expected to fall. 
For example, we might expect that in a given standard 20–32% 
of candidates will earn an Achieved grade, or that 6–10% will 
receive Excellence. Figure 1 shows the 2010 PEP bands for the 
Level 3 Calculus standard 90636 (Integrate functions and use 
integrals to solve problems).

It is not the intention of the PEP process to manipulate re-

sults to fit a pre-determined distribution. Rather, the expected 
statistical stability of distributions of large numbers of results 
is used to identify discrepancies that might signal a variation in 
the standard of performance required for particular grades. It is 
quite permissible for actual results to fall outside PEP ranges. 
However, when this occurs, there must be a defensible explana-

tion for the discrepancy that does not entail any implicit change 
in the performance criterion.

If, during marking, it appears that any of the grades will fall 
outside the expected range for a particular standard, a discussion 
is held between NZQA and the leader of the marking panel to 
discuss reasons for the difference. If there is a legitimate reason 
(for example, that the characteristics of the cohort have changed 
in some way, or that there has been an overall improvement 
or deterioration in performance), then the distribution stands 
unchanged. If, on the other hand, the reason does not appear to 
be legitimate, then the marking schedule may be revised. For 
example, an easier examination than those of previous years 
is not an acceptable reason for result falling outside PEPs; 
notwithstanding the difficulty of an examination, candidates 
must meet the same standard each year in order to receive a 
particular grade.

A PEP is generated for each grade in each externally-as-

sessed standard in which at least 300 candidates have entered. 
Below this number, the statistical stability of distributions of 
results is insufficient to justify the development of a PEP. All 
PEPs are set prior to each year’s examination round, taking 
into account the history of results for the standard, as well as 
statistical estimates of the distribution expected on the basis of 
the previous year’s candidature across other standards.

PEPs for standards with large cohorts are set with tighter 
confidence bands than those with smaller cohorts. Small cohorts 
lead to lower stability than large cohorts. A substantial change 
in cohort size from the previous year may also justify setting 
a larger confidence band, because usually it is not possible to 
predict in advance the characteristics of the larger cohort.

Draft PEPs are set initially on the basis of the history of re-

sults for the standard, as well as professional knowledge of the 
subject area and candidature. Usually the PEPs for a standard 

Figure 1.   Profiles of Expected Performance for the Level 
3 Standard: Integrate functions and use integrals to solve 
problems (2010).
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will be the same or very similar from year to year. Following 
the development of the draft PEPs, other statistical information 
is taken into account, perhaps prompting a revision of the draft. 
This statistical information includes analysis of the difficulty of 
the standard and the overall ability of the cohort, based on the 
previous year’s results.
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Equation 1 provides a formal method for determining the 

difficulty of a target standard relative to other standards with 
overlapping cohorts. The difficulty of T

i
 compared to other 

standards can be estimated by calculating a mean difference in 
the rate of success for the cohort c

ij1
 on T

i
 and the rate of success 

for the same cohort on each other standard T
j
. 

The average differences in rates of success are in fact 
weighted averages, in which the magnitudes of the weights are 
determined by the relative sizes of the overlapping cohorts and 
by the correlation in performance between the target standard 
and each overlapping standard. Weighting by the size of the 
overlap places greater emphasis on comparisons involving 
standards with larger common cohorts, because larger overlaps 
result in more reliable comparisons. 

The correlation in rate of success measures the extent to 
which performance in a pair of standards draws upon similar 
knowledge, skills, or cognitive functions. Clearly, if perform-

ance in two standards is uncorrelated (i.e. if the value of the 
correlation coefficient is zero), then the question of their relative 
difficulty does not arise. On the other hand, if performance in 
two standards were completely correlated (i.e. the value of the 
correlation coefficient were unity), then performance on one 
would be completely predictable from performance on the other, 
and they would be fully comparable in difficulty. In practice, 
correlations are never perfect, and although the theoretical 
minimum correlation is negative one (a negative correlation 
indicating an inverse relationship in performance), correlations 
in performance on pairs of standards as low as zero are very 
rarely, if ever, observed.

Equation 1 gives a mathematical expression that is used to 
calculate the relative difficulty of a standard using information 
on candidate performance across all standards held on NZQA’s 
results databases. 

Equation 1.   Difficulty (D
i
) of a standard i, where c

ij
 is the 

number of candidates undertaking both standard i and 
each other standard j, ρ

ij
 is the magnitude of the correlation 

(Spearman’s ρ) between standard i and each other standard 
j, R

ij
 (i) is the rate of success in standard i of the overlapping 

cohort, R
jj
 (j) is the rate of success of the overlapping cohort 

in standard j, and n is the total number of standards with 
cohorts overlapping that of standard i.

If the success rate in standard i is high (i.e. the standard is 
easier than an overlapping standard j), then the success rate of 
the overlapping cohort in that standard, R

ij
 (i), is higher than 

the success rate of that cohort in the overlapping standard R
ij 

(j). In this case the difference R
ij
 (j)  – R

ij 
(i) is negative and 

decreases D
i
 slightly. Conversely, standards that are difficult 

relative to comparison standards increase the magnitude of D
i
. 

The denominator is the sum of all cohort sizes and is intended 
to constrain the magnitude of D

i
 to a useful range of values. 

The cohort strength uses a slightly different comparison 
(see Equation 2).  

Equation 2.   Strength (S
i
) of a cohort in standard i, where c

ij
 

is the number of candidates undertaking both standard i and 
each other standard j, ρ

ij
 is the magnitude of the correlation 

(Spearman’s ρ) between standard i and each other standard 
j, R

ij
 (i) is the rate of success in standard i of the overlapping 

cohort, R
j
 (j) is the rate of success in standard j of candidates 

undertaking standard j but not standard i, and n is the 
total number of standards with cohorts overlapping that 
of standard i.

In this case, rather than comparing rates of success of a co-

hort in a target standard with rates of success in other standards, 
we compare the performance of the cohort undertaking both the 
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Measurement of the difficulty of a standard T  involves 

T  with their performance on each other standard T , T …, T  

undertake both assessments) with T . Figure 2 gives a diagram 
i

of this situation: there is a target standard, T , and two other 

overlapping cohorts for the pairs T , T , and T , T  are labelled 

standards with overlapping cohorts: T  and T . (In a real world 
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target standard and each comparison standard, with the cohort 
undertaking the comparison standard only. If the cohort of the 
target standard is strong, then any subset of that cohort (that 
subset overlapping with comparison standards) will tend to have 
a higher rate of success on that standard than the cohort taking 
the other standards only. In ths case the difference in rates of 
success will be positive and the estimate of cohort strength will 
be commensurately high. 

Post-hoc analysis of NCEA external 
assessments (examinations)
Every year NZQA undertakes a variety of statistical analysis 
and modelling of NCEA examination results, to contribute to 
continuous improvement of the quality of examination items and 
papers, and marking procedures. These analyses include tests of 
the dimensionality of the examinations and the inter-correlations 
of the examination items (questions) in order to determine the 
extent to which they measure on a single continuum of perform-

ance. Further analyses use a specialised branch of psychometric 
statistics, Item Response Theory (IRT), to determine the extent 
to which examination items are of appropriate difficulty and 
that they discriminate sufficiently between candidates of vary-

ing abilities.

For each examination, a sample of results from 700 examina-

tion scripts, or as many as are available, is analysed, focusing 
both on the performance of each item and on the examination 
as a whole. The analyses are designed to assist examiners in de-

veloping future examinations, and to develop items that measure 
candidates’ performance consistently, both with respect to the 
standards and with respect to other items.

External assessments (examinations) for NCEA are designed 
to assess on a single dimension of performance, so that a single 
criterion for each grade is located on that single dimension. 
This is in part because there are many standards, resulting in 
a relatively short examination time for each standard. Some 
are examined in as little as 40 minutes, although from 2013 
the minimum examination time for any standards will be one 
hour. From a purely statistical perspective, measurement on a 
single dimension requires that the data (candidates’ item-level 
results) can be fitted to a single (quantitative) scale. In fact, the 
IRT techniques used to asses the difficulty and discrimination 
of each item are predicated on uni-dimensionality.

We use Principal Components Analysis, a technique first 
discussed by Pearson (1901), to explore the dimensionality of 
the external assessments as reflected in candidates’ item grades. 
Principal Components Analysis is a widely-used dimension 
reduction technique in which observations of correlated vari-
ables are expressed as linear combinations of those variables, 
each combination constituting a principal component (or 
dimension). 

Each principal component accounts for a proportion of the 
total variance in the data. The first accounts for the greatest 
variance, and subsequent principal components account for 
progressively smaller proportions. One approach to depicting 
principal components graphically is the scree plot (Cattell 1966). 
Figure 3 shows a scree plot for the item-level results for a sam-

ple of 597 scripts from the 2010 Level 1 Biology examination 
for standard 90168 (Describe biological ideas relating to how 
humans use and are affected by micro-organisms). 

This particular examination comprised three items. 

The vertical axis of the plot measures the magnitudes of the 
principal component eigenvalues. Eigenvalue magnitudes are 
proportional to the total variance in the data explained by each 
dimension. The horizontal axis of the plot displays each of the 
possible principal components or dimensions, one for each of 
the three items, arranged in order of decreasing magnitude. 

How many significant dimensions (i.e. different kinds of skill 
or knowledge) are represented in Figure 3? One commonly-used 
criterion is that the eigenvalue of a significant dimension should 
be greater than 1. This criterion was proposed initially by Kaiser 
(1960), although other criteria for judging the significance of 
principal components have been suggested, often based on 
ratios of the first few eigenvalues. Because NCEA external 
examinations are designed to measure on a single continuum 
of performance, we expect only the first eigenvalue to explain 
a substantial fraction of the total variance. 

The plot of Figure 3 suggests the presence of just one 
significant principal component, thus confirming the suitability 
of the data for the item response. We can identify those items 
that contribute to a particular dimension by examining the factor 
loadings (the correlation coefficients between the variables 
and principal components). Table 1 gives the factor loading 
of each item of the Biology examination on the first principal 
component. 

Table 1.   Item loadings on the first principal component for 
Biology 90168 (2010 examination round). 

Item Correlation with component 1

Q1 0.59
Q2 0.54
Q3 0.60

Loadings close to unity indicate strong relationships between 
the items and the components. If the examination results indicate 
only one dominant dimension, then most or all of the items 
have loaded strongly on the first principal component. Loadings 
above about 0.4 indicate substantial correlation with a principal 
component or dimension. Table 1 shows that the three items 
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Figure 3.  A scree plot showing the factor structure for 
the three item examination for Biology 90168 in 2010.
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loadings on the first, dominant component.

For the purpose of quantitative analysis, we can treat the 
items on any examination that measures a single dimension as 
forming a distinct scale (i.e. a set of related items that measure 
collectively an aggregate of responses over those items). The 
squared factor loading gives the proportion of variance in the 
item results explained by a factor.

Table 2 shows two further measures of the internal consist-
ency (or how closely related a set of item responses are when 
taken as a group) for the three items of the same examination 
for Biology 90168. These measures are the inter-item correla-

tions and item-total correlations. They complement Principal 
Components Analysis in helping us to quantify the consistency 
of the item results and to establish the dimensionality of the 
examination. Both of these measures range from –1.0 to 1.0, 
though in practice we never encounter negative correlations 
between items.

Item Q1 Q2 Q3 Total

Q1 1.00 0.43 0.58 0.60
Q2 0.43 1.00 0.44 0.49
Q3 0.58 0.44 1.00 0.60

Inter-item correlations indicate the strength of the relation-

ships between pairs of items. Any two items that belong to the 
same dimension tend to exhibit strong inter-item correlation. 
Correlations between about 0.4 and 0.7 are considered optimal. 
Very high correlations (say about 0.85 or more) suggest redun-

dancy (i.e. that we could have assessed the candidates’ skills and 
knowledge with the same reliability using a shorter examination 
based on fewer items). From Table 2 we see that the correlations 
for the Biology standard 90168 are in this optimal range.  

The item-total correlation for each item is given in the final 
column of Table 2. This measure is the correlation between 
the responses for each item and the sum of the responses for 
the remaining items. The item-total correlation assists in the 
identification of any items that are not consistent with the other 
items of the assessment scale. A value below 0.4 is taken as an 
indication that the item does not correlate well with the scale 
overall. In the development of psychometric tests and surveys, 
often such items are removed entirely. For the items of Table 2, 
we see that the item-total correlations of the Biology examina-

tion lie well above this threshold. 
The third measure of internal consistency that we use for 

NCEA and New Zealand Scholarship is Cronbach’s alpha (Cron-

bach 1951), another commonly-used measure, also ranging 
between –1.0 and 1.0. Cronbach’s alpha can be expressed as a 
function of the number of test items and the average inter-cor-

as the inter-correlations among the items increase. 

homogeneity and possibly redundant items. Redundant items do 
not provide additional information about candidates, but simply 
add to the length of the assessment or test. Values substantially 
lower than 0.7 indicate that some items are not measuring on 
the same dimension as the examination as a whole.

Item Response Theory

Item Response Theory refers to a family of statistical models 
used to assess the quality of psychometric tests and assess-

ments. IRT is used to inform the design, analysis and scoring 
of tests, questionnaires and assessment instruments, and meas-

ures abilities, attitudes and other latent traits. It is widely used 
internationally in the development and analysis of educational 
assessments.

The parameters of interest to NZQA are the difficulty of at-
taining a particular grade for each item, and the item discrimina-

tion, which measures how well an item discriminates between 
candidates of different abilities. A third parameter of interest is 
the ability, a measure of each candidate’s performance across 
the entire examination (see a later section for a discussion of 
the ability parameter).

We use IRT to investigate the quality of our externally- 
assessed standards, and have developed several related ap-

proaches for conducting these analyses. Currently, we use a two-
parameter graded-response model (Samejima 1969) to estimate 
both candidates’ abilities and item parameters (discrimination 
and the difficulty of each assessment grade). Here, the prob-

ability of obtaining a particular grade or better (Not Achieved, 

Achieved, Merit, or Excellence), for a candidate of ability θ, is 
given by equation 3: 

Equation 3.  Probability of achieving a particular grade or 
better for a candidate of ability θ under Samejima’s Graded 

discrimination a and where k = –1.7. 

Achieved (A) or better, Merit (M) or better, and Excellence 

(E), θ is the calculated ability (which you can also think of as 

a particular grade or better for a candidate of ability θ, a is the 

gaining either an A or better, M or better, or an E grade for the 
item. Equation 3 describes a logistic curve, and the constant k 
takes a value of 1.7, which scales the logistic curve such that it 
closely approximates a cumulative ogive. In the two-parameter 
model we are required to estimate the parameters a andeach  

parameters (one for each candidate).        

Candidate ability  
Ability is a multi-dimensional concept, and cannot be measured 
uniquely for any person. In fact, the constructs we wish to meas-

ure, such as mathematical, scientific or linguistic abilities, are 
actually a synthesis of many related abilities and skills. Abili-
ties are calculated for each candidate on the basis of the entire 
complement of item grades. In fact, abilities estimated from IRT 
can provide better measures of performance than aggregates of 
marks or raw grade point averages, because ability estimates 
take explicit account of the discriminative and difficulty proper-
ties of each item.

In IRT we use an ability scale which may be thought of 
as representing the set of skills, abilities and knowledge that 

Pj ( ) =

exp [ ka (   -  bj )]

1 + exp [ ka (   -  bj )]

In equation 3 the subscript j indexes the assessment grades 

Response Model (1969) on an item of difficulty b j and 

0.7 to about 0.85, values greater than 0.85 indicating strong  

relation among the items. Cronbach’s alpha tends to increase 

of Biology 90168 all had moderately strong, and very similar, 

The  ideal  range  for  Cronbach’s alpha is from about  

Table 2.  Inter-item and Item Correlations for the three 
items (Q1 - Q3) comprising the assesment for Biology 
90168 in 2010.

ja measure of performance), P   is the probability of achieving 

fitted item discrimination, and b  is the estimated difficulty of 

b  (four parameters in total), in addition to candidates’ ability 

j

j
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contribute to performance. This scale is calibrated to have has a 
mean of zero and ranges (theoretically) from negative to positive 
infinity. The units of ability are known as ‘logits’, where a logit 
is given by equation 4. 

Equation 4.  Definition of the logit – the unit of ability in 
psychometrics. 

Item difficulty
For a dichotomous (two-category) item (yes or no; right or 
wrong, etc.), item difficulty is defined as the point on the 
measurement scale at which the probability of success is 0.5. 
For a polytomous item that carries several possible grades 
(usually the case for NCEA and tertiary examinations), we 
must estimate a difficulty parameter for each available grade, 
except the lowest. 

Item discrimination
Item discrimination is the gradient of the item characteristic 
function at the point at which the probability of correct response 
is 0.5 (i.e. the value of the derivative of the function at this 
point), and theoretically can range between zero and infinity. 
The steeper the curve, the more highly the item discriminates 
between candidates of differing abilities, because, when the 
value of th gradient is high, small variations in ability give 
rise to significant differences in the probability of attaining a 
particular grade. However, very high discrimination values are 
undesirable for the same reason that very high item-total correla-

tions are undesirable; they indicate redundancy amongst items. 

and about 3.0. Table 3 shows the item parameters for the 2010 
examination for Biology 90168. 

Table 3.   Difficulty and discrimination parameters for 
Biology 90168 under Samejima’s Graded Response Model 
(1969).
Item Discrimination Difficulty  Difficulty  Difficulty 
     (AME)    (ME)     (E)

Q1 1.51 –1.52 0.37 2.15
Q2 0.73 –2.57 0.59 4.68
Q3 2.43 –0.41 0.54 1.75

We see that all of the discrimination parameters of Table 3 
fall within the desirable range. We also see that the items vary 
considerably in difficulty at each grade. In particular, it is rela-

tively easy to obtain an Achieved grade or better in item 2 while 
for the same item it is very difficult to obtain Excellence. 

Item characteristic curves   
IIn IRT we depict graphically the performance of an item us-

ing item characteristic curves; plots showing the probability of 
achieving each available grade for an assessment as functions of 
candidates’ ability. Figure 4 gives an example of a two-parameter 
item characteristic curve for an item that carries four grades, as 
is the case for NCEA external examinations and many examina-

tions at tertiary level. The four curves represent the probabilities 
of achieving each grade for all candidates responding to the item. 
Each item in a given examination or test has its own unique set 
of characteristic curves.

The horizontal axis is the measurement scale on which 
candidates’ abilities and item difficulties are estimated, and 
the vertical axis gives the probability of achieving a particular 

grade. In this two-parameter item characteristic curve, and in 
equivalent plots later in this paper, the curve to the far left of 
the plot represents the probability of attaining a Not Achieved 

grade, and, moving left-to-right, the remaining curves represent 
the probabilities of attaining Achieved, Merit, and Excellence, 
respectively.  

In implementing these models, we assume that we can 
characterise a candidate’s performance with a single dimension. 
Of course, no examination actually measures just one cognitive 
construct, but often the skills or knowledge that we wish to 
measure are sufficiently strongly correlated that, statistically, 
they can be treated as representing a single dimension.  

Figure 5 shows item response curves pertaining to the 
four items of the 2010 examination for the Level 2 Chemistry 
standard 90308 (Describe the nature of structure and bonding 
in different substances). 

All four items discriminate well (as shown by the relatively 
steep slopes of the item characteristic curves), but items 1 and 
3 discriminate the best of the four. For each item we see that 
there is a clearly defined domain of ability for which each grade 
is the most probable grade.

Grade thresholds 
The threshold values for Achieved, Merit, and Excellence are 
defined as those locations on the ability axis at which results 
of Achieved and Not Achieved, Merit and Achieved, and Excel-

lence and Merit, are, respectively, equally probable. Usually, 
we plot thresholds (values of θ

NA
, θ

AM
 and θ

ME
) on a dot chart, a 

particularly effective way of depicting grade thresholds. Figure 6 
shows the threshold plot the four items of the 2010 examination 
for the Level 2 Chemistry standard 90308 (Describe the nature 
of structure and bonding in different substances) 

In this example none of the items are either particularly 
difficult or particularly easy. Additionally, the thresholds are 
reasonably (though not highly) consistent across the four items. 
There is no overlap between the domain in which the four 
Achieved thresholds fall, and that of the Merit grade. However, 

logit [ P( ) ] = exp[ ka (   -  bj )]

Figure 4. A typical set of item characteristic curves for 
NCEA external assessments constructed using Samejima’s 
Graded Response Model (1969). The variable θ represents 
the measurement scale on which candidate ability and item 
difficulty are estimated. 

The  ideal  range  for  the  discrimination  is  between  about  1.0 
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Figure 5.  Item characteristic curves for the four items of the 2010 Level 2 Chemistry 90308 examination. From left to right 
the four curves represent the Not Achieved grade, the Achieved grade, the Merit grade and the Excellence grade. The 
variable θ represents the measurement scale on which candidate ability and item difficulty are estimated. 

the Merit domain does overlap slightly with the Excellence 

domain; not a desirable property, although, in this case the 
overlap is not substantial.  

Identifying item bias (differential item 

functioning) 
Item bias, or differential item functioning (DIF), occurs when 
two or more groups of test or examination candidates, matched 
for overall ability, behave or perform differently on a particular 
item. We conduct DIF analysis in order to identify items that are 
possibly biased in favour of, or against, particular demographic 
groups (e.g. male or female candidates, or candidates identifying 
with different ethnic groups).  Possibly, their different responses 
arise, not because one group of candidates has less knowledge of 
the subject matter, but because they held different assumptions 
initially or have had different cultural or other experiences.

During 2010 we developed analytic procedures for identify-

ing DIF in NCEA assessments, based on those identified in the 

literature (e.g. Zumbo 1999; 2007). We fit a series of ordinal 
logistic regression models to the results of groups of candidates 
that are matched for ability (e.g. males and females or students 
of different ethnicities). First, we fit a base ordinal logistic re-

gression model (i.e. no covariates) to the set of item responses, 
then a regression with one covariate (e.g. group membership or 
gender). Finally, we fit more sophisticated models that include 
an interaction term (i.e. between ability and group membership 
or gender). These models are used to predict the item responses, 
where the main predictors are group membership and ability. 
For each model we calculate diagnostic statistics such as the 
log-likelihood and a Chi-square value (the log-likelihood for 
the base model minus the log-likelihood for each of the more 
complex models). Finally, the Chi-squared change for these 
models yields diagnostic statistics (i.e. the p-value and the R-
squared change) which identify DIF. We detect the presence 
of DIF when the p-value is less than 0.05 and the R-squared 
change is greater than or equal to 0.035.
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We may observe either uniform or non-uniform DIF. We 
have uniform DIF when one group has a higher probability of 
success on an item across the full range of abilities. We have 
non-uniform DIF when one group has a higher probability of 
success on an item on one or more domain of abilities, but has 
a lower probability on other domains. Our models produce 
output such as that of Table 4, pertaining to item 1 of the 2010 
examination for the Geography standard 90704 (Select and 
apply skills and ideas in a geographic context). 

The above item involved identifying particular geographic 
features on a satellite image and answering various questions 
that involved map reading skills. We see that this item exhibited 
uniform DIF between males and females (i.e. group member-
ship was a significant predictor), but not between the ethnic-

ity-based groups. Precisely why the item favoured 
males is not clear, but subject matter experts can 
often assist in such questions.  It is important to 
note that the presence of DIF does not in itself 
establish bias. Bias is only established when the 
differential functioning is invalid in respect of the 
test construct, and the professional judgement of 
subject-matter experts is required to make this 
determination. 

We can depict graphically the presence or oth-

erwise of DIF. Figure 7 illustrates the presence of 
uniform DIF between male and female candidates 
for the above item.   Note that the probability of 
success in the item is greater for male candidates 
than for female candidates across the entire abil-
ity domain.  

To illustrate DIF we group the ability scores 
of all candidates in a set number of bins (here we 
use 12 bins, each of width 0.5 logits). We then plot 

cumulative proportions of each subgroup (in this case males and 

whose estimated abilities fall within each bin), against the mean 
ability for each bin. For this particular item, across the entire 

Nonetheless, our analyses of the results distributions of recent 
(i.e. the 2009 and 2010) examinations across many subjects and 
standards has revealed very little evidence of DIF.  

New Zealand Scholarship: A hybrid 

of standards-based and normative 

assessment

New Zealand Scholarship examinations are designed to recog-

nise high-level performance in a range of subjects (currently 

Scholarship and Outstanding Scholarship. 

Results are awarded through a hybrid of normative assess-

ment (in which candidates’ grades depend on their performances 
relative to those of other candidates) and crierion-referenced 
assessment (in which candidates must satisfy established criteria 
for each available grade). In assessing candidates’ scripts, each 
item is given a numerical (ordinal) score from 0 to 8, and the 
scores for individual items summed to produce an overall score 
for the script. Scores from 0 – 4 equate to a No Award grade; 
scores of 5 and 6 equate to a Scholarship grade, while scores of 
7 and 8 equate to an Outstanding Scholarship grade. 

Figure 6. Grade thresholds for the four items (Q1 – Q4) of the 
2010 Chemistry 90308 examination. Thresholds represent 
the points on the measurement scale at which adjacent 
categories are equally probable.  

Figure 7. Graphical depiction of Differential 
Item Functioning for item 1 from the 2010 
Geography standard 90704.

Table 4.   Results of an analysis of Differential Item 
Functioning for item 1 from the 2010 examination for the 
Level 3 Geography standard 90704.
Comparison Groups Uniform Non-uniform

Male – Female   Yes         No
European – Māori   No         No
European – Pasifika   No         No
European – Asian   No         No

females) attaining Achieved, Merit or Excellence grades (and 

domain of abilities, males were more successful than females. 

35 subjects). Two passing grades are available for each subject: 
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Finally, a pair of cut scores, which define the range of total 
scores for award of Scholarship and Outstanding Scholarship 
for each script, is agreed. These cut scores are set so that about 
3% of the NCEA Level 3 cohort, defined as the total number of 
candidates who have entered for 14 or more credits for NCEA 
Level 3 in that subject (not to be confused with the total number 
of students who have entered for the examination, which is usu-

ally a much smaller number), will receive a Scholarship, and 
about 0.4% will receive an Outstanding Scholarship. This is the 
normative part of the Scholarship assessment process.  

Each script must include at least one item at Scholarship 
level if a Scholarship is to be awarded, and each script must 
include at least one item at Outstanding Scholarship level if an 
Outstanding Scholarship is to be awarded. If a script contains at 
least one item graded at 5 or 6, then we can say that the candidate 
has provided evidence of performance at Scholarship level, and 
similarly for Outstanding Scholarship level. This is the  crite-

rion-referenced part of the Scholarship assessment process. 
Awarding New Zealand Scholarship

Let us consider the 2010 Scholarship examination in Physics. 
This examination involved six items, so that the maximum 
possible score was 48. Following completion of the marking 
process, the cut score for Scholarship Physics was agreed at 
25 (i.e. roughly 3% of the Physics Level 3 cohort) and the cut 
score for Outstanding Scholarship was set at 35 (roughly 0.4% 
of the cohort). Figure 8 gives a bar chart of total scores for the 
six-item 2010 Scholarship examination in Physics. The vertical 
lines indicate the cut scores for Scholarship (S) and Outstanding 
Scholarship (O) awards in that subject.     

The bar chart shows a very wide range of performances on 
this examination. The Scholarship cut score of 25 was chosen 
so that roughly 3% of the cohort earned that score or above, all 
candidates at this score or above receiving at least one score of 5 
over the complement of six items. The Outstanding Scholarship 
cut score of 35 was chosen so that roughly 0.4% of the cohort 
earned that score or above, all 
candidates at this score or above 
earning at least one score of 7. 

ly skewed distribution of scores, 
a desirable characteristic in an 
examination that is designed 
to challenge top students. The 
positively-skewed distribution 
indicates that the test provides 
the most reliable information 
in the region of performance 
in which cut scores are likely 
to be set; around the midpoint 
of the total-score range for the 
Scholarship cut, and the three-
quarters point for the Outstand-

ing Scholarship cut.

Statistical modelling of New Zealand Scholarship 

similar analyses to those conducted for NCEA; dimensional 
analysis, IRT, etc, although the scholarship analyses are im-

plemented on the full set of results, rather than on a sample. 
However, one additional analysis involves characterising the 
relationship between the results attained by Scholarship can-

didates in NCEA Level 3 in a given subject and their results 
in the Scholarship examination. Figure 9 gives a scatter-plot 
relating candidates’ performances in the Level 3 Physics stand-

ards against their performances in Scholarship Physics. The 
vertical axis gives the mean expected percentiles (a measure of 
performance expressed as the expected percentile of the Level 3 
candidature earned by the ‘typical’ candidate who has earned a 
particular grade in one of the external assessments) for each of 
the Level 3 Physics assessments taken by each candidate. The 
horizontal axis gives the total score earned by each candidate 
in the 2010 Scholarship Physics examination.  

What exactly is a mean expected percentile? Let’s illustrate 
using the Level 3 Physics examination for the four-credit Level 
3 standard 90520 (Demonstrate understanding of wave systems). 
The national grade distribution for this examination was as fol-

half of 54.5% (or the 51st percentile) from the lowest scoring 
candidate. Similarly, our best estimate is that a student earning 

Scholarship candidate who took NCEA (some take other as-

sessments such as Cambridge International Examinations or the 

Figure  8 .  Bar  char t  o f 
total scores for the 2010 
NZ Scholarship Physics 
examination, with Scholarship 
and Outstanding Scholarship 
cu t  scores  (25  and  35 
respectively).

For all New Zealand Scholarship examinations we conduct 

The bar chart shows a high-

lows: Not Achieved (24.0%), Achieved (54.5%), Merit (15.4%) 

about any given student, our best estimate is that a student earn-

is that a student earning an Achieved grade sits at 24% plus 

ing a Not Achieved grade sits at 12% of the candidature from 

and Excellence (6.2%). In the absence of precise information 

a Merit grade sits at the 86th percentile, and a student earning 
an Excellence grade sits at the 97th percentile. Of course, each 

International Baccalaureate) will have gained a particular set 

the lowest score (i.e. the 12th percentile). Our best estimate 
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of results in one or more of the four Level 3 Physics standards, 
and each is accorded a mean expected percentile for each of his 
or her Level 3 assessments. It is these percentiles, expressed as 
decimals, that are recorded on the vertical axis of Figure 9.  

Essentially, this analysis illustrates the power of NCEA 
Level 3 in predicting performance in New Zealand Scholarship. 
In general terms the greater the mean expected percentile of the 
Level 3 assessments, the greater is the total Scholarship score. 
The relationship appears to be almost linear up to a Scholarship 
score of about 16, after which the curve levels off somewhat. 

Scholarship examination: it extends the top end of performance 
of the Level 3 cohort. Students scoring in the top half of the 

3 examinations.

Summary  

Statistical modelling of NCEA and New Zealand Scholarship 
results provides very valuable feedback that supports ongoing 
improvement of our assessment processes. In addition to the 

analyses described in this paper, we undertake many other 
diagnostic analyses that help to ensure fair and consistent as-

sessment. Further applications of IRT are anticipated for the 
future. Eventually, our modelling programme will support 
the creation of banks of strongly-performing items for use by 
examiners and teachers, and in which we can have a very high 
degree of confidence. 

It is important to be clear that the programme of analysis 
presented here is statistical in nature and concentrates on prop-

erties internal to the assessments themselves. The analyses 
we have described are necessary to ensure that assessments 
measure reliably, efficiently and fairly. They are not, however, 
of themselves sufficient to ensure valid measurement. Validity 
is the most essential property of any assessment and requires 

poses of the assessment. Nonetheless, an assessment without 
strong reliability or that is of inappropriate difficulty, will not 

described in this paper are essential for ensuring fair, reliable 
and valid national assessments for secondary-school qualifica-

tions in New Zealand. 
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Figure 9. A plot of the mean expected percentiles for the 2010 

against their total scores for the 2010 NZ Scholarship 
Physics examination.

Level 3 results for all Scholarship candidates in Physics 

Scholarship range typically achieve results at Merit and Excel-

power at higher levels of candidate performance than the Level 

Figure 9 illustrates a particularly desirable attribute of a 

lence at Level 3. The examination has displayed discriminative 

substantial content knowledge and understanding of the pur-

be valid, regardless of its specific content. Thus, the analyses 
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