
New Zealand Science Review Vol 69 (4) 201286

Even since Galileo, philosophers have tried to explain why 
science has been so successful. All of the great philosophers in 
history have taken an interest in epistemology – the philosophy 
of knowledge – and the most important philosophers of recent 
centuries have grappled with the problem of scientific knowl-
edge. At the same time, probability theorists and mathematicians 
have also grappled with the problem of scientific experimenta-
tion, giving rise to modern statistical methods of experimenta-
tion and analysis. Is there then a ‘right’ way to do science, or 
is science a matter of ‘anything goes’ as Paul Feyerabend has 
argued (Feyerabend 2010). Feyerabend was writing in reac-
tion to the rigidity of the methodology of Imre Lakatos, who 
in turn was reacting to the writings of his teacher Karl Popper. 
But this context has been lost in some recent popular histories 
of science, which have presented science as a wholly anarchic 
enterprise (Brooks 2012). It is my contention that there is not a 
single right way of doing science, but nor does ‘anything go’. 
Rather, a plurality of approaches to science is possible. 

Classical science and normal science
The focus of this article will be on only two approaches to 
science. The first I will call classical science, and the second 
could be called ‘normal’ science. The latter term comes from 
Thomas Kuhn’s description of science (Kuhn 1962), and I use it 
to include operational and applied research, industrial research, 
and any kind of puzzle-solving research carried out on a big 
industrial model. By classical science I mean science as the 
quest to discover explanations of the way the universe we live 
in works, as typified by the great works of the scientists of the 
Enlightenment. The distinction is not perfect; much of modern 
astronomy and cosmology is both classical science and ‘big 
science’. Nevertheless I will argue that the distinction is real 
and useful. Indeed it has been described in terms of a battle for 
the very ‘soul of science’ (Fuller 2003), though I will argue that 
both approaches have particular strengths for particular aims. In 
particular I will argue that many debates over methodology in 

science and in statistical analysis can be resolved by reference 
to these distinctions. 

Classical science involves the close interaction of theory and 
experiment, the aim being to uncover invisible worlds behind 
the world of appearances; it is about explaining the seen in terms 
of the unseen. The hidden worlds that have been uncovered by 
classical science include the worlds of the atom, the cell, deep 
evolutionary and geological time, biochemical structures, the 
structure of the neuron, deep space, the interior of the earth, 
and the shifting plates of the earth’s crust, to name but a few. 
Classical science is therefore disciplined and constrained in its 
speculations, not only by experiment but also by the search for 
good explanations1. I contrast this with a more modern style of 
science modelled on operational research – i.e. research for in-
dustry, production, design, engineering, or some other practical 
application. Accompanying the operational research model are 
the statistical methods that are used to increase efficiency in the 
testing of models and procedures. I argue that these methods, 
though powerful for their given purpose, can sometimes inad-
vertently be a hindrance to scientific discovery in the classical 
mode. This is because the perceived authority of such methods 
can tempt researchers into carrying out ‘explanationless sci-
ence’, as discussed below.

Experiments test explanatory theories in 

classical science

A continuing source of ambiguity in discussions over scientific 
method is over the use of the term ‘hypothesis’. In classical 
science a researcher has some phenomena to explain and posits 
a theory to do this. Predictions are drawn from the theory, and 
when these are tested experimentally they are called hypotheses. 
Therefore, experiments never directly engage with a theory, but 
only indirectly through the intermediary of predictions/hypoth-
eses. By contrast, in ‘explanationless science’ the hypothesis 
is the theory, often consisting of little more than conjectures 
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about simple associations between groups of variables. In this 
approach the associations measured in an experiment are syn-
onymous with the theory under investigation. It is interesting 
to trace the history of such a notion back to empiricism and 
associationism in 17th and 18th Century philosophy. A detailed 
discussion of this is beyond the scope of this article, but it is 
important in understanding the crucial role of the informative 
content of theories in science. 

Hypothesis testing in operational research 

in comparison to explanatory science

The modern statistical experiment probably began with R.A. 
Fisher, who provided a solution for the problem of controlling 
for random variables in experimentation, using an integrated set 
of procedures governing experimental design, data collection, 
and data analysis (Marks 2003). Fisher designed his approach 
to experimentation to solve a problem in operational research; 
in his case agricultural research. Although as a theoretical ge-
neticist Fisher provided the world with theories of impressive 
explanatory power, in his role as an agricultural researcher he 
tested relatively simple ‘theories’ consisting of no more (for 
example) than the association between variables such as ferti-
liser and plant growth. Therefore, his agricultural experiments 
directly tested a simple idea of practical interest, namely how 
much some factor could contribute to plant production. This is in 
contrast to experiments designed to test explanatory theories. To 
use a much discussed example, Eddington’s experiment meas-
ured the effects of the sun’s gravitation influence on the path 
taken by light from stars on the way to earth. But this in itself was 
not of primary interest. What mattered was that the experiment 
tested a prediction derived from Einstein’s General Theory of 
Relativity, the latter with its capacity to explain a vast richness 
of natural phenomena. Many similar examples could be given, 
but the key difference is that in the agricultural experiment the 
variance in the data across the groups defines the probability 
space (the range of possible outcomes over which probabilities 
are calculated) whereas Eddington’s experiment – though simple 
in terms of variation in the data collected – pertains to a much 
wider probability space defined by the theory that it is designed 
to test. That is to say, the precise direction and magnitude of the 
deviation of the light path with respect to the space and time 
it was measured as predicted from Einstein’s theory is highly 
improbable a priori, given the enormous range of alternative 
light paths that could conceivably be measured. Therefore, a 
P value generated for Eddington’s data by comparing one set 
of measurements with (say) control readings radically under- 
represents the improbability of the result. This crucial element 
in the interpretation of experiments is lacking from a purely 

statistical model of science (i.e. explanationless science). 

Considered as an idealised statistical experiment, Edding-
ton’s experiment would take this form: control readings for the 
apparent position of a star when its light path does not pass 
close to the sun are gathered. Then, at the time of an eclipse, 
measurements are taken as light from the star passes close to 
the sun. The apparent position of the star is calculated for the 
two groups and compared with a simple statistical test and a 
P value is generated. Of course, how well measurements of 
the star’s apparent position matches predicted values could be 
calculated using an even simpler test, but the control readings 
are necessary as a check on whether the apparatus is adequate 

to the job of measuring the apparent position of stars. But any 
P values calculated only take into account the variation within 
and between sets of measurements, with or without consider-
ing their deviation from values predicted from theory. What is 
missing from the account is that the apparent shift in position of 
the star due to the gravitational influence of the sun is predicted 
with great precision. Considered as polar coordinates relative 
to the observer, Einstein’s theory predicts a precise direction 
and magnitude for the apparent shift. This selects out of a set 
of possibilities that include (at least) the entire field of view. 
The variation of the experimental readings only covers a tiny 
part of the space of possible measurements, and no considera-
tion of effect sizes can substitute for the extreme improbability 
of the result of the experiment considered with respect to all 
conceivable measurements2. 

In classical science, powerful experiments come from 
powerful theories. The meaning and probability of experimen-
tal results transcend anything calculable from variation in the 
data, and can only be approached conceptually by considering 
the specificity of the prediction considered as a subset of all 
conceivable outcomes. This goes beyond the idea of ‘effect 
size’, a concept that applies to scalar experiments irrespective 
of theory. But, as operational experiments are often not tests of 
predictions from theories, and as they test (almost) content-less 
hypotheses, they generate P values that come closer to a full 
description of the probability of the result, and so can be used 
in rational decision making. What defines a good experiment 
in classical science is not so completely captured by statistical 
design principles, but requires careful consideration of the logi-
cal structure of the theory under critical consideration. 

In operational research, this lack of accounting for the 
explanatory power of theories is not a problem, and in fact the 
statistical model is ideal because what is under investigation 
is the ability of some procedure to generate a desired result: 
the output. But in classical scientific experiments, the outcome 
measure is only indirectly related to the content of the theory. 
The purpose of a scientific theory is to explain data. The purpose 
of operational research is to generate desired outputs: the goal 
being procedures, devices, machines or mechanisms, models 
of various description that are good at a particular function. 
Operational research produces things that are well designed for a 
task, in much the same way that biological adaptations are well 
constructed to carry out a particular task. It follows from this that 
the methods of science must deal with the explanatory power 
of scientific theories whereas those of operational research do 
not. One of the key discoveries of Karl Popper was that the ex-
planatory power of a theory is in inverse proportion to its logical 
probability – the very property of Einstein’s predictions that are 
discussed above. Fisherian hypothesis testing in isolation does 

2 This argument has a Bayesian flavour, but it is incorrect to think that 
Bayes’ theorem can be therefore used to calculate a probability for the 
truth of Einstein’s theory. A theory with good explanatory power will 
have greater content and lower probability than any of its predictions, 
so that the prior probability crushingly discounts any evidential posterior 
probability. But this does not matter, as what is really at stake is that the 
theory has passed an extremely severe critical test. It makes as much 
sense to say that Einstein’s theory is probably true as it does to say that 
the Bugatti Veyron is probably the fastest production car that will ever be 
built. All that can be said is that this car is probably faster than anything 
else yet built, and that considered as a random ensemble of matter, it 
is improbably good at hurtling across tarmac. Similar language can be 
used for the explanatory power of Einstein’s theory.
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not deal with explanatory power; in fact, its procedures deal 
with hypotheses that are all but stripped of explanatory power 
– theory-less or explanationless hypotheses that describe but 
do not explain simple associations. What it does do very well 
is help in making decisions on experiments designed to test the 
functioning of some operational model.

Classical science is about discovery and 
explanation whereas operational research 

is often about optimisation

A theory with high explanatory power rules out a great many 
possible outcomes, whereas a theory with low explanatory 
power rules out relatively few. This quality of theories is im-
portant in interpreting experiments that are designed to test 
them. Theories with high explanatory power, should they pass 
the experimental test, warrant our profound attention. But when 
there are many possible ways that an experimental result could 
have been true regardless of the theory, then the passing of an 
experimental test counts for little, because the likelihood of it 
surviving the test, even if false, is high anyway. It is possible 
to conceive of experiments that test two theories that differ in 
this way, but that generate identical P values, effect sizes, and 
other statistics. Hence the ascendance of the statistical model 
of experimentation can have dangers for classical science if 
it lures scientists into explanationless research, investigating 
mere correlations between variables divorced from explanatory 
context. When explanatory power doesn’t matter, explana-
tions won’t be sought. When logically improbable theories are 
not valued, discovery will be derailed. If scientists strip their 
theories’ predictions of content, shoe-horning them into a form 
easily amenable to a pre-packaged statistical model, then it is 
possible to denude the experiment of its interpretive context. 
Because statistical experimental design has all the trappings 
of epistemological strength, the statistical model may be used 
to achieve some kind of apparent ‘experimental power’ in the 
absence of any explanatory theory to be tested. This encour-
ages empty, virtually theory-less experimentation, where the 
sophistication of mathematical design becomes a substitute 
for scientific reasoning and a smokescreen for the lack of any 
significant theoretical content. 

In the type of science typified by operational research this is 
not a problem; given that its goals are often good design rather 
than good explanation. The constructs and procedures under 
investigation have little or no explanatory content. The distinc-
tion becomes even more important for multivariate statistics. 
In classical science, mathematical theories with large numbers 
of parameters are often frowned upon. Such theories are very 
hard to disprove if wrong, as changing the parameter constants 
can be used to fit the model to nearly any data. Theories become 
more complicated than the data to be explained, and so explain 
nothing. The complexity of such models make them opaque to 
critical reason, providing less insight into the hidden processes 
of nature than the data to which they pertain. 

However, what is a weakness in classical science can be a 
strength in operational research, where empirical feedback is 
used to correct a complicated model in a way that reason cannot 
do. When explanation is not the goal, a highly complex structure 
(mathematical or physical or procedural, etc.) is often favoured 
because it can be adjusted in many ways to produce better re-

sults (for example, a fit to meteorological data) without having 
to be replaced wholesale. The experiment tests the operational 
procedure or model to be optimised, with each experiment a 
decision making unit for further optimisations of the model. 
The model may not be falsified and replaced (as theories are in 
science) but be adjusted after each experiment to better carry out 
its task. By contrast, and as argued above, this can be a disaster 
for classical science and theoretical understanding3. 

A case study:  

Two ways of using P values in science
In order to make the distinction between the two types of sci-
ence concrete, I will use as a reference point an on-going debate 
within science – the use of P values and null hypothesis testing. 
Seemingly a minor issue, in fact the topic rouses passions to the 
extent that some leading journals (e.g. Epidemiology) refuse to 
publish P values. I will argue here that the argument is not really 
about P values, but about how science should be done. 

For many decades, statisticians have expressed concern, 
even bewilderment, over the extensive use and perceived misuse 
of null hypothesis testing in science, and the generation of P  

values, at the expense of more informative analyses4. Statisti-
cians fear that scientists’ misinterpretation of hypothesis testing 
gives an illusion of objectivity. However, although there is much 
truth in this, the extensive use of P values wouldn’t have contin-
ued under such sustained critical attack unless they carried out 
some useful function in science. Sinclair, who provided a per-
ceptive explanation for scientists’ fondness for P values that has 
been largely overlooked (Sinclair 1988), argued that scientists 
use P values in a different way from that intended by statistical 
theory. Formally, P values are instruments for statistical deci-
sion making, with conventional thresholds for P values used as 
criteria for decisions as to whether to reject a null hypothesis. 
Sinclair pointed out that this is not how scientists often use P 

values; they are instead used as a sliding scale to flag instances 
where a signal may be tentatively judged to have been detected 
among the noise. To paraphrase Sinclair, these values are not 
used to make any objective decisions about null hypotheses or 
about any particular experiment, but are rather descriptive terms 
that are gathered as clues in a process of scientific inference that 
takes place over the course of papers, research programmes, and 
critical debates in the literature. Scientists, in other words, need 
not make inferences from experiments like statisticians do, but 
make tentative decisions – that take into account all evidence 
that is at hand – widely understood. 

Understood this way, P values are useful descriptions of data, 
as they are independent of degrees of freedom, summarising 
information in a single dimensionless number between zero 
and one. Therefore. one function of P values as used by some 
scientists is not for comparison to conventional thresholds for 
decision making, but for communication. Sinclair pointed out 
that when P values are used in this way, then it makes little 
sense to correct for multiple comparisons within an experiment. 
Standard practice is to perform a correction on P values for 

3 Not all quantitative methods are blind to explanatory power. For 
example, in information theoretic methods for data analysis, increasing 
numbers of parameters in a model discounts its informative content.
4 A comprehensive list of quotes and references is at http://www.indiana.
edu/~stigtsts/quotsagn.html  (accessed 27 June 2012).
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multiple comparisons (post-tests) such that the probability of 
finding at least one comparison in the experiment at a certain P 

value is made to equal that nominal value. Sinclair pointed out 
that this assumes that the experiment is a unit over which type 
I error should be normalised. But this is merely an assumption 
of statistical decision making, and makes no sense for how 
some scientists view their data, comparing and cross-checking 
within experiments, across experiments, and across papers and 
even disciplines. Unlike in statistical theory, in classical science 
there is no single experimental unit for decision making, and no 
natural unit over which type I error should be normalised. 

Experiments are decision making units in 
statistical theory but not necessarily so in 

classical science

Histories of science are replete with dramatic experiments that 
‘changed the course of science’. Although such experiments 
make good history, they are not necessarily representative of 
experimentation in science as a whole, where experimenta-
tion is a much messier affair, involving a tinkering process 
of problem solving by trial and error. Indeed, the image of  
history-changing experiments may be a literary fiction, used to 
summarise a much longer and less balanced series of trials and 
error. The theory that singular experiments (rather than series 
of experiments in the sense of trial and error) should be used as 
decision making units also probably has its origins again with 
R.A. Fisher, as discussed above (Marks 2003). The Fisherian 
experimental procedure involves randomisation of subjects to 
groups such that only data collected within one experiment 
can be analysed for statistical error using methods devised by 
Fisher specifically for the task. Therefore, when P values are 
used for statistical hypothesis testing, experiments are the units 
over which decisions should be made. Often, an experiment 
using this approach is a test of something that will be used in a 
practical application. Therefore, P values would be normalised 
across each experiment so that they can be used to make deci-
sions and to quantify risk of failure when used in calculations 
in other steps in the design process, production, marketing, or 
some other aspect of application.

However, classical scientists are primarily interested in ex-
planations, and, freed from having to make digital decisions on 
an experiment-by-experiment basis, they look for contrasts and 
comparisons in data at all levels: within experiments, between 
experiments, or across research papers. In this way a richer 
description of the problems that a successful explanation must 
solve is gained than anything that can be provided by a single 
experiment. P values are useful tools for communication in this 
process. The statistical model of experimentation common to 
much of normal science is responsible for a view of experi-
mental science that misses the crucial role of the interaction of 
the results of one experimenter’s work with another. Decisions 
are not made by reference to experiments or papers in classical 
science, no matter how tiny reported P values may be.

The case study continued:  

Effect sizes and P values
Another way in which scientists are often criticised in the way 
they use statistical methods is in reporting P values without 
reporting any corresponding effect size (such as coefficients 

of determination, or standardised differences between means, 
and so on). There is a lot of truth in this criticism, but taken 
too far it misses an essential point and betrays a standpoint that 
comes from explanationless science. That is, effect sizes, and 
strengths of associations between variables are not meaningful 
in classical science in themselves, but only with respect to the 
explanatory theories to which they pertain. A very small effect 
or loose association may still be very important when seen in 
the light of a particular theory. It is only in operational research, 
where the goal is often maximisation or optimisation of some 
output measure, that effect sizes are interesting in isolation.

Because the meaning of an ‘effect’ in classical science de-
pends on the explanatory theory at stake, a case can be made 
that what is actually most important is whether the detection 
of the effect, at any scale, is due to chance. Therefore, P values 
take on a particularly important critical role, flagging instances 
where researchers may be in danger of fooling themselves when 
mere chance is at work. In other words, P values carry out a 
decision making function in operational research, but a critical 

function in classical science. 

The central importance of explanations in classical science, 
and the role they play in disciplining and constraining interpreta-
tions of experimental results can also help to resolve a central 
paradox of the statistical model of science. The paradox can 
be expressed several ways: first, the problem of ‘over-fitting’, 
where repeated attempts at statistical model fitting is almost 
bound to produce random ‘fits’ if continued long enough with 
enough variability in the model parameters; second, with any 
threshold value for statistical significance, repeated null hy-
pothesis testing will generate many false positive results (type I 
error). The paradox comes when attempts are made to overcome 
these sources of error by various conventions for restricting the 
range of comparisons and models tested that the researcher is 
permitted to make. Hence, a commonly heard piece of advice 
from statisticians is to choose a set of comparisons or models 
before the analysis, and stick to them. But reflection shows that 
this is arbitrary – as if somehow the temporal order of steps in 
a purely logical process could have any bearing on the truth of 
things. Indeed, the advice comes very close to subjectivism. 
There is no final way to normalise error rates, provide consistent 
rules to prevent researchers from ‘fishing’ for correlations or 
over-fit models. All these things are not an abuse of statistics, 
but a limitation of a particular approach to science. The answer 
to the problem lies in recognising that the problem is inherent 
in explanationless science, and that when experimental analyses 
are constrained by the requirement to provide good explana-

tions, then many of the problems resolve.

The use of conventions to limit the number of comparisons 
that are made in statistical analysis also seems to be a feature 
of confirmationism. That is, an assumption seems to be that, if 
few comparisons are made, and yet a small P value is found, 
this is very likely to be due to more than coincidence and so 
the hypothesis is thought to be confirmed. But, this is a chi-
mera, because, given a large research community and the very 
iterative hypothesis testing process that defines the discipline, 
coincidences will repeatedly occur. By contrast, a falsificationist 
approach to science looks to criticise hypotheses and explana-
tions, so that lack of statistical significance becomes the main 
point of interest. Falsificationist science is intimately related to 



New Zealand Science Review Vol 69 (4) 201290

classical science, with its emphasis on explanations. In classi-
cal science, statistical analysis is carried out in the context of 
providing critical tests for explanatory theories – not simply cor-
relative hypotheses – and to test whether predicted relationships 
are as great as that expected from theory (and whether apparent 
relationships are due to chance). Because good explanations 
have certain properties such that they are not endlessly vari-
able (Popper 1959; Deutsch 2011), the paradoxes of statistics 
can be resolved in classical science. Similarly, cautions about 
correlations not proving causation is another bogey of explana-
tionless science. Causation is a feature of explanations, never 
directly measured in any experiment regardless of the quality of 
experimental design and controls. A classic example of the clash 
between the two approaches to science can be seen from the de-
bate between R.A. Fisher and those who followed the reasoning 
of A. Bradford Hill over the dangers of smoking (see Le Fanu 
2002; McGrayne 2012). Fisher maintained that only correlation 
not causation had been shown, and that there was no evidence 

for harmful consequences from smoking. But Bradford Hill had 
used logical and theoretical reasoning in his interpretations of 
data, going beyond the statistical model used by Fisher. On this 
issue Bradford Hill was right and Fisher was wrong.

If P values are seen for what they are – decision making 
tools in explanationless operational science or critical tools in 
classical science, not numbers that exhaustively capture the 
uncertainty inherent in an experiment – they become just one 
useful tool in the researchers toolkit. Where problems arise is 
when the notion is entertained that P values take into account 
the entire set of possibilities that are relevant when evaluating 
an experiment, a feature of explanationless science. This is an 
abuse of null hypothesis testing when it is done in classical sci-
ence, where experiments are always evaluated in the context of 
theories, and where the logical probability of predictions must 
be carefully considered (see above). 

Classical science, normal science, 
induction, and falsification
So, in a falsificationist philosophy of science, statistics can 
only be used to criticise but not confirm theories. In operational 
research, where the truth of theories (only the performance 
of models) is not at stake, this issue doesn’t arise, but it is 
fundamental to the process of explanation and discovery. To 
see how this affects science, consider as an example the use 
of statin drugs to treat cardiovascular disease (CVD). Statins 
were first hypothesised to reduce the risk of CVD on the basis 
of the hyperlipidemia theory of CVD, which had earlier been 
proposed on the basis of fortuitous discoveries. Statins have 
been very effective in large-scale randomised clinical trials 
(RCTs) (Maggo et al. 2012). As operational research, this is all 
that need be said: statins work. But from another perspective the 
results of the RCTs look quite different. Have the statins passed 
the test? Yes. Does this mean that the hyperlipidemia theory of 
CVD has been confirmed? No. From another perspective it is the 
criticisms of the theory that have been uncovered by the statin 
RCTs that are most interesting: for example, the repudiation 
of the idea that statins are only helpful to people with elevated 
blood lipids. Therefore, although the RCTs validated statins as 
medicines, from a scientific perspective they remain problem-
atic. As classical scientific experiments, the statin RCTs have 
performed a critical function, exposing gaps in understanding 

that could lead to deeper more comprehensive theories about 
the origins, nature, and treatment of CVD.

It is important to acknowledge here that one of the great 
triumphs of statistical experimentation is the randomised clini-
cal trial (RCT) in medicine. These are exercises in operational 
research par excellence, where hypotheses describe a procedure 

to be optimised; the procedure being the administration of 
some treatment and the output being some measure of health 
or disease. There need not be any explanatory theory to which 
the test medicine pertains; much drug research is, in the jargon 
of medical researchers, ‘purely empirical’. On the other hand, 
RCTs are not good mechanisms for drug discovery, which tend 
to happen more by fundamental research into the explanations 
behind pathologies, tests of bold theories about new treatments, 
or simply by accident, things for which there is often little room 
in the strict confines of large-scale experimentation. Where 
RCTs have been extremely useful for classical science is in 
the falsification of hypotheses about medicines, dismissing 
traditional treatments that are found to be ineffective. Similarly, 
RCTs can provide powerful criticisms of explanatory biomedi-
cal theories (such as in the hyperlipidemia theory discussed 
above). Therefore, the full power of statistical experimentation 
is realised when the analyses are closely linked to explanatory 
theories, and used in attempts to criticise such theories.

Scientists deal with questions and their 
answers, not with decisions
Science is a problem-solving process; conjectures are made to 
try to solve a problem, tested, and refuted, and new conjectures 
are made. So much is now widely accepted. However, this view 
of experimentation, though close to the truth, is not quite correct. 
What happens more often than not in a scientist’s working day is 
that an experiment returns not (or not only) an answer to a ques-
tion, but another question (or many questions). Karl Popper is, of 
course, well known for his discussion of the logical asymmetry 
that explains why the arrow of logic in experimentation runs in 
the reverse direction to that which was once supposed, i.e. data 

are not used to induce theories. Rather, theories are proposed and 
only falsified (but never confirmed) by data. Less well known 
is another inversion, a theme of much of Popper’s later writ-
ings. Popper maintained that the actual course of science is that 
it starts with problems or questions, runs through conjectures 
and tests at each step, proceeding to more questions and prob-
lems (e.g. Popper 1963). This seems to me to be a profoundly 
correct description of experimental science, and does much to 
explain exactly how scientists go about the business of solving 
problems, making discoveries and explaining things. Indeed, 
perhaps public trust in science may be increased if it ceases to 
be identified with the results of experimental ‘findings’ but is 
understood in terms of the error-correcting problem-solving 
discovery process that it is.

However, in many of the descriptions of the hypothetico- 
deductive method, a picture is presented of iterative hypothesis 
testing, where conjectures are presented, refuted, and replaced 
with a new conjecture. This view of problem solving has caused 
much hand-wringing by many of Popper’s followers, who have 
agonised over whether or not it is correct to call one conjecture 
closer to the truth than its predecessor. But it was not a large issue 
for Popper himself, as Popper saw science as an evolving set of 
questions as much as of theories. The step-by-step elimination 
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of hypotheses experiment-by-experiment may fit well with the 
statistical/operational model of science, but it is not a necessary 
feature of scientific problem solving. A scientist will be working 
on a problem, and there may be a dominant theory and perhaps 
some other strong theories. The scientist designs experiments 
to test these theories. The results may be ambiguous, giving no 
clear falsifications of any of the theories, but returning even more 
questions. But this evolving set of questions is itself informative, 
increasing the ‘problem content’ (Popper 1974) of the phenom-
ena that a successful theory must explain, thus constraining the 
theorising and imagination of the scientist. Eventually, if lucky, 
a scientist may propose a theory that answers a great many of 
the problems and questions that have been generated over the 
course of many research programmes and published papers, and 
the theory may then prosper at the expense of the old theories. 
It is not simply that scientists work within a ‘paradigm’ until 
anomalies become overwhelming and a new approach is taken, 
as in the philosophy of Thomas Kuhn (1962), but that scientists 
actively seek to solve problems, test theories, and explain data; 
the replacement of one theory by another may take place over 
a considerable amount of time. Within that time, experiments 
are generating more questions and clues, many of them flagged 
with easy-to-digest P values. This is in contrast to the piecemeal 
proposing and eliminating of hypotheses in operational research, 
where problem content does not grow and the discovery of new 
explanations is not the goal.

The image of falsification science as being no more than 
the iterative generation and elimination of hypotheses is an 
attractive one, in that it is closely analogous to the proc-
ess of Darwinian natural selection, and therefore provides a 
powerful explanation of the evolution and development of 
good designs. This does seem to be the case for operational 
research, where models are proposed, tested, and changed, 
and tested anew. Criticism and falsification take on the role of 
‘negative feedback’ in a cybernetic process in this vision, one 
endorsed by the Popperian and Nobel Prize winning scientist 
Sir Peter Medawar (Medawar 1969). The ‘cybernetic’ view of 
falsificationist operational research is, it seems to me, correct, 
but as a description of falsificationist science it is not so much 
wrong as incomplete, and potentially misleading. Criticism has 
another role in addition to the elimination of hypotheses, and 
that is the production of questions. By experimentation and 
other procedures for generating critical information, scientists 
occasionally manage to falsify a hypothesis outright, but nearly 
always manage to generate questions. As discussed above, the 
trial and error of scientific experimentation is as much about 
the accumulation of problems and questions as about the suc-
cession of hypotheses. The scientist then works in a way that 
resembles in many ways that of the detective, gathering clues 
that a good theory will have to explain. As questions accumulate 
they provide an increasingly detailed negative image of the 
explanatory content that a successful theory should provide. In 
some way, if only a little way, this explains how the trial and 
error process can inform the imaginative processes in which 
new theories are born. If a scientist poses a ‘bold hypothesis’ 
outside of this context, perhaps following the contradictory 
dictates of both classical science and operational research, then 
this is probably no more than what would be called a ‘hopeful 
monster’ in evolutionary biology, almost certain to be wrong 
in most of its particulars.

Big science, operational science, and the 
statistical model

Fisher was an agricultural researcher, but he was also an ex-
tremely bold theoretical scientist in the classical mode. Before 
Fisher, in 1909, William Sealy Gosset had already developed 
the t-test5, again as a tool for operational research, in this case 
quality control checks in the Guinness brewery in Dublin. But it 
does not seem that the introduction of these methods gave rise to 
the operational research model of science. It seems more likely 
that it was due to the rise of ‘big science’ particularly during 
and following World War II. The understanding that organised 
research could lead to dramatic improvements in military and 
industrial capability led to a massive investment in science in 
the USA in particular. Big money and big research projects paid 
enormous technological dividends in the development of the 
atom bomb and the space programme – areas where operational 
research procedures rule supreme. Extremely complex experi-
mental designs subject to computer analysis can be extremely 
efficient tools for industrial research, with its requirement to 
make engineering and manufacturing decisions. Procedures such 
as manifold adaptive experimental design have been extremely 
successful in engineering. Sequential experimental design in 
industrial production was so powerful that it was considered a 
military secret weapon in USA in WWII. But as tools in science, 
such experimental designs might sometimes hinder progress, 
as they are opaque to unaided human understanding such that 
critical analysis and understanding of the test procedure becomes 
very difficult, ruining the harvest of questions and problems 
that an experiment might yield. By contrast, great scientific 
theories may often be beyond the comprehension of the non-
specialist mathematical scientist (especially in physics) but the 
experiments that test the theories may be of relatively simple 
conceptual design, potentially criticisable and understandable 
by anyone prepared to make the effort (this is not to say that 
the apparatus used in such experiments is simple.) 

Where scientific understanding is required, big science has 
been in some estimation a failure. For instance, the ‘war on 
cancer’ initiated by Richard Nixon in 1971, despite billions of 
dollars invested, has yielded barely any dividend, with seren-
dipity continuing to be the only source of new cancer therapies 
(Spector 2010). The non-scientist often asks, ‘If they can put a 
man on the moon, why can’t they find a cure for the common 
cold?’ It is a good question, and I propose that the answer is that 
because the first is a question of operational research whereas 
the second requires the growth of scientific understanding. Big 
science answers big operational questions, but doesn’t do so 
well with questions that require explanations. Big science, op-
erational research, and explanationless science go hand-in-hand-
in-hand. The values of classical science include truth, discovery, 
explanation, and understanding. The values of operational 
research are defined instead by the philosophies of pragmatism 
and instrumentalism, where explanatory theories are replaced 
by models – instruments that may or may not contain any truth 
or any explanation of things, but which simply work. 

5 Published under the pseudonym ‘Student’ (1908) and often known as 
Student’s t-test.
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Pluralism in science as a good

In the long haul, the two types of science must interact –  
technological progress depending on the growth of good 
explanations, and new theories depending on the growth of 
technology. The technological advances of today’s big science 

are built upon the discoveries of yesterday’s great science. If we 
are conscious of the differences in the two different approaches 
to science, explanationless science need not intrude beyond its 
domain, and indeed classical science can grow out of operational 
research. A researcher when trying to solve a problem of practi-
cal application may often encounter theoretical issues. To make 
progress, the applied researcher has to become a theorist, and 
in arriving at theoretical understanding, continue with a greater 
likelihood of solving the practical problem. These side-turns into 
theoretical science should be taken seriously and disseminated. 
It may be that work on practical problems is the fountainhead 
of theoretical science, with theoretical problems emerging 
from work on hard technical problems. Not only is operational 
research dependent on past scientific discovery, but scientific 
discovery may grow out of the problems uncovered by applied 
research. The moral of this is that not only should researchers 
beware an unconscious aping of the methods of other types of 
research when other approaches may be more fruitful, but also 
that individual researchers and research programmes could 
also benefit from a flexible, pluralistic approach to science. For 
example, operational researchers should be free to work more 
like ‘curiosity-driven’ scientists in the classical sense when the 
need or opportunity arises. By tackling challenging technical 
problems in the spirit of a quest for understanding as well as 
production, the practical people of applied science, industrial 
and agricultural research, engineering and design, can fertilise 
the traditional sciences with new problems and ideas, leading 
to theoretical advances, and true innovation. What is required is 
cross-fertilisation rather than competition between the various 
approaches to science – employing no single approach to the 
exclusion of others, nor giving in to the anarchic notion that in 
science anything goes.
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