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Introduction 
More than twenty years after its inception, the R statistics lan-

guage and environment for scientific and statistical computing 
and graphics continues to be a New Zealand success story. In 

2012, the total number of R users worldwide was estimated at 
about two million (ORACLE, 2012). The precise number of 
users around the world right now is unknown, but most prob-

ably the total number is considerably more than that of 2012, 
and growing rapidly. 

Recent developments
Four years ago I wrote an article on R for New Zealand Science 

Review (Lillis, 2011), and mentioned several useful contributed 
packages. In recent years, more packages have become available 
and several platforms have emerged that make it easy to run R 
scripts (e.g. R Studio), and in recent years a commercial version 
of R has grown in popularity – Revolution R. 

As a direct response to the growing popularity of R, recently 

SAS1 launched SAS University Edition, a free version of SAS, 

targeted at new learners. Initial reviews of SAS University 

Edition have been quite positive (Analytics Vidhya, 2015), but 
possibly the range and flexibility of the analytic tools and graph-

ics of this particular product are not yet at the level of those of R. 

Other developments of interest for researchers in New Zea-

land include the emergence of R-based consultancies, both in 
New Zealand and in other countries, the formation of R-Users 
Groups in Auckland, Wellington and Christchurch, and the 

introduction of several very fine contributed packages. I will 
describe some of these developments in this article. 
R in statistical consulting 
At present there is a significant international market for statisti-
cal consultancy, and this market extends to both teaching R and 
coding in R. Several New Zealand consultancies teach and use 

R as one of their primary analytic tools. For example, one New 
Zealand consultancy delivers R-based webinars and workshops, 

not only to New Zealand, but also to the USA, Asia, Australia, 

Great Britain and other parts of the world. These workshops 

and courses cover diverse topics, including introductory R, 

statistical modelling in R, introductory biomedical statistics in 
R, linear regression in R, generalised linear models in R, graph-

ing with ggplot (a powerful R package for advanced graphics), 

structural equation modelling in R, and time series analysis in 
R. Many of the workshop attendees are already experienced 

professional researchers and statisticians, and quite a few are 
medical researchers. Such people can save a considerable 
amount of time in achieving mastery of R by learning directly 
from experienced practitioners.   
R-users groups in New Zealand
Auckland has had an R users group for some years now, and 
last year Christchurch formed its own R users group. On 30 
January 2014 Ian Westbroke, a public sector statistician, gave 
the first presentation to the Christchurch group, discussing the 
adoption of R by government departments and, in particular, 
the adoption of R Commander, a Graphical User Interface that 
makes it easy to learn R. 

The Auckland R Users group has been active since 2013, and 
held several meetings during 2013 and 2014. Its first meeting 
for 2015 involved a presentation on 8 April from Professor 
Bernhard Pfahringer, of the University of Waikato, on the topics 

of Machine Learning and Data Mining.

In September 2013 a group of Wellington-based profes-

sionals and students formed the Wellington R-Users Group 
(see reference list for user group URLs). This group has held 

several sessions and hosted talks on topics such as using R for 

analysis of very large data sets and packages such as knitr and 

Sweave. These products enable you to produce integrated output 

files using R and LaTex commands (whose outputs contain the 
code for your analysis in which the output is woven through the 

code). Where possible, the Wellington R Users Group records 

its presentations and makes them available on YouTube.
All New Zealand R-Users Groups are intended to reflect the 

community of R-Users within their regions, and at their meet-
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ings they try to promote R and assist each other with various 
R methods and syntax.  
Revolution R
Produced by Revolution Analytics, Revolution R Enterprise (see 

reference list for URL) is now firmly established, and makes it 
possible to analyse large data sets very efficiently. It seems to 
get around the well-known constraints on memory that char-
acterises the standard versions of R. Revolution Analytics is a 

software company that develops new versions of R for specific 
applications, including additions for parallel processing. The 

core product, Revolution R, is provided free to academic users at 
no cost, while their commercial software focuses on the analysis 
of large data sets and large scale multiprocessor computing.
RStudio
RStudio is an environment for R that runs on Windows, Mac 
or Linux. It includes its own console, an editor for highlighting 

R syntax and graphics software. Its debugging tools and work-

space management tools are especially useful for people new 
to R. RStudio is open source, though commercial editions are 
available. The URL for downloading RStudio is given in the 

references to this article. 

Some great R packages 
At this point I want to tell you about several R contributed 

packages that I recommend for your own research.
The ggplot2 package
The ggplot2 (grammar of graphics) package is well known, but 
nevertheless it is worth mentioning here. It is superb for creating 
informative and attractive graphics, and is particularly good for 
graphs that involve categorical data because you can map sym-

bol colour, size and shape to the levels of a categorical variable 
quite easily. The syntax of ggplot2 is quite different to that of 
Base R, incurring a learning curve for both the newcomer and 
experienced R users. However, once mastered, ggplot2 enables 
practitioners to create beautiful graphics, ready for publication. 

 In the following example I have taken a medical data set 
on 45 patients within a randomised controlled trial, in which 
patients receive one of three treatments (A, B and C). Figure 1 

Figure 1: Graph of patient body height (cm) against body mass (kg) 

before medical treatment.

presents a graph of patient body height (cm) against body mass 
(kg) before medical treatment, mapping symbol size to gender 
and mapping symbol colour to the binary categorical variable 
Exercise (i.e. whether or not the patients underwent an exercise 

regime during their course of treatment).  
We see that mapping symbol size and colour to a variable 

can provide valuable additional insight into the relationships 

that exist within data. 

Figure 2 presents a graph of patient body height (cm) against 
body mass (kg), mapping symbol shape to gender and mapping 
symbol colour to the categorical variable Treatment.  

Figure 2: Graph of patient body height (cm) against body mass 

(kg), partitioned by treatment.

 

 

The combination of colour and shape has added valuable 
information to the graph of Figure 2. Next, the graph of Figure 
3 gives a histogram of patients’ body heights in cm, this time 
partitioning by ethnicity (a three-level categorical variable) and 

using a particular colour palette that is available through ggplot.  

In this histogram, the bin width is in fact 10 cm, but we have 
three bars within each bin – one for each ethnicity. We have 

created an effective and attractive histogram in which ethnic 
subgroups are identified by colour.  In this histogram I have 
created my own tick labels, including the descriptors Short, 
Average and Tall, at appropriate locations on the height axis. 

In Figure 4 we see a box plot of the heights of female pa-

tients, partitioned by ethnicity, with different colours for each 

ethnic group.

In Figure 5 I have used ggplot to create a graph of counts 
of atomic disintegrations per second in a short-lived radio- 
active compound, and then used a ggplot function called stat_
smooth() to fit a quadratic function, along with a standard 
error confidence band. Normally, an exponential function is used 
to model atomic decay, but here a quadratic in fact provided a 
better fit to the observed data. 



New Zealand Science Review Vol 71 (4) 2014110

  The fitted curve of Figure 5 includes a standard error con-

fidence band in light blue. The fitted curve could be presented 
in any colour, with your own desired line width, and either with 

or without the confidence band. 
As a more complex example Figure 6 presents a faceted bar 

chart of the numbers of patients receiving each treatment (A, B 
or C), partitioned by gender and stacked according to whether 

or not the patient recovered. 

Figure 6 presents a lot of useful information at once. Parti-
tioning by the three categorical variables allows us to compare 
patient recovery within and across the two genders, and also 

within and across treatment levels. 
Finally, Figure 7 presents four other graphs, placed together 

using the grid.arrange() function, available within the 

grid library. 

These examples give only a hint of the wonderful capability 
that R provides for creating superb graphics.

Figure 3: Histogram of patient body height (cm), partitioned by 

ethnicity.

Figure 4: A box plot of the heights of female patients, partitioned 

by ethnicity.

Figure 5: Counts of atomic disintegrations per second in a short-

lived radio-active compound.

Figure 6: Numbers of patients receiving each medical treatment.
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The car package 
The car package provides a wide range of functions for regres-

sion modelling. Here we look at a few of its functions. For a 
linear regression model the residualPlots() function plots 

the residuals against the fitted values, enabling a visual check 
for randomness. In addition, it performs a curvature test for 
each of the plots by adding a quadratic term and testing whether 
the quadratic is zero (Tukey’s test for additivity when plotting 
against fitted values). Figure 8 shows regression residual plots, 
for a regression model with a single independent variable, that 
I created using the residualPlots() function. 

The smooth, fitted curves in red suggest some curvature 
in the residuals. However, these curves are centred on zero 
(approximately), and the residualPlots() function tells 

us that we have non-significant p-values. Thus, our residuals 
are random enough for our purposes, and one of the critical 
the assumptions of linear modelling (i.e. that the residuals are 
distributed randomly) is upheld. 

The car package also allows us to examine influential vari-
ables using the qqPlot() function. Figure 9 shows a plot that 

I created with this function.   

Figure 9 suggests that observation ten is an outlier. Another 

function within the car package (the outlierTest() function) 

confirms that it has the characteristics of an outlier because the 

Figure 7:  Four graphs, placed together.

Figure 8: Residual plots for a regression model with one 

independent variable.
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p-value for the Bonferonni Adjusted Outlier test is greater than 
0.05. (The null hypothesis for the Bonferonni Adjusted Outlier 
test is that the observation is an outlier).

The lavaan package for latent variable modelling
The lavaan package (Rosseel, 2012) provides various meth-

ods for implementing structural equation modelling (SEM),  
confirmatory factor analysis (CFA), path analysis, growth 
mixture modelling, and other analytic models. SEM is a var-
iant of multiple regression that is used in the social sciences 
and economics to complement standard techniques such as 
ordinary least squares multiple regression, factor analysis, and 
analysis of covariance. Up to now, possibly the most popular 
package for conducting SEM in R has been the sem package 
(Fox, 2006). However, the lavaan package gives researchers 
and statisticians a high quality and easy-to-use system for latent 
variable modelling. 

Lavaan provides all of the expected diagnostic tests and 

information on both estimated coefficients and quality of fit. For 
CFA, the package provides the relevant diagnostics, including 

the comparative fit index (CFI), the Tucker–Lewis index (TLI), 
the root mean square error of approximation (RMSEA), and both 
the Akaike information criterion and the Bayesian information 
criterion. I have used lavaan for both CFA and SEM, and found 

it to be very reliable and easier to use than other packages. 

The cusp package for catastrophe modelling 
Catastrophe theory models evolution in the behaviour of a 
dynamic system under changes in environmental factors (be-

havioural and control variables) that determine the state of the 
system. It can explain how rapid changes in the system state can 
result from small changes in controlling factors, taking into ac-

count past states of the system. It is used in the physical sciences 
(involving mainly deterministic systems), but also the medical 
sciences, biological and social sciences, and in psychology 

(often involving stochastic systems). Cusp catastrophe models 
are used extensively to model critical economic systems, such as 
exchange market crashes, which can be modelled as endogenous 
events driven by speculative money. One body of opinion sees 
the endogeneity of market crashes as originating in conformity 
of investors with their peers and a degree of heterogeneity of the 

investor population (Levy 2008). Such factors can give rise to 
multiple equilibria in the market, sometimes leading to a market 
crash which can be modelled using cusp catastrophe theory.

In medical and health research patients’ outcomes can be 
modelled using catastrophe theory. In clinical practice, certain 
physical and mental health conditions (e.g. strokes, heart attacks, 
seizures, depression) exhibit two modes: normal or abnormal, 
with low probability beyond the two modes – the inaccessible 
region. We may see a jump from one mode to the other if, for 
example, the diagnosis is based on the severity of the condition. 
Small changes in factors such as a patient’s emotional state may 
produce sudden changes in health. These sudden changes are 

known as divergence. The timing and direction of such factors 
control the severity of the overall health outcome (hysteresis). 
Here, the term hysteresis refers to the notion that changes in 
outcomes, as we move from one mode to the other, cannot be 
determined uniquely by particular values of the control factors, 
because the sudden jumps do not always occur at the same values 
of the control factors.

Other scenarios in which catastrophe modelling has proved 
successful include analysis of the onset of hostile behaviour 

between nations, medical studies in which health outcomes 
are bimodal (e.g. normal or abnormal), animal aggression, 
failure (buckling) of building materials such as elastic beams, 
the development of anorexia nervosa, territoriality among 
animals such as reef fish, population dynamics, and collective 
bargaining. In all of these scenarios we may observe abrupt 
transitions, and other models cannot provide an equivalently 
comprehensive description.

Raoul Grasman, Han van der Maas and Eric Wagenmakers, 
of the University of Amsterdam, created the cusp package (Gr-
asman et al, 2009) for catastrophe modelling, based on a special 
form of the maximum likelihood method. It is now relatively 
straightforward to implement different cusp catastrophe models 
and compare them with other models such as multiple regression 
and logistic regression.  Of course, cusp catastrophe models 
produce a range of coefficients and diagnostic goodness of fit 
statistics that I will not go into here. 

The cusp model consists of two stable regions and two 
thresholds characterised by sudden changes – these are the 

upper and lower regions (see Figure 10 below). The cusp 

model enables both the forward and reverse progression for 
different paths in health outcomes to be modelled together. It 
includes both a discrete component (normal vs. abnormal) and 
a continuous component (severity of the condition), whereas 
a linear model provides for the continuous component only.  
A catastrophe model can be compared with multiple linear 
regression and logistic regression models in order to provide a 
basis for identifying a catastrophic event. 

I have experimented with the cusp package by fitting a 
cusp catastrophe model to time series of the logarithm of the 
net present value of Malasian companies over the 32-year 
period from 1980 to 2012. Over that period of time these com-

panies were affected to a greater or lesser extent by a range of 

macroeconomic variables (Government Budget Deficit, Real 
Government Gross Rate, Interest Rate, Overvaluation, Cor-
porate Tax, Corporate Credit and Money Multiplier). Some 
companies prove robust enough to withstand the accumulation 
of small economic shocks, while others go out of business, either 
gradually or rapidly. My intent was to model the performance 

Figure 9: Testing for influential points using qqplot().  
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of these companies under the accumulation of changes in the 
control factors (i.e. the macroeconomic variables). The model 
was fitted using syntax of the following form: 

fit <- cusp(y ~ V
1
 + V

2
 + V

3
 +  . . .  + V

n
 ,

alpha ~  GBD   +   RGDPGR  +    IN.RATE  +   
OVERVAL       + CORPT.R    +   PR.CREDIT  +  M2,

beta ~  GBD   +   RGDPGR  +    IN.RATE  +   
OVERVAL       + CORPT.R    +   PR.CREDIT  +  M2)   

Here, V
1
 to V

N
 are the time series of the logarithm of the net 

present value of each company, while alpha and beta represent 
time series linear combinations of the independent variables 
(in this case the seven macroeconomic independent variables). 
I generated the model output using the summary() command, 
as follows: 

summary(fit, logist = T)
The output includes p-values for the fitted coefficients, and 

R-Square values for the overall cusp model, the multiple linear 
regression model, and the logistic regression model. Figure 10 
gives a three-dimensional plot of the model (obtained through 
the cusp3d() command)  for these Malaysian companies. 

The graph shows the cusp catastrophe model for the outcome 
z in the equilibrium plane. The continuous component covers 
the linear and gradual process (Path A), while the discrete 

component characterises the sudden and nonlinear process 
(Paths B and C).  

The variable X is the asymmetry control variable and Y is 
the bifurcation control variable. Dynamic changes in Z have two 
stable regions (attractors), which consist of the lower area at 

front left (the lower stable region) and the upper area at the front 

right (the upper stable region). Outside of these stable regions 
the outcome variable Z is very sensitive to small changes in X 
and Y. The region of instability is projected on to the control 
plane (X, Y), forming the cusp region (shaded in grey). This cusp 
region is delineated by the line O'–Q' (the ascending threshold) 
and the line O'–R' (the descending threshold) of the equilibrium 
surface. Within the cusp region, the outcome Z becomes highly 
unstable in response to changes in X and Y, jumping between 
the two stable regions when the control plane (X, Y) is close to 
the two lines O'–Q' and O'–R'. In our graph, Paths A, B, and C 

represent possible pathways of change in the outcome. In path 
A we have Y < 0, and we see a smooth relationship between Z 
and X. However, path B shows that for cases where Y > 0, if 
X increases sufficiently so as to touch and pass the ascending 
threshold, the outcome Z will jump suddenly from the lower 
stable region to the upper stable region of the equilibrium plane. 
Finally, path C involves a sudden drop in Z as X declines suffi-

ciently to touch and pass the descending threshold.

Cusp catastrophe modelling is now being used increasingly 
across many areas of research, and ultimately may become al-
most as widespread as regression models for particular applica-

tions. Further details on cusp catastrophe modelling can be found 
in many on-line sources and in the text: Critical Transitions in 

Nature and Society, by Sheffer (2009). 
The ltm package for item response theory 
Item response theory (IRT) refers to a family of statistical mod-

els that are designed to assess the quality of psychometric tests 
and assessments, and measure abilities, attitudes and other latent 
traits. IRT is used to underpin the design, analysis and scoring 

of tests and questionnaires, and is used in many countries to in-

form the development and analysis of educational assessments. 
Hambleton et al. (1991) provide a very good introduction to 

IRT, both for first-time readers and experts. 
Developed by Dimitris Rizopoulos, of the Catholic Univer-

sity of Leuven, the ltm package (latent trait model, Rizopoulos 
2013) makes it relatively easy to perform analysis of multivariate 
dichotomous and polytomous data using latent variable models. 
Latent variables provide a method of quantifying unobserved 
variables such as attitudes, intelligence, mathematical ability 
and verbal ability. Modelling them accurately provides a basis 
for applications such as aptitude and ability testing, educational 

testing, social sciences, psychology and other fields.  
The ltm package provides estimates of the ability, a parame-

ter that measures performance on the test as a whole. The ability 
measures the magnitude of the latent trait of the person or, more 
generally, the capacity or attribute measured by the test. The 
ability could measure a cognitive or physical ability, a skill, 
knowledge or attitude etc. Ability is a multi-dimensional con-

cept, and cannot be measured uniquely for any person. In fact, 
the constructs we wish to measure, such as cognitive, numeric 
or linguistic abilities, are actually a synthesis of many related 
abilities and skills. Abilities are calculated for each candidate 

on the basis of the entire complement of item grades. Actual-
ly, abilities estimated from IRT can provide better measures 
of performance than aggregates of marks or raw grade point 
averages, because the ability estimate takes explicit account of 
the discrimination and difficulty properties of each item. In IRT 
we use an ability scale which may be thought of as represent-
ing the set of skills, abilities and knowledge that contribute to 

performance. This scale is calibrated to have a mean of zero, 
and ranges (theoretically) from negative to positive infinity. 
The unit of ability is the logit, a unit that is well known from 
logistic regression. 

The ltm package also estimates the difficulty of each item 
at each available category or grade. The difficulty of an item 
reflects the proportion of test-takers who are successful in that 
item (i.e. either providing a correct answer to a dichotomous 
(two-category) item, or obtaining one of the passing grades 
in a polytomous item), taking account of the abilities of the 
candidates. For a dichotomous item (yes or no; right or wrong Figure 10:  Three-dimensional plot of a catastrophe model.
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etc.), item difficulty is defined as the point on the measurement 
scale at which the probability of success is 0.5. For a polytomous 
item that carries several possible grades, we estimate a difficulty 
parameter for each available grade, except the lowest.

In addition to these parameters, ltm estimates overall model 
fit (goodness of fit that is estimated through a chi-square value) 
and provides standard errors and other diagnostics for each of 

the estimated parameters. In addition, you can use ltm to plot 
item characteristic curves (curves created from IRT that describe 
the performance of the item), item information functions and 
test information functions. 

For dichotomous data the ltm package provides the Rasch 
model (itself based on the logistic function – see the next section 
on generalised linear models), the two-parameter logistic model 
and Birnbaum’s three-parameter models. For polytomous data 
the graded response model of Samejima is available. I have used 
ltm extensively, and find it easy to use and faster than many 
other packages and other equivalent software.  The necessary 
syntax is simple. For example, to fit the graded response model 
and the Rasch model to a dataset (actually to an R data object 
that here we call object), you enter the following syntax at the 

command line:
grm(object)
and

rasch(object)
Figure 11 gives item characteristic curves for five test items, 

created under the Rasch model and obtained through the ltm 
package:

A description of item characteristic curves is given in John-

ston and Lillis (2011). However, each of the curves of Figure 11 
has the general form of a logistic function. The further an item 
characteristic curve is located to the right, the more difficult is 
the item. Thus, items 2 and 3 are more difficult than the other 
items, reflecting the necessity for a higher level of ability for 
success in items 2 and 3. 

Many new packages have become available in recent years, 
and cannot all be discussed here. However, I conclude this dis-

cussion of R packages by mentioning the Bioconductor Project, 
which provides a repository of R packages of high throughput 

data, with particular application to genomics. The Bioconductor 
Project uses R as its statistical programming language. Like R 
it is open source and open development. Currently, it includes 
nearly one thousand R-based software packages and has two 

releases each year.

R for generalised linear models 
Ordinary least squares regression provides linear models of 
continuous response variables where we have one or more con-

tinuous independent variables (or predictors). However, much 
data of interest to researchers is not continuous, and so that other 

methods must be used to create useful predictive models. These 
other method include generalised linear models (GLMs), which 
can be implemented in R using the glm() command.

The glm() command is a core R function, so that it is not 
necessary to download contributed packages to implement 
GLMs. It was designed to perform GLMs on binary outcome 
data, count data, probability data, proportion data, and other 

data types. GLMs are designed to model response variables that 
are not distributed normally by relating the linear model to the 
response variable through a link function. GLMs are introduced 

in many senior degree-level statistics courses, psychology and 
in the bio-medical sciences, but in my opinion are under-utilised 
in the social sciences and education. Here I will give a few 

examples in quite some detail, some of which are taken from 
education research. An excellent text on GLMs is Generalised 

Linear Models, by McCullagh & Nelder (1989). 
Generalised linear models are relatively easy to fit in R. The 

glm() command incorporates various arguments, as follows: 

glm(formula, family, data, subset, ...)

The family argument specifies the variance model and your 
choice of link function. For binomial variance the link functions 
include the logit, probit or complementary log-log functions. For 
the default links, only the family is specified. For non-default 
links, you must supply the link argument. For example:   

glm(formula, family=binomial(link=probit))
Table 1 gives a summary of the main error families and the 

relevant link functions. 

Modelling with logistic regression 
Let’s take a look at a practical example. Recently I was able 
to access data on a study of elementary school students in the 
US who undertook additional instruction to assist them to 
pass a competency test. Subsets of them were tested at various 
stages during the year, after undergoing differing amounts of 
additional instruction. I wanted to create a logistic model that 
explains the numbers passing and failing for various total hours 
of instruction.  Figure 11: Item Characteristic Curves for five test items under the 

Rasch model.

 

Table 1. Main families of errors and their relevant link functions.

Error family Default link Inverse of link Data type

Binomial logit 1/ [ 1 + 1 / exp(x) ] Proportions or binary  

                             data

Poisson log       exp(x) Count data

Gaussian identity         1 Normal errors

Gamma inverse       1/x Non-constant errors
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      Hours     Fail   Pass

  1           1        3          1

  2          25        3        1

  3        50        9        6

  4     100     18        4

  5     150     25     36

  6     200     46     76

  7     250     61     98

  8     300     67   204

  9     350     74   287

10    400     89   305

Note that this data set is arranged as frequencies of students 
gaining either a pass or a fail. Essentially, it is a summarised 
version of a larger data set of zeroes and ones, where the result 
for each child is recorded in a separate row. Essentially we have 

a binary (dichotomous) outcome variable (e.g. pass or fail, yes 
or no, right or wrong, success or failure, presence or absence). 

We use a logistic regression model with binomial errors to ex-

plain the proportions of students passing and failing. Usually, 

such variables are given as vectors of zeroes and ones, and we 
treat them as deriving from a binomial trial with a sample size 
of one. Here, we cannot use ordinary least squares regression 
because the: 
1. variance of the response variable changes across the range 

of values of the predictors

2. error terms are not distributed normally  
3. predicted probabilities may exceed 1 or be less than zero. 

Let’s assume that the variable y is a random binary variable, 
with mean p and variance p(1 – p ).  The probability of success is 
p, and the probability of obtaining the outcome y is P(y) where:  

P(y) = py (1 – p) 1 – y

This formula is a form of the binomial distribution in which 
we have a binomial trial with a sample size of 1. For the outcome 
y = 1 this expression reduces to P(1) = p, while for outcome y = 0 
we get P(0) = 1 – p.

We use logistic regression to fit a predictive model for binary 
outcome data, proportions and probabilities. Figure 12, which 
I created in R, gives the general shape of the logistic function.

The logistic function passes through 0.5, and tends asymp-

totically to zero for negative values of x. It tends to +1 for 

positive values of x and is bounded below by zero and above 
by one. Fitting to a logistic function ensures that probabilities 

and proportions are bounded. Thus, we cannot predict negative 

probabilities or proportions, nor can we predict probabilities or 

proportions greater than one. The logistic function is as follows:
P = e a + bx  /  1 + e a + bx

Using this expression, it is easy to show that the logit reduces 

to a linear function of x: 
ln( P / 1 – P )  = a + bx

This is the logit transformation of P (also called the log-
odds), the link function that provides a linear model in the 
variable x. Since we need a linear model, we regress the logit 
against x. We see that the logit is actually the quantity: a + 
bx. Thus it is the logit, rather than the original variables, that 

provides the linear model. Thus, logistic regression is in effect 
ordinary least squares regression in which the logit acts as the 
response variable.   

Returning now to the problem of modelling the proportions 
of students passing and failing the test – after some experimen-

tation I found that the following syntax provided a good model 
for the observed data:

    model <- glm(Y ~ hours, binomial)
This model produces the graph of Figure 13 (obtained after 

writing some further R syntax).
Our model reflects the fact that the proportions of students 

passing the assessment tend to increase with the total number 
of hours of tuition. The curve looks like a straight line, but in 

fact it is curved, in accordance with a logistic model. 

Figure 12: The logistic function.

Figure 13: Raw data and fitted binomial model for students passing 
the assessment.

 

 

A GLM on count data 
We can also use R to implement GLMs on count data. In such 
data the errors may well be distributed non-normally and the 
variance may increase with the mean values. As with binary 
data, we use the glm() command, but this time we specify a 
Poisson error distribution and the logarithm as the link function 
(the default link function for the Poisson error distribution). The 
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Poisson error distribution assumes that the variance is equal to 
the mean. Therefore, specifying a Poisson error distribution 
accounts for integer data whose variance is equal to their mean, 
while specifying a logarithm as the link function forces all of 
the predicted values to be positive. 

In the following example we fit a GLM to count data using 
a Poisson error structure. The data set consists of counts of 

patients diagnosed with an infectious disease within a period of 

days from an initial outbreak. Let’s look at the first three rows 
and last three rows:

    Days  Number

       1          0

       2          0

       3          0

       .           .

       .           .

     97          0

     98          0

   100          1

Now we fit the GLM in R, specifying the Poisson distribution 
by including it as the second argument. After experimentation, 
I found that the best model was as follows: 

model <- glm(Number ~ Days, poisson)
This model gives rise to the graph of Figure 14 (again ob-

tained after writing some R syntax).
The graph of Figure 14 appears to show a decrease in num-

bers of cases with number of days. However, the calculated 
p-value for the number of days was 0.09. Thus, the apparent 
decline over time was non-significant at α = 0.05, but marginally 
significant at α = 0.1). 

Figure 14: Raw data and fitted Poisson model for counts of people 
presenting with the infectious disease.

which looks similar to that of the logistic function (and indeed 
the complementary log-log function). 

The probit function passes through 0.5, and tends asymptoti-
cally to zero for negative values of x. It tends to + 1 for positive 
values of x. Like the logistic function, the probit function is 

bounded below by zero and above by one, so that fitting to 
a probit function ensures that all predicted probabilities and 

proportions are bounded by these values. As with the logistic 

function, we cannot predict negative probabilities or propor-

tions, and nor can we predict probabilities and proportions 

greater than one. 

I used a probit model to investigate how predictors such 
as test scores, high school grade averages and socio-economic 
level predict the successful completion of a Bachelor degree at 
a well-known North American university (for which I have the 
relevant data). Here we have an outcome variable (success or 
failure) which we can represent as a binary variable comprised 
of ones and zeroes. 

The data set for our example includes a binary variable 
called Success. The three independent variables include Soci-

oeconomic level (Socio is a categorical variable of four levels:  
1, 2, 3 and 4, where 1 represents the highest and 4 the lowest 
level). We also have a SAT test score (Test) with a maximum 
of 800, and a grade average (Gd) whose maximum is 4.0.  Let’s 
see six rows from this data set: 

       Socio   Test    Gd     Success

       3     789    3.97        1

       3     728    3.83        0

       3     693    3.79        0

       2     693    3.71        0

       2     649    3.70        1

       1     609    3.65        1

In Figure 16 we have used R’s barplot() command to 
graph the cross tabulation of the two categorical variables. 

It seems as though the group from socio-economic level 1 
has performed more strongly than the other groups, while the 
group from socio-economic level 3 has performed a little worse 
than expected. I now fitted a GLM to the data using the probit 
link function, as follows:

model <- glm(Success ~ Test + Gd + Socio, fam-
ily = binomial(link = “probit”), data = dataset)

Figure 15: Graph of the logit, probit, log-log and complementary 

log-log functions.

 

 

A GLM using probit regression 
In addition to the logistic model that we discussed above, we 
can use R to implement probit regression to model dichotomous 
(binary) outcome variables. In probit regression, the inverse 
standard normal distribution of the probability is represented 
as a linear combination of the predictors. The probit function 
is the quantile function associated with the standard normal 
distribution. Figure 15 gives a graph of the probit function, 
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The model gives rise to the following graphs (after devel-
oping some further R syntax), where I have classified grade 
averages using a common approach: averages up to 2.5 are 
classified as C, grade averages between 2.5 and 3 as B-, grade 
averages between 3.0 and 3.5 as B+, and grade averages be-

Figure 17: Probit model for each grade average.

Figure 16: Bar chart of student numbers by 

socioeconomic level and success

 

tween 3.5 and 4.0 as A. Figure 17 gives the probit model for 
each grade average. 

The model of Figure 17 appears to work well, revealing 
the effect of socio-economic level, and indicating that both 
higher test scores and higher grade averages are predictive of 

success. Note that the students from socio-economic level 4 
out-performed those from level 3 at each grade. This fact was 
evident from the bar chart above.
A GLM for a multinomial outcome variable 
The next example involves a GLM on a multinomial outcome 
variable (i.e. the outcome variable is a categorical variable 
of several levels – three levels in the present case). In our 

example the levels have no intrinsic order. However, some 
outcome variables that you may wish to model using a GLM 
may embody intrinsic order (e.g. a Likert agreement scale 
involving increasing levels of agreement, or a rating scale in 
which certain responses reflect higher ratings than others). The 
glm() command provides both for variables that embody no 
intrinsic order and for variables that do embody intrinsic order. 

For our example, we have data on 200 high school students 
and wish to predict whether they terminate their education at 
high Sshool, whether they progress to a polytechnic programme, 
or whether they attempt a university degree. The independent 
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variables are their household income (Income) and an ability 
test score (Score). Income is a categorical variable of three 
levels – Low, Medium and High. Score is a continuous variable 
that ranges from 0 to 100.  

For this problem we have three possible outcomes (termi-
nating at High School, proceeding to Polytechnic, or attempting 
a Degree). We use multinomial logistic regression, where we 
model the logarithm of the odds of the outcomes as a linear 
combination of the independent variables. To fit our model I 
used the multinom() function, which is available by installing 

the nnet contributed package. Let’s take a look at the first six 
rows (where the data are arranged in descending order of Score).

   Score  Income    Education

    78    High       Degree

    76    High       Degree

    75    High       Degree

    75    High   HighSchool

    74    High  Polytechnic

    73    Mid        Degree

Now we gain more insight into the data by creating a cross 
tabulation of the two variables together.

                       Income

  Education      High Low Mid

  Degree           37    19    47

  HighSchool        8    11    30

  Polytechnic      12    17    19

Let’s look at the mean scores across the levels of Education 
using tapply():

   Degree    HighSchool   Polytechnic 

     67.0            58.2             62.5

Clearly, students aiming for a degree tend to score higher 
marks than others. Now we run the model using multinom() 
and store the model output as an object called multimodel. We 
include the Education variable and the two independent varia-

bles Income and Score. 
multimodel <- multinom(Education ~ Income + 

Score, data = dataset) 
Figure 18 gives the data, including a bar chart of student 

numbers, grouped by education and income level (i.e. the 
cross-tabulation given above) and fitted model – a separate plot 
for each level of the outcome variable Education.

Generally, the model of Figure 18 appears to make sense. 
High-income students are more likely to attempt a degree, 
and high scores are indeed predictive of attempting a degree. 
Low-income students are more likely to attempt a polytechnic 
qualification, while high scores are less predictive of attempting 
a polytechnic qualification because high-scoring students gener-
ally choose to attend university.  Higher scores are not predictive 

of terminating at high school because high-scoring students 
generally pursue higher education. It appears that we have a 

 
Figure 18: Multinomial model: terminating at high school, entering polytechnic, or attempting a degree.
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Figure 19:  An economic time series and its trend, seasonal and random components.

workable predictive model that provides insight into the relative 
influences of income and test scores on educational outcome.

R for time series analysis 
R provides a superb platform for analysing time series data (data 
that are measured over an extended period of time – usually, 
though not always, at regular intervals). Such data frequently 
involve economic measures, population statistics, industrial 
processes or business measures.  Often we wish to model past 
data in order to understand the drivers of variability and to 

forecast future values of the time series. In making forecasts 
we assume that factors that influence the past and present will 
continue into the future. 

R provides the decompose() function to isolate the trend 

component, seasonal component and random component of a 
seasonal time series (a time series that displays annual fluctua-

tions). We now fit a time series model to an economic time series 
data set. In the observed data we can see an overall trend – the 

observed values increase over the period of interest. We also 

see recurring annual cycles – the seasonal variation.

In the graph of Figure 19 I have decomposed an economic 
time series data set (the observed data) into a trend, seasonal 
and random component.

The graph of Figure 19 gives the original time series (ob-

served), the estimated trend component (the major movement 
that occurs over a period of more than one year), the estimated 
seasonal component (a recurring pattern that occurs annually), 
and the estimated random component (irregular and unpredict-
able movements that may be due to such factors as political 
events, industrial strikes or extreme weather).  

Using R you can make short-term forecasts using various 
techniques. For example, in the graphs of Figure 20 I have used 
a technique known as Holt’s exponential smoothing (available 
through the forecast contributed package) to model past data 
from another economic dataset and create a forecast. 
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Figure 20:  Modelling past data using Holt’s exponential smoothing.
Figure 21:  Forecasting using Holt’s exponential smoothing.

  

The black curve of Figure 20 gives the original time series, 
while the red curve gives the fitted model values. Our model 
has done a pretty good, though not perfect, job of modelling 
the time series retrospectively. How well will it perform for 
forecasting future values?  Figure 21 gives the forecast. 

Here the forecasts are shown as a blue curve, and the shad-

ed areas give 80% and 95% prediction intervals. The forecast 
appears reasonable, reflecting the overall trend and the annual 
fluctuations. Of course, the quality of the forecast can only be 
determined once the actual data for the forecasting period have 
been collected and other models may give a better prediction 
for our data. In any case Holt’s exponential smoothing is only 
one of many useful functions available in R for modelling time 
series and diagnosing and improving your models. 

Summary
In this article we have explored a small fraction of R’s analyt-
ics and graphical capability and seen how the emergence of 
contributed software packages has made R so powerful and 
versatile. R continues to grow in popularity, and an increasingly 

diverse suite of contributed packages provide a unique platform 
for many areas of research and data analysis. It is already the 
application of choice for many professional statisticians around 
the world, and in the future it may become the application of 
choice for both the public and private sectors in New Zealand.  

Dedication 
I dedicate this article to the memory of my valued friend and 
colleague Telu Vaeau. 

References 
Analytics Vidhya, 2015.  SAS launches a free version – but, is it good 

enough? Retrieved from: http://www.analyticsvidhya.com/
blog/2014/06/sas-launches-free-version-but-good-enough/

Bioconductor Project: Bioconductor: Open Source Software for 
Bioinformatics. Retrieved from: http://www.bioconductor.org/

Fox, J. 2006. Structural Equation Modeling With the sem Package 
in R. Structural Equation Modeling 13(3): 465–486. Lawrence 
Erlbaum Associates, Inc.

Grasman, R.P., van der Maas, H.L.J.; Wagenmakers, E.J. 2009. Fitting 

the Cusp Catastrophe in R: A cusp-Package. University of 

Amsterdam.
Hambleton, R.K.; Swaminathan, H.; Rogers, H.J. 1991. Fundamentals 

of Item Response Theory. Newbury Park, CA, Sage Publs.

Johnston, M.; Lillis, D.  2011. Statistical modelling and analysis of 
NCEA and New Zealand Scholarship assessment data. New 

Zealand Science Review 68(4): 126–135.
Levy, M. 2008. Stock market crashes as social phase transitions. 

Journal of Economic Dynamics and Control 32(1): 137–155.
Lillis, D. 2011. Use R for data analysis and research. New Zealand 

Science Review 68(2): 73–79.
McCullagh, P.; Nelder, J.A. 1989. Generalised Linear Models. Springer 

– Science and Business. ISBN 10: 0412317605
ORACLE Learning R Series Session 1. 2012. Retrieved from: http://

www.google.co.nz/l?sa=t&rct=j&q=&esrc=s&source=web&c
d=3&ved=0CCkQFjAC&url=http%3A%2F%2Fwww.oracle.
com%2Ftechnetwork%2Fdatabase%2Foptions%2Fadvanced-
analytics%2Fr-enterprise%2Fore-trng1-gettingstarted-1501628.
pdf&ei=hBL2VMLOMYaG8QWizIH4BQ&usg=AFQjCNGzn
Ig-eMzSSosHNtXeDZtiuriepQ

R Foundation for Statistical Computing. Undated. R: A language 

and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna. ISBN 3-900051-07-0. http://
www.R-project.

Revolution R Enterprise:  http://www.revolution-computing.com/
revolution-r-enterprise

Rizoupoulos, D. 2013. Retrieved from: www.r-project.org/conferences/
useR-2008/slides/Rizopoulos.pdf

Rosseel, Y. 2012. lavaan: An R Package for Structural Equation 
Modeling. Journal of Statistical Software 48(2): 1–36. http://
www.jstatsoft.org/v48/i02/

RStudio. http://www.rstudio.com
Sheffer, M. 2009. Critical Transitions in Nature and Society. Princeton 

University Press. ISBN 9780691122045.
Wellington R Users Group:  http://www.meetup.com/Wellington-R-

Users-Group-WRUG/ 


