# Arithmetic Formulated Relevantly

## DOI:

https://doi.org/10.26686/ajl.v18i5.6905## Abstract

The purpose of this paper is to formulate first-order Peano arithmetic within the resources of relevant logic, and to demonstrate certain properties of the system thus formulated. Striking among these properties are the facts that (1) it is trivial that relevant arithmetic is absolutely consistent, but (2) classical first-order Peano arithmetic is straightforwardly contained in relevant arithmetic. Under (1), I shall show in particular that 0 = 1 is a non-theorem of relevant arithmetic; this, of course, is exactly the formula whose unprovability was sought in the Hilbert program for proving arithmetic consistent. Under (2), I shall exhibit the requisite translation, drawing some Goedelian conclusions therefrom. Left open, however, is the critical problem whether Ackermann’s rule γ is admissible for theories of relevant arithmetic.

The particular system of relevant Peano arithmetic featured in this paper shall be called R♯. Its logical base shall be the system R of relevant implication, taken in its first-order form RQ. Among other Peano arithmetics we shall consider here in particular the systems C♯, J♯, and RM3♯; these are based respectively on the classical logic C, the intuitionistic logic J, and the Sobocinski-Dunn semi-relevant logic RM3. And another feature of the paper will be the presentation of a system of natural deduction for R♯, along lines valid for first-order relevant theories in general. This formulation of R♯ makes it possible to construct relevantly valid arithmetical deductions in an easy and natural way; it is based on, but is in some respects more convenient than, the natural deduction formulations for relevant logics developed by Anderson and Belnap in *Entailment*.