A Rejection System for the First-Degree Formulae of some Relevant Logics

  • Ross T. Brady Philosophy Program, La Trobe University

Abstract

The standard Hilbert-style of axiomatic system yields the assertion of axioms and, via the use of rules, the assertion of theorems. However, there has been little work done on the corresponding axiomatic rejection of non-theorems. Such Hilbert-style rejection would be achieved by the inclusion of certain rejection-axioms (r-axioms) and, by use of rejection-rules (r-rules), the establishment of rejection-theorems (r-theorems). We will call such a proof a rejection-proof (r-proof). The ideal to aim for would be for the theorems and r-theorems to bemutually exclusive and exhaustive. That is, if a formula A is a theorem then it is not an r-theorem, and if A is a non-theorem then it is an r-theorem. In this paper, I present a rejecion system for the first-degree formulae of a large number of relevant logics.

Author Biography

Ross T. Brady, Philosophy Program, La Trobe University
Published
2008-08-04
How to Cite
BRADY, Ross T.. A Rejection System for the First-Degree Formulae of some Relevant Logics. The Australasian Journal of Logic, [S.l.], v. 6, aug. 2008. ISSN 1448-5052. Available at: <https://ojs.victoria.ac.nz/ajl/article/view/1793>. Date accessed: 21 sep. 2019. doi: https://doi.org/10.26686/ajl.v6i0.1793.