Categorical Abstract Algebraic Logic: Equivalential π-Institutions

  • George Voutsadakis School of Mathematics and Computer Science, Lake Superior State University

Abstract

The theory of equivalential deductive systems, as introduced by Prucnal and Wrónski and further developed by Czelakowski, is abstracted to cover the case of logical systems formalized as π-institutions. More precisely, the notion of an N-equivalence system for a given π-institution is introduced. A characterization theorem for N-equivalence systems, previously proven for N-parameterized equivalence systems, is revisited and a “transfer theorem” for N-equivalence systems is proven. For a π-institution I having an N-equivalence system, the maximum such system is singled out and, then, an analog of Herrmann’s Test, characterizing those N-protoalgebraic π-institutions having an N-equivalence system, is formulated. Finally, some of the rudiments of matrix theory are revisited in the context of π-institutions, as they relate to the existence of N-equivalence systems.

Author Biography

George Voutsadakis, School of Mathematics and Computer Science, Lake Superior State University
Published
2008-08-04
How to Cite
VOUTSADAKIS, George. Categorical Abstract Algebraic Logic: Equivalential π-Institutions. The Australasian Journal of Logic, [S.l.], v. 6, aug. 2008. ISSN 1448-5052. Available at: <https://ojs.victoria.ac.nz/ajl/article/view/1790>. Date accessed: 23 may 2019. doi: https://doi.org/10.26686/ajl.v6i0.1790.