

Partial valuations hide the contaminating value

Daniel Misselbeck-Wessel

Munich Center for Mathematical Philosophy, LMU Munich
daniel.wessel@lmu.de

Abstract

Partial truth assignments give rise to Boolean-valued semantics for both paracomplete and paraconsistent weak Kleene logic. To accommodate partiality, the semantic consequence relation of classical propositional logic is adjusted in two natural ways, linked by a duality principle.

Keywords. Propositional logic · partial valuation · weak Kleene logic

1 Introduction

Situations involving vagueness, ambiguity, incomplete information or ongoing computation motivate the consideration of partial truth assignments, a theme that has been explored from a variety of perspectives in philosophical logic, mathematics, proof theory and theoretical computer science [9, 10, 12, 13, 15, 16, 18, 21].¹

This note revisits two particularly direct ways to adjust the satisfaction relation of classical propositional logic in order to accommodate partiality. While originally conceived with an eye towards Kleene's *strong* tables [18], it appears that their relevance for propositional logics based on Kleene's *weak* tables has gone largely unnoticed, at least explicitly so: partial truth assignments give rise, in a natural and dual manner, to Boolean-valued semantics for both *paracomplete weak Kleene logic* (B_3) and *paraconsistent weak Kleene logic* (PWK), as well as for mixed forms.²

¹This list is by no means meant to be exhaustive.

²For a comprehensive account of the logics in question I refer the reader to [5], which is likely to become the standard reference. B_3 and PWK have in the last decade garnered a considerable amount of attention [1, 2, 4, 5, 7, 8, 19, 20, 22].—Again, this list of references is by no means meant exhaustive.

Nonetheless, partial assignments can be treated quite independently of this connection, and I will begin with such a treatment that does not require any additional truth value except for the classical ones. The link to Kleene's weak tables will be made explicit later.

2 Semantics of partial valuations

Let Form denote the set of formulas in the language of classical propositional logic, with a countable set Var of propositional variables p, q, \dots , and the propositional connectives of conjunction \wedge , disjunction \vee and negation \neg . Given $\varphi \in \text{Form}$, we write $\text{Var } \varphi$ for the set of propositional variables occurring in φ , while for $\Delta \subseteq \text{Form}$ we put $\text{Var } \Delta = \bigcup_{\varphi \in \Delta} \text{Var } \varphi$. Throughout, let \models denote classical semantical consequence. Classical metalogic will be freely employed.

Let X and Y be sets. A *partial function* $f : X \rightharpoonup Y$ is an assignment of exactly one element $f(x) \in Y$ to each x in some subset $\text{dom } f \subseteq X$, the *domain* of f . In other words, a partial function is given by a (total) mapping $f : \text{dom } f \rightarrow Y$. Equivalently, a partial function amounts to a functional binary relation $f \subseteq X \times Y$. For instance, the empty set is a partial function $X \rightharpoonup Y$. It is common to use the harpoon arrow to display a partial function.

Henceforth, by a *partial truth assignment*

$$v : \text{Var} \rightharpoonup \mathbf{2}$$

we understand a partial function on the set of propositional variables, taking values in the Boolean algebra $\mathbf{2} = \{0, 1\}$. A partial truth assignment on variables naturally extends to a *partial valuation* on compound formulas. In fact, maintaining the classical interpretation of the connectives, any $v : \text{Var} \rightharpoonup \mathbf{2}$ extends uniquely to

$$v^* : \text{Form} \rightharpoonup \mathbf{2}, \quad \text{with } \text{dom } v^* = \{\varphi \in \text{Form} \mid \text{Var } \varphi \subseteq \text{dom } v\}.$$

This extension is defined by recursion, exactly as in the conventional “total” case (cf., e.g., [24, Theorem 1.2.2]), except for the restriction to subsets of Form , as follows:

- (i) if $p \in \text{dom } v$, then $p \in \text{dom } v^*$ and $v^*(p) = v(p)$;
- (ii) if $\varphi, \psi \in \text{dom } v^*$, then $\varphi \wedge \psi \in \text{dom } v^*$ and $v^*(\varphi \wedge \psi) = \min(v^*(\varphi), v^*(\psi))$;
- (iii) if $\varphi, \psi \in \text{dom } v^*$, then $\varphi \vee \psi \in \text{dom } v^*$ and $v^*(\varphi \vee \psi) = \max(v^*(\varphi), v^*(\psi))$;
- (iv) if $\varphi \in \text{dom } v^*$, then $\neg\varphi \in \text{dom } v^*$ and $v^*(\neg\varphi) = 1 - v^*(\varphi)$.

Thus, v^* behaves just like an ordinary valuation, but is only defined for formulas whose variables receive truth values by v . However, depending on the satisfaction relation to be considered below, the set of

formulas that are modelled by a given partial truth assignment v can indeed be larger than the domain of v^* . For instance, even if $p \notin \text{Var } v$, the assignment v may still be considered to satisfy p on the “tolerant” interpretation of Section 2.2 below.

Note that every partial valuation can be extended to a total one. This can be done arbitrarily, unless the assignment v was total to begin with. For what follows, it will suffice to know that some such total extension exists, by fiat.

We consider relations \succ between partial assignments v and formulas φ , and read $v \succ \varphi$ as “ v models/satisfies φ ”. There are various ways to define such a relation. Any given \succ extends to a relation between assignments and *sets* Γ of formulas by stipulating, in the usual way, that $v \succ \Gamma$ iff $v \succ \psi$ for every $\psi \in \Gamma$. Moreover, let

$$\Gamma \succ \varphi \quad \text{iff} \quad (\forall v : \text{Var} \rightarrow \mathbf{2})(v \succ \Gamma \Rightarrow v \succ \varphi). \quad (1)$$

We will write $\Gamma \not\succ \varphi$ for the classical negation of (1), which is to say that there exists a partial assignment $v : \text{Var} \rightarrow \mathbf{2}$ such that $v \succ \Gamma$ yet $v \not\succ \varphi$, i.e., *not* $v \succ \varphi$.

For instance, according to van Fraassen’s principle of *supervaluation* [10], we may stipulate that $v \succ \varphi$ iff $\alpha \models \varphi$ for *every extension* $\alpha \supseteq v$. Instead, we are going to invoke variable inclusion requirements on the domains of partial assignments. The approach in the present paper can thus be traced back at least to Nait Abdallah’s treatment [18], as well as to earlier independent work of Langholm [16].

2.1 Strict interpretation

To accommodate partiality, we adjust the semantic consequence relation of classical logic in two different ways. A first and presumably natural approach is to require that all variables of a given formula receive truth values to begin with. Accordingly, we define

$$v \blacktriangleright \varphi \quad \text{iff} \quad \text{Var } \varphi \subseteq \text{dom } v \text{ and } v^*(\varphi) = 1. \quad (2)$$

Nait Abdallah has put this idea under scrutiny already, yet with an eye towards Kleene’s *strong* tables [18, Chapter 2]. We deviate from [18, Section 2.1.2.4] in that we require a modest language only, track the domains of partial assignments explicitly, and work towards a systematization of *weak* Kleene logics.

Through (1) for the case of (2) we obtain a consequence relation \blacktriangleright . Note that classical semantical consequence \models corresponds to the case in which we quantify over all and only the *total* assignments v .

It is instructive to consider cases in which a partial assignment v fails to satisfy a formula φ , which happens already if v stays quiet about at least one of the variables of φ , i.e., if $\text{Var } \varphi \not\subseteq \text{dom } v$. In particular, the logic at hand does not have any tautologies $\emptyset \blacktriangleright \varphi$, for if $p \in \text{Var } \varphi$, then any partial assignment that avoids p will fail to model φ . In particular, excluded middle $\emptyset \blacktriangleright \varphi \vee \neg\varphi$ is not valid, which renders the logic at hand *paracomplete*.

It turns out that \blacktriangleright amounts to nothing but paracomplete weak Kleene logic B_3 (cf. the discussion below). To this end, we pass through Urquhart's characterisation [23, Theorem 4] of B_3 , which is the second item in the following proposition.

Proposition 1. *For any $\Gamma \cup \{\varphi\} \subseteq \text{Form}$, the following are equivalent.*

1. $\Gamma \blacktriangleright \varphi$.
2. $\Gamma \vDash \varphi$, and if Γ is classically consistent, then $\text{Var } \varphi \subseteq \text{Var } \Gamma$.

Proof. We concentrate on the contrapositives.

(1) \Rightarrow (2) Suppose that either (a) $\Gamma \not\vDash \varphi$ or (b) that Γ is consistent and $\text{Var } \varphi \not\subseteq \text{Var } \Gamma$. As regards case (a), if $\Gamma \not\vDash \varphi$, then there is a total valuation $\alpha : \text{Form} \rightarrow \mathbf{2}$ such that $\alpha(\psi) = 1$ for every $\psi \in \Gamma$, yet $\alpha(\varphi) = 0$, and this α witnesses $\Gamma \not\blacktriangleright \varphi$ right away. Thus we move on to case (b). Accordingly, since Γ is consistent, there is a total valuation $\alpha : \text{Form} \rightarrow \mathbf{2}$ such that $\alpha(\psi) = 1$ for every $\psi \in \Gamma$. Now consider the restriction $v = \alpha|_{\text{Var } \Gamma}$. We claim that this v witnesses $\Gamma \not\blacktriangleright \varphi$. In fact, on the one hand, if $\psi \in \Gamma$, then $\text{Var } \psi \subseteq \text{Var } \Gamma = \text{dom } v$ and $v^*(\psi) = \alpha(\psi) = 1$, and so $v \blacktriangleright \Gamma$. On the other hand, since $\text{Var } \varphi \not\subseteq \text{dom } v = \text{Var } \Gamma$, this already suffices to see that $v \not\blacktriangleright \varphi$.

(2) \Rightarrow (1) Suppose that there is a partial assignment $v : \text{Var} \rightarrow \mathbf{2}$ such that $v \blacktriangleright \Gamma$ yet $v \not\blacktriangleright \varphi$. This is to say that (a) $\text{Var } \Gamma \subseteq \text{dom } v$ and $v^*(\psi) = 1$ for every $\psi \in \Gamma$, as well as that (b) if $\text{Var } \varphi \subseteq \text{dom } v$ then $v^*(\varphi) = 0$. We need to show that either (i) $\Gamma \not\vDash \varphi$, or that (ii) Γ is consistent as well as that $\text{Var } \varphi \not\subseteq \text{Var } \Gamma$. To do so, we distinguish two cases. First, if $\text{Var } \varphi \subseteq \text{dom } v$, then $v^*(\varphi) = 0$ according to (b). Now any extension of v^* to a total valuation witnesses $\Gamma \not\vDash \varphi$, whence the conclusion (i). Next we consider the case in which $\text{Var } \varphi \not\subseteq \text{dom } v$. It follows that $\text{Var } \varphi \not\subseteq \text{Var } \Gamma$ by (a). Now it remains to check that Γ is consistent, but this follows from the assumption that $v \blacktriangleright \Gamma$, passing again to some extension of v to a total valuation. \square

2.2 Tolerant interpretation

A second way to account for partiality is to relax the requirement that all variables of a formula be assigned a truth value. On this interpretation,

a formula will be satisfied unless explicitly falsified. Thus, we stipulate

$$v \triangleright \varphi \text{ iff } \text{Var } \varphi \subseteq \text{dom } v \text{ implies } v^*(\varphi) = 1. \quad (3)$$

Nait Abdallah has coined his form of (3) “potential truth” [18, Section 2.1.2.5]. Again, we deviate from [18] in that we track the domains of partial assignments explicitly, and follow down a rather different route anyway.

Through the corresponding case of (1) for (3), we again obtain a consequence relation \triangleright . As above, the case in which we quantify over all and only the total valuations gives back classical semantical consequence.

Dually to the relation \blacktriangleright of Section 2.1, a partial assignment v now validates a formula φ already if $\text{Var } \varphi \not\subseteq \text{dom } v$, since in this case $v \triangleright \varphi$ is vacuously true. However, \triangleright fails *ex falso*. In fact, let $p \in \text{Var}$, stipulate $v(p) = 0$, and leave v undefined elsewhere. Then, for every propositional variable $q \neq p$, this v provides a counterexample to $q \wedge \neg q \triangleright p$, which renders the logic at hand *paraconsistent*.

It turns out that \triangleright amounts to nothing but the paraconsistent weak Kleene logic PWK (cf. the discussion below) on account of Ciuni and Carrara’s characterisation [7, Theorem 3.8] (in the streamlined form of [5, Theorem 1.3.2]), which is the second item in the following proposition.

Proposition 2. *For any $\Gamma \cup \{\varphi\} \subseteq \text{Form}$, the following are equivalent.*

1. $\Gamma \triangleright \varphi$.
2. *There is $\Delta \subseteq \Gamma$ such that $\text{Var } \Delta \subseteq \text{Var } \varphi$ and $\Delta \models \varphi$.*

Proof. (1) \Rightarrow (2) We concentrate on the contrapositive. Accordingly, suppose that for every $\Delta \subseteq \Gamma$, if $\text{Var } \Delta \subseteq \text{Var } \varphi$, then $\Delta \not\models \varphi$. In particular, this is the case for $\Delta_0 := \{\psi \in \Gamma \mid \text{Var } \psi \subseteq \text{Var } \varphi\}$, whence we obtain a total valuation α such that $\alpha(\psi) = 1$ for every $\psi \in \Delta_0$, yet $\alpha(\varphi) = 0$. The restriction $v := \alpha|_{\text{Var } \varphi}$ is the sought-after counterexample that witnesses $\Gamma \not\models \varphi$. Indeed, on the one hand we have that $v \triangleright \Gamma$, for if $\psi \in \Gamma$ is such that $\text{Var } \psi \subseteq \text{dom } v = \text{Var } \varphi$, then $\psi \in \Delta_0$, and therefore $v^*(\psi) = \alpha(\psi) = 1$; on the other hand, of course $\text{Var } \varphi \subseteq \text{dom } v$, yet $v^*(\varphi) = \alpha(\varphi) = 0$, which is to say that $v \not\models \varphi$.

(2) \Rightarrow (1) Suppose that there is $\Delta \subseteq \Gamma$ such that (a) $\text{Var } \Delta \subseteq \text{Var } \varphi$ and (b) $\Delta \models \varphi$. To see that $\Gamma \triangleright \varphi$, consider a partial assignment v , and assume that (c) $v \triangleright \Gamma$. We need to check $v \triangleright \varphi$, whence we suppose that $\text{Var } \varphi \subseteq \text{dom } v$. Now (a) yields $\text{Var } \Delta \subseteq \text{dom } v$, which according to (c) implies $v^*(\psi) = 1$ for every $\psi \in \Delta$. Extend v to a total valuation $\alpha : \text{Var} \rightarrow \mathbf{2}$. Since $\alpha(\psi) = v^*(\psi) = 1$ for every $\psi \in \Delta$, in view of (b) it follows that $v^*(\varphi) = \alpha(\varphi) = 1$, as required. \square

3 Duality

Unfolding the definitions, it is readily seen that \triangleright can be expressed in terms of \blacktriangleright , and vice versa (cf. [18, Section 2.1.2.3]), viz.

$$v \triangleright \varphi \text{ iff } v \blacktriangleright \neg\varphi \quad \text{and} \quad v \blacktriangleright \varphi \text{ iff } v \not\blacktriangleright \neg\varphi.$$

A slightly more fine-grained approach explains the duality of certain failures of classical principles that set B₃ and PWK apart both from classical propositional logic, as well as from each other. To this end, let us extend (1) to allow for multiple conclusions, disjunctively understood, by setting

$$\Gamma \succ \Delta \quad \text{iff} \quad (\forall v : \text{Var} \rightarrow \mathbf{2})(v \succ \Gamma \Rightarrow (\exists \varphi \in \Delta) v \succ \varphi).$$

Standard shorthand will be used, so that $\varphi \triangleright \Delta$ stands for $\{\varphi\} \triangleright \Delta$, etc.

Furthermore, we employ the well-known *duality mapping* $d : \text{Form} \rightarrow \text{Form}$, recursively defined by

$$\begin{aligned} p^d &= p \text{ for } p \in \text{Var}, \\ (\varphi \wedge \psi)^d &= \varphi^d \vee \psi^d, \\ (\varphi \vee \psi)^d &= \varphi^d \wedge \psi^d, \\ (\neg\varphi)^d &= \neg\varphi^d, \end{aligned}$$

for which see, e.g., [24]. A simple inductive argument shows that $(\varphi^d)^d = \varphi$ for every formula φ . In the following, let $\Gamma^d = \{\psi^d \mid \psi \in \Gamma\}$.

Let v be a partial truth assignment. Define $\neg v : \text{Var} \rightarrow \mathbf{2}$ pointwise through Boolean complementation, i.e., such that $(\neg v)(p) = 1 - v(p)$, where of course $\text{dom } \neg v = \text{dom } v$. Induction yields

$$(\neg v)^*(\varphi) = 1 - v^*(\varphi^d), \tag{4}$$

for every formula φ with $\text{Var } \varphi \subseteq \text{dom } v$.

Proposition 3. *For any $\Gamma, \Delta \subseteq \text{Form}$, the following are equivalent.*

1. $\Gamma \triangleright \Delta$.
2. $\Delta^d \blacktriangleright \Gamma^d$.

Proof. First observe that $v \not\blacktriangleright \varphi$ iff $\text{Var } \varphi \subseteq \text{dom } v$ and $v^*(\varphi) = 0$, which, by (4) and since $\varphi^{dd} = \varphi$, is the case precisely when $\text{Var } \varphi \subseteq \text{dom } \neg v$ and $(\neg v)^*(\varphi^d) = 1$. Therefore $v \not\blacktriangleright \varphi$ iff $\neg v \blacktriangleright \varphi^d$. Equivalently: $v \triangleright \varphi$ iff $\neg v \blacktriangleright \varphi^d$. It follows that

$$\begin{aligned} \Gamma \triangleright \Delta &\quad \text{iff} \quad (\forall v : \text{Var} \rightarrow \mathbf{2})((\forall \psi \in \Gamma) \neg v \blacktriangleright \psi^d \Rightarrow (\exists \varphi \in \Delta) \neg v \blacktriangleright \varphi^d) \\ &\quad \text{iff} \quad (\forall v : \text{Var} \rightarrow \mathbf{2})((\forall \varphi \in \Delta) \neg v \blacktriangleright \varphi^d \Rightarrow (\exists \psi \in \Gamma) \neg v \blacktriangleright \psi^d) \\ &\quad \text{iff} \quad (\forall v : \text{Var} \rightarrow \mathbf{2})((\forall \delta \in \Delta^d) \neg v \blacktriangleright \delta \Rightarrow (\exists \gamma \in \Gamma^d) \neg v \blacktriangleright \gamma) \\ &\quad \text{iff} \quad (\forall v : \text{Var} \rightarrow \mathbf{2})((\forall \delta \in \Delta^d) v \blacktriangleright \delta \Rightarrow (\exists \gamma \in \Gamma^d) v \blacktriangleright \gamma) \end{aligned}$$

since every partial truth assignment can be written in the form $v = \neg w$, where $w := \neg v$. \square

Proposition 4. *For any $\Gamma, \Delta \subseteq \text{Form}$, the following are equivalent.*

1. $\Gamma \blacktriangleright \Delta$.
2. $\Delta^d \triangleright \Gamma^d$.

Proof. Similar to the proof of Proposition 3. \square

Here is an example. The logic of \blacktriangleright does not validate disjunctive addition, which is the principle $\varphi \blacktriangleright \varphi \vee \psi$. For instance, if p and q are distinct propositional variables, then the assignment v_p which is undefined except for $v(p) = 1$ shows that $p \blacktriangleright p \vee q$. Proposition 4 yields that $(p \vee q)^d \not\triangleright p^d$, which is to say that $p \wedge q \not\triangleright p$. Therefore, \triangleright does not validate conjunctive simplification, which is the principle $\varphi \wedge \psi \triangleright \varphi$. See, e.g., [5, Lemma 1.2.3-4] for the corresponding statements for B_3 and PWK, to which we turn our attention briefly in Section 5.

4 Mixed consequence

Let us now return to the single-conclusion setting. Analogous to the approach of *mixed consequence logics* [3, 6], we break the symmetry as to how in (1) “truth” under partial assignments is supposed to pass from assumptions to the conclusion.³ In the present setting, we may do so as follows. Let \succ_1 and \succ_2 be relations between partial assignments and formulas. We stipulate

$$\Gamma \succ_{i|j} \varphi \quad \text{iff} \quad (\forall v : \text{Var} \rightarrow \mathbf{2})(v \succ_i \Gamma \Rightarrow v \succ_j \varphi), \quad (5)$$

where $i, j \in \{1, 2\}$.

The cases of interest to us are those in which \succ_1 and \succ_2 are again given by \blacktriangleright and \triangleright of Sections 2.1 and 2.2, respectively. Apparently $\succ_{1|1}$ amounts to \blacktriangleright , while $\succ_{2|2}$ is nothing but \triangleright . It will next be seen that the mixed case $\succ_{1|2}$ recovers classical semantic consequence \models , while the dual mixed form $\succ_{2|1}$ calls for an additional constant to be possible at all.

Rather than $\succ_{i|j}$, let us instead write

$$\begin{aligned} \Gamma \blacktriangleright \varphi &\quad \text{iff} \quad (\forall v : \text{Var} \rightarrow \mathbf{2})(v \blacktriangleright \Gamma \Rightarrow v \triangleright \varphi), \\ \Gamma \triangleright \varphi &\quad \text{iff} \quad (\forall v : \text{Var} \rightarrow \mathbf{2})(v \triangleright \Gamma \Rightarrow v \blacktriangleright \varphi). \end{aligned}$$

Proposition 5. *For any $\Gamma \cup \{\varphi\} \subseteq \text{Form}$, the following are equivalent.*

³I am grateful to Allard Tamminga for bringing this to my attention.

1. $\Gamma \blacktriangleright \varphi$.

2. $\Gamma \vDash \varphi$.

Proof. (1) \Rightarrow (2) Suppose that $\Gamma \blacktriangleright \varphi$. Consider a valuation $\alpha : \text{Form} \rightarrow \mathbf{2}$ such that $\alpha(\psi) = 1$ for every $\psi \in \Gamma$. The restriction $v := \alpha|_{\text{Var}}$ is a (total) assignment such that $v \blacktriangleright \psi$ for every $\psi \in \Gamma$. It follows that $v \triangleright \varphi$. Since $\text{Var } \varphi \subseteq \text{dom } v$, we obtain $\alpha(v) = v^*(\varphi) = 1$, as required.

(2) \Rightarrow (1) Suppose that $\Gamma \vDash \varphi$. Consider an assignment $v : \text{Var} \rightarrow \mathbf{2}$ for which $v \blacktriangleright \Gamma$. To see that $v \triangleright \varphi$, suppose that $\text{Var } \varphi \subseteq \text{dom } v$. Consider some extension of v to a total valuation α . For every $\psi \in \Gamma$, since $v \blacktriangleright \psi$, we know that $\text{Var } \psi \subseteq \text{dom } v$ and thus $\alpha(v) = v^*(\psi) = 1$. Since $\Gamma \vDash \varphi$, this implies that $v^*(\varphi) = \alpha(\varphi) = 1$. \square

Let us next consider the dual mixed form. As it stands, $\Gamma \blacktriangleright \varphi$ can never be the case. To see this, consider the empty assignment $v_0 : \text{Var} \rightarrow \mathbf{2}$, i.e., the assignment with $\text{dom } v_0 = \emptyset$. Clearly $v_0 \triangleright \Gamma$, since $\text{Var } \psi \neq \emptyset$ for every $\psi \in \Gamma$. Now, if it were the case that $\Gamma \blacktriangleright \varphi$, then we would be able to infer that $v_0 \blacktriangleright \varphi$. In particular $\text{Var } \varphi = \emptyset$, which the present setting does not provide for.

Thus, to make this work, and for the remainder of this section only, we introduce an additional nullary connective \perp (*falsum*), of course with the convention that $v^*(\perp) = 0$ for every assignment v . This yields a supply of formulas without propositional variables, namely $\text{Form}_0 = \{ \varphi \in \text{Form} \mid \text{Var } \varphi = \emptyset \}$. Let

$$T = \{ \varphi \in \text{Form}_0 \mid \emptyset \vDash \varphi \} \quad \text{and} \quad F = \{ \varphi \in \text{Form}_0 \mid \emptyset \vDash \neg\varphi \}.$$

Proposition 6. *For any $\Gamma \cup \{ \varphi \} \subseteq \text{Form}$, the following are equivalent.*

1. $\Gamma \blacktriangleright \varphi$.

2. *Either $\varphi \in T$ or there is $\psi \in \Gamma \cap F$.*

Proof. (1) \Rightarrow (2) Suppose that $\Gamma \blacktriangleright \varphi$. We assume $\Gamma \cap F = \emptyset$ and show that $\varphi \in T$. To this end, we consider the empty assignment $v_0 : \emptyset \rightarrow \mathbf{2}$. We claim that $v_0 \triangleright \Gamma$. In fact, for every $\psi \in \Gamma$, either $\text{Var } \psi = \emptyset$, in which case $\psi \in T$ and thus $v_0^*(\psi) = 1$, or else $\text{Var } \psi \neq \emptyset = \text{dom } v_0$, in which case again $v_0 \triangleright \varphi$. It follows that $v_0 \blacktriangleright \varphi$, and this is to say that $\text{Var } \varphi = \emptyset$ as well as $v_0^*(\varphi) = 1$. Now, since $\varphi \in \text{Form}_0$, it is clear that $\alpha(\varphi) = v_0^*(\varphi) = 1$ for every total valuation α , i.e., $\emptyset \vDash \varphi$.

(2) \Rightarrow (1) Suppose that either (a) $\varphi \in T$ or that (b) there is $\psi \in \Gamma \cap F$. To see that this implies $\Gamma \blacktriangleright \varphi$, consider a partial assignment v for which $v \triangleright \Gamma$. We need to check that $v \blacktriangleright \varphi$. Now, if indeed $\varphi \in T$, then $v \blacktriangleright \varphi$ is trivial. But under the present assumptions, this is the only

case that may occur, for if (b) there were indeed some $\psi \in \Gamma \cap F$, then, since $v \triangleright \psi$, we had $v^*(\psi) = 1 = \alpha(\psi)$ for any valuation α , contrary to the assumption that $\psi \in F$. \square

5 Discussion

Two ways to deal with partial truth assignments have been discussed: a “tolerant” approach, in which formulas are satisfied unless refuted, and a “strict” one, in which formulas are satisfied only when put into consideration properly. Let us now make the connection with weak Kleene logic explicit.

Kleene supplied a third value u to the classical two-valued tables in order to explain a “weak sense” in which the propositional connectives apply to partial recursive predicates [14, p. 334]. From an algebraic point of view, this means to adjoin an absorbing element to the Boolean algebra **2**, viz.

\vee	0	u	1	\wedge	0	u	1	\neg	
0	0	u	1	0	0	u	0	0	1
u	u	u	u	u	u	u	u	u	u
1	1	u	1	1	0	u	1	1	0

Both B_3 and PWK are matrix logics based on this algebra **WK**, but they differ in their respective choice of designated values, as follows. Every (total) assignment $w : \text{Var} \rightarrow \mathbf{WK}$ extends uniquely to a valuation $w^* : \text{Form} \rightarrow \mathbf{WK}$, and we stipulate, with regard to B_3 ,

$$w \models_{B_3} \varphi \quad \text{iff} \quad w^*(\varphi) = 1$$

as well as, for PWK,

$$w \models_{\text{PWK}} \varphi \quad \text{iff} \quad w^*(\varphi) \in \{u, 1\}.$$

Now \models_{B_3} and \models_{PWK} denote the consequence relations that correspond to the respective cases of (1), but where we now quantify over all the total assignments $w : \text{Var} \rightarrow \mathbf{WK}$ rather than the partial Boolean ones.⁴ Passing again through Urquhart’s and Ciuni and Carrara’s results cited above, Propositions 1 and 2 now offer simple two-valued semantics for both B_3 and PWK, if at the price of hiding the undefined value behind

⁴There is a one-to-one correspondence between partial assignments $\text{Var} \rightarrow \mathbf{2}$ on the one hand and total assignments $\text{Var} \rightarrow \mathbf{WK}$ on the other, which in fact is an isomorphism of *involutive bisemilattices* (for the latter see [4]) [17]. This observation prompted the present note.

chunks of undefined variables.⁵ The philosophical issue about the proper interpretation of u thus merely shifts, though I do not intend to put this at stake here. Incidentally, however, Proposition 1 appears to be quite in line with Beall’s off-topic interpretation, according to which B_3 “as a logic concerns not simply truth-preservation but *truth-and-topic preservation*” [1, p. 140]. It might not be a stretch to think of partial assignments as mapping out certain topics of discourse, so that we read

$$v \blacktriangleright \varphi \text{ as } “\varphi \text{ is on-topic and true}”,$$

which explains, for instance, the failure of disjunctive addition discussed above. In comparison, PWK handles topicality in a different manner: writing the conditional of (3) as a disjunction, we read, once again under Beall’s interpretation,

$$v \triangleright \varphi \text{ as } “\varphi \text{ is off-topic or (on-topic and) true}”,$$

which of course corresponds to the choice of designated values. By contraposition, PWK can also be understood through *on-topic backward falsity preservation* [22]. Duality provides yet another reading of PWK, namely as a logic of *backward dual truth-and-topic splitting*: if the dual of the conclusion of a PWK-consequence is on-topic and true, then so is the dual of at least one of the premises.

Partial valuations thus readily account for topicality, but remain one-dimensional in that they do not divide propositions that are off-topic further into *true and off-topic* and *false and off-topic*. Such a two-dimensional refinement has recently been developed by Song *et al.* [22], who propose a Herzberger-style semantics [11] that accommodates B_3 , PWK and classical logic within a single framework, and thereby generalize Beall’s interpretation.⁶ Exploring how partial valuations can be employed within such multi-dimensional frameworks could be an interesting venue for further research.

Acknowledgements

The results communicated in this note have been obtained during a fellowship at the Alfried Krupp Institute for Advanced Study in the academic year 2023/24. Discussions with Allard Tamminga helped to shape and improve this paper considerably. I am also grateful to the anonymous reviewer and to the editor, Shawn Standefer, for their helpful suggestions.

⁵Incidentally, the *ad hoc* terminology of this paper now aligns with the conventional one, in that “strictness” corresponds with preservation of the value 1, while the “tolerant” approach requires the values $u, 1$ to be preserved under logical consequence.

⁶I am grateful to the anonymous referee for bringing this to my attention.

References

- [1] Jc Beall. Off-topic: a new interpretation of weak Kleene logic. *Australasian Journal of Logic*, 13(6):Article no. 1, 2016.
- [2] J.C. Beall and Bas C. van Fraassen. *Possibilities and Paradox*. Oxford University Press, Oxford, 2003.
- [3] Quentin Blomet. *Mixed Consequence Logics*. Phd thesis, École normale supérieure – PSL and Universität Greifswald, 2024.
- [4] Stefano Bonzio, José Gil-Férez, Francesco Paoli, and Luisa Peruzzi. On Paraconsistent Weak Kleene Logic: Axiomatisation and algebraic analysis. *Studia Logica*, 105(2):253–297, 2017.
- [5] Stefano Bonzio, Francesco Paoli, and Michele Pra Baldi. *Logics of Variable Inclusion*, volume 59 of *Trends in Logic*. Springer, Cham, 2022.
- [6] Emmanuel Chemla, Paul Égré, and Benjamin Spector. Characterizing logical consequence in many-valued logic. *J. Logic Comput.*, 27:2193–2226, 2017.
- [7] Roberto Ciuni and Massimiliano Carrara. Characterizing logical consequence in paraconsistent weak Kleene. In Laura Felline, Antonio Ledda, Francesco Paoli, and Emanuele Rossanese, editors, *New Directions in Logic and the Philosophy of Science*, volume 3 of *SILFS*, pages 165–176. College Publications, 2016.
- [8] Bruno Da Ré and Damian Szmuc. Two-valued weak Kleene logics. *Manuscrito - Rev. Int. Fil. Campinas*, 42(1):1–43, 2019.
- [9] Melvin Fitting. Bilattices are nice things. In Thomas Bolander, Vincent F. Hendricks, and Pedersen Stig Andur, editors, *Self-Reference*, number 178 in CSLI Lecture Notes. Stanford University, 2006.
- [10] Bas C. van Fraassen. Singular terms, truth-value gaps, and free logic. *The Journal of Philosophy*, 63(17):481–495, 1966.
- [11] Hans G. Herzberger. Dimensions of truth. *J. Philos. Logic*, 2(4):535–556, 1973.
- [12] Wesley H. Holliday. Possibility frames and forcing for modal logic. *Australas. J. Log.*, 22(2):44–288, 2025.
- [13] I.L. Humberstone. From worlds to possibilities. *J. Philos. Logic*, 10:313–339, 1981.

- [14] Stephen Cole Kleene. *Introduction to Metamathematics*. North-Holland, 1952.
- [15] Saul Kripke. Outline of a theory of truth. *The Journal of Philosophy*, 72(19):690–716, 1975.
- [16] Tore Langholm. *Partiality, Truth and Persistence*. Number 15 in CSLI Lecture Notes. Stanford University, 1988.
- [17] Daniel Misselbeck-Wessel and Iosif Petrakis. Boolean rigs. *Algebra Universalis*, 86:29, 2025.
- [18] Areski Nait Abdallah. *The Logic of Partial Information*. Monographs in Theoretical Computer Science - an EATCS Series. Springer-Verlag, Berlin, 1995.
- [19] Luisa Peruzzi. *Algebraic approach to paraconsistent weak Kleene logic*. Phd thesis, Università di Cagliari, 2018.
- [20] Graham Priest. Natural deduction systems for logics in the FDE family. In Hitoshi Omori and Heinrich Wansing, editors, *New Essays on Belnap-Dunn Logic*, pages 279–292. Springer, Cham, 2019.
- [21] Kurt Schütte. *Proof Theory*, volume 225 of *Grundlehren Math. Wiss.* Springer-Verlag, Berlin, 1977.
- [22] Yang Song, Hitoshi Omori, Jonas R. B. Arenhart, and Satoshi Tojo. A generalization of Beall’s off-topic interpretation. *Studia Logica*, 112(4):893–932, 2024.
- [23] Alasdair Urquhart. Basic many-valued logic. In Dov M. Gabbay and F. Guenther, editors, *Handbook of Philosophical Logic*, volume 2. Springer, Dordrecht, 2nd edition, 2001.
- [24] Dirk van Dalen. *Logic and Structure*. Universitext. Springer, London, fourth edition, 2004. 2nd corrected printing, 2008.