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Abstract

In ‘A New Unified Account of Truth and Paradox’, Neil Tennant makes
the following conjecture: Paradoxes are never strictly classical; all of the
classical paradoxes are constructivisable. In this paper, we will present
a counterexample to Tennant’s conjecture; there are classical paradoxes
that cannot be constructivized.
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In [8], Neil Tennant makes the following conjecture:

Paradoxes are never strictly classical. The kind of conceptual trou-
ble that a paradox reveals will afflict the intuitionist just as seri-
ously as it does the classicist. Therefore, attempted solutions to the
paradoxes, if they are to be genuine solutions, must be available to
the intuitionist. Nothing about an attempted solution to a paradox
should imply that the trouble it reveals lies with strictly classical
moves of reasoning ([8], p.589).

This conjecture comes as a response to a possible objection that suggests that
maybe there are strictly classical paradoxes:

But how can you be so sure that there are not any strictly classical
paradoxes? Perhaps there are paradoxes whose associated proofs of
⊥ have to make use of strictly classical rules and which cannot be
emulated by the constructivist? ([8], p.589, emphasis in original).

To which Tennant raises a challenge:

Give an example of a semantic paradox whose associated deductive
reasoning cannot be constructivized. At present, all the known para-
doxes, and their constructive regimentations, indicate that an ex-
ample of this kind would be remarkable indeed, and would occasion
much re-thinking ([8], p.590, emphasis in original).
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In this paper, we aim to do just that; we will show that there are paradoxes
that fit Tennant’s theory of paradox yet they are not constructivisable—they
can be constructed in a classical setting but not in an intuitionistic setting.

1 Constructing an Unconstructivisable Paradox

In [7, 8], Tennant proposed a proof-theoretic criterion for logico-semantic para-
doxes. The criterion simply states that the natural deduction proofs of logico-
semantic paradoxes are proofs that cannot be put in normal form. In order to
show that there are unconstructivisable paradoxes, we must first show that our
paradox fits Tennant’s criterion for logico-semantic paradoxes.

First, we will be working with what I called in a previous work [1] a partially
transparent predicate. A partially transparent predicate P is a predicate that
has the following rules ([1], p. 267-268):

(a) If ⊢ φ then ⊢ P (⌜φ⌝)
(b) P (⌜φ⌝) ⊢ φ

Some possible candidates for partially transparent predicates are the knowa-
bility predicate and the provability predicate. Without loss of generality, we will
be working with the provability predicate (Bew). The aforementioned rules are
in sequent calculus. However, since Tennant’s criterion uses natural deduction,
we want to represent the rules for the provability predicate (Bew) in natural
deduction. Note that the restriction is not on Bew elimination, but rather,
on Bew introduction. The rule simply states that in order to introduce the
provability predicate on a sentence, that sentence must first be provable. Thus,
Bew-I and Bew-E would look as follows. Where “⌜ ⌝” is a naming device:

Bew(⌜φ⌝)
Bew-Eφ

φ
Bew-I⊘

Bew(⌜φ⌝)

⊘ here indicates a restriction on Bew-I. The restriction is simple: in order to
introduce Bew on a sentence φ, there must be no undischarged assumptions
leading to φ.

We will also assume that we have a method that allows sentences to refer
to themselves. From there, let ε be ¬Bew(⌜ε⌝) ∨ ψ. Notice, since ε is a self-
referential sentence, it observes the following id est rules:

¬Bew(⌜ε⌝) ∨ ψ
Def εε

ε
Def ε

¬Bew(⌜ε⌝) ∨ ψ

Since we addedBew rules and id est rules, the standard definition of a normal
proof must be adjusted to accommodate these additional rules.1 We will adopt
the following definitions from ([4], p.157) with the appropriate adjustments:

Definition 1. A detour (cut) in a deduction is an occurrence of a formula A
which is

1Thanks are due to the anonymous reviewer for raising this question on how the id est
rules should be treated with regard to normalization.
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1. the conclusion of an I-rule, EFQ, IP, ∨E, ∃E, or id est rule and the major
premise of an E-rule, or

2. the conclusion of an id est rule and the premise of an id est rule.

The first condition would, for example, flag instances of Bew-I immediately
followed by Bew-E as detours, while the second condition flags instances where
an id est rule is applied only to switch back via another id est rule.

Some detours, however, are not direct, but rather dragged out over the
course of several steps in a derivation. So, to account for such detours, we need
a further definition:2

Definition 2. A detour segment (cut segment) in a deduction is a sequence
A1, ..., An of formula occurrences in the deduction, such that

1. A1 is not the conclusion of IP, ∨E, ∃E,

2. Ai where 1 ≤ i < n is

(a) a minor premise of a ∨E or ∃E inference, and Ai+1 is its conclusion,
or

(b) the minor premise of a ¬E inference where the major premise of that
¬E inference is an IP-assumption, and Ai+1 is the conclusion of the
IP discharging the premise, or

(c) an application of an id est rule

3. An is a major premise of an E-rule (i.e., An is a detour).

We are now in a position to define a normal deduction:

Definition 3. A deduction (proof) is normal if it has no detours (this includes
detour segments).3

So, the only difference from the standard definition of a detour segment
is the addition of (c). Since detour segments flag “sequence of intermediate
identical formula occurrences” ([4], p.157), the addition of (c) ensures that we
are treating ε and ¬Bew(⌜ε⌝) ∨ ψ as identical.

We now turn to show that there is a paradoxical proof of ψ using ε in NK,
and that that paradoxical proof cannot be put in normal form. We later show
that there is no proof of ψ using ε in NJ.

The following is the paradoxical proof generated by ε in NK. Throughout
the rest of the paper, we will omit the naming device “⌜ ⌝” for readability.

Π:
2Again, this definition is adopted from ([4], p.157) with slight modifications.
3Note that these definitions are tailored for the current specific id est rules and the Bew-

rules. Further conditions might be required for different id est rules and different rules for
semantic predicates. For instance, if we have a truth-teller τ that is identical to Tr(⌜τ⌝), then
Tr-I on τ followed by an id est rule would count as a detour (similarly for other combinations
between Tr rules on τ and τ -id-est rules).
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[Bew(ε)]2
∨I

Bew(ε) ∨ ¬Bew(ε) [¬(Bew(ε) ∨ ¬Bew(ε))]1
¬E⊥

2 ¬I
¬Bew(ε)

∨I
Bew(ε) ∨ ¬Bew(ε) [¬(Bew(ε) ∨ ¬Bew(ε))]1

¬E⊥
1 IP
Bew(ε) ∨ ¬Bew(ε)

Σ:

Π
1 IP
Bew(ε) ∨ ¬Bew(ε)

[Bew(ε)]3
Bew Eε

[¬Bew(ε)]3
∨I

¬Bew(ε) ∨ ψ
Def εε

3 ∨Eε

Ξ:

Σ
3 ∨Eε

Def ε
¬Bew(ε) ∨ ψ

Σ
3 ∨Eε

Bew-I
Bew(ε) [¬Bew(ε)]4

¬ E⊥
EFQ

ψ [ψ]4
4 ∨E

ψ

2 The Non-normalizability of the Paradoxical
Proof Generated by ε

In the previous proof, Π is in normal form. Σ, on the other hand, is not in
normal form; the conclusion of IP is a major premise of a ∨E, and so there
is a direct detour. There is also a detour segment running from Σ beginning
with ∨I and ending in the major premise of ∨E in Ξ (i.e., the detour segment
is of length 4, where the length of a segment A1,...,An is n)4. We will focus on
attempting to normalize the direct detour in Σ, but the reader can check that
if we, instead, start with the attempt of normalizing the aforementioned detour
segment, then the attempt would be futile as well.

In order to normalize the direct detour in Σ5, we need to use Yuuki Andou’s
method [2], namely:6

4Thanks to the anonymous reviewer for pointing out this detour segment.
5We are calling it a direct detour because it can be seen as a detour segment of length 1.
6See also [4], for more on Andou’s conversions.

Australasian Journal of Logic (22:1) 2026, Article no. 3



49

[¬(A ∨ B)]i

δ0
...

A ∨ B
¬E⊥

...
δ1
...
⊥

i IPA ∨ B

[A]j
...
δ2
...
C

[B]j
...
δ3
...
C

j ∨EC

⇝ [¬C]i

δ0
...

A ∨ B

[A]j
...
δ2
...
C

[B]j
...
δ3
...
C

j ∨EC
¬E⊥

...
δ1
...
⊥

i IPC

Applying Andou’s normalization method, we would get the following:

[¬ε]1

[¬ε]1

[Bew(ε)]2
∨I

Bew(ε) ∨ ¬Bew(ε)
[Bew(ε)]3

Bew Eε

[¬Bew(ε)]3
∨I

¬Bew(ε) ∨ ψ
Def εε

3 ∨Eε
¬E⊥

2 ¬I
¬Bew(ε)

∨I
¬Bew(ε) ∨ ψ

Def εε
¬E⊥

1 IPε

This is not in normal form since the conclusion of ∨I is a major premise of an
∨E. Let us attempt to normalize it:

Σ∗:

[¬ε]1

[¬ε]1
[Bew(ε)]2

Bew Eε
¬E⊥

2 ¬I
¬Bew(ε)

∨I
¬Bew(ε) ∨ ψ

Def εε
¬E⊥

1 IPε

It looks like we normalized the proof, but alas, we did not. This proof of ε
uses IP as its last step, which then is used as a major premise of ∨E in Ξ. In
other words, Ξ∗ is now the following:

Σ∗
1 IPε

Def ε
¬Bew(ε) ∨ ψ

Σ∗
1 IPε

Bew-I
Bew(ε) [¬Bew(ε)]4

¬ E⊥
EFQ

ψ [ψ]4
4 ∨ E

ψ
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That is, in Ξ∗, there is an id est rule applied on the ε that was the result from
IP , and that formula is a major premise of a ∨-E. In fact, from our definition
of a detour segment, this constitutes as a detour segment of length 5 starting
from the conclusion of ∨I in Σ∗ to the major premise of ∨E in Ξ∗.7 Because
we have proven a disjunction via IP , only to eliminate it using ∨-E, Andou’s
conversion is called for. If we apply Andou’s method to normalize this detour,
we will get another detour:

Part of Σ∗
...

¬Bew(ε)
∨I

¬Bew(ε) ∨ ψ

[¬Bew(ε)]4

...
ψ [ψ]4

4 ∨E
ψ

...

The proof continues because there is an undischarged assumption in that
part of Σ∗. To normalize this detour, it cannot be converted to:

Part of Σ∗
...

¬Bew(ε)
∨I

¬Bew(ε) ∨ ψ
Def εε

Bew I
Bew(ε)

Part of Σ∗
...

¬Bew(ε)
⊥
ψ

The reason why this is an illegitimate conversion is that Bew introduction
cannot be applied if there is an undischarged assumption, and indeed, there is
an undischarged [¬ε]. To discharge it, we do the whole derivation Σ∗ ending
with an IP move. But the problem persists because now we do not have a proof
of ¬Bew(ε) on the right-hand side because there is an undischarged assumption.
To discharge the assumption, IP is required, but that only establishes ε not ψ
(keep in mind that EFQ cannot discharge an assumption). But now, to prove
ψ, we need to go through Ξ∗ again. Hence, we are stuck in a loop.

The non-normalizability of the paradoxical proof using ε is unsurprising. If it
were normalizable, then that suggests that in a classical sequent calculus setting,
there is a proof of ψ using the sentence ε without employing Cut. This would
entail that the non-transitive logic ST is trivial since Bew is weaker than the
truth predicate, and so, there must be a Cut-free proof of ψ using a disjunctive

7If one is not convinced that our definition of detour segment should include the id est
moves as in (c), then it suffices to point out that id est moves can be pushed upwards (i.e., a
permutative reduction), resulting in a direct detour (i.e., we can let IP establish ¬Bew(ε)∨ψ
and the id est move is used on ε rather than on ¬Bew(ε) ∨ ψ).
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Curry sentence. However, we know for a fact that ST (which includes a fully
transparent truth predicate) is not trivial [3, 5, 6]. Therefore, there cannot be
a normal proof of ψ using the sentence ε. Therefore, the paradoxical proof
generated by ε fits Tennant’s criterion for logico-semantic paradoxes.

3 The Paradoxical Proof Generated by ε is Un-
constructivisable

In the paradoxical proof above, we used IP to establish ε. In order for the
proof to go through, we must be able to prove ε to both establish the disjunc-
tion ¬Bew(ε) ∨ ψ and detach the disjunction via Bew(ε) to get ψ. So, for a
constructive paradoxical proof to get through, we must establish ε without using
IP . This, we claim, is not possible.

The use of IP must be replaced with other assumption-discharging rules.
The only candidates are ∨E, →I, and ¬I. To use ∨E, we must have a disjunction
to eliminate. The only possible disjunctions are Bew(ε)∨¬Bew(ε) or ¬Bew(ε)∨
ψ (i.e., ε itself).

The former cannot be proven without IP . That is, to prove Bew(ε) ∨
¬Bew(ε), we can either assume ¬(Bew(ε)∨¬Bew(ε)) and employ IP or derive
one of the disjuncts. However, to derive either disjunct, it must be done without
IP because each disjunct entails ε—the sentence which we are trying to prove
without IP . But then, we are back to our initial options: ∨E, →I, and ¬I. If we
choose ∨E via Bew(ε)∨¬Bew(ε), then we would be stuck in an infinite regress.
So, it must be one of the other options, but as we will see, none would work.

The other possible ∨E is by establishing ¬Bew(ε) ∨ ψ (without IP ) and
using it as the major premise. But this is ε itself. In other words, we must
prove ε without IP in order to prove ε without IP . Thus, this option is not
viable either.

As for →I, it can get us only insofar as Bew(ε) → ψ. However, the arrow
would not detach without Bew(ε) which we do not have because Bew(ε) → ψ
is not ε. Thus, to detach the conditional, we must be able to derive ε, once
again, without IP . Hence, we are back to the same options. Alternatively, we
prove ¬Bew(ε) ∨ ψ from Bew(ε) → ψ, alas, this is not possible without IP .

Similarly, ¬I can get us ¬¬ε but that would not help us to detach ε to
get ψ unless we can prove double negation elimination for ¬¬ε. However, a
double negation elimination would require none other than IP . Of course,
there are instances of double negation elimination that do not use IP (e.g.,
¬¬¬φ → ¬φ)8, but those instances would not help us. What we are after is ε
without any negations in order to detach the disjunction. So what we are after
is ¬¬ε → ε. This requires IP on the assumption ¬ε unless ε is derivable by
other means that use IP . Those other means are the ones we started with ∨E,
→I, and ¬I. Thus, for each option, in order to prove ε without using IP , one
must already be able to prove ε without IP .

8Many thanks to the anonymous reviewer for pressing this point.
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Another way to frame this, which is due to the anonymous reviewer, is to
assume that we have a constructive proof of ε without any undischarged as-
sumptions. Since we cannot use IP on [¬ε], ε must have been reached via an id
est move on ¬Bew(ε) ∨ ψ. Now, we cannot have reached ¬Bew(ε) ∨ ψ via IP,
so we either proved ψ or proved ¬Bew(ε) and applied ∨I. If ψ was proved, then
since it is an arbitrary sentence, it was proved by ∨E via a proof of ε without
undischarged assumptions. So, there is a shorter proof of ε. If the proof of
¬Bew(ε) ∨ ψ is via an ∨I on ¬Bew(ε), then ¬Bew(ε) must have been reached
either via establishing ¬ψ and ε without undischarged assumptions (thus, there
is a shorter proof of ε), or from ¬I on the assumption [Bew(ε)]. If it was estab-
lished via ¬I, then that requires a contradiction either from ψ and ¬ψ (which
again comes from a proof of ε, and so, there is a shorter proof of ε), or from
a proof of ¬Bew(ε) (and so, there is already a shorter proof of ε). Alterna-
tively, the contradiction is via proving ¬ε (with no undischarged assumptions),
but that can only come by via ¬I on [ε] and so, there must be another con-
tradiction, and the candidates are the same as above. Moreover, if there is a
contradiction (with no undischarged assumptions) that can be reached from the
assumption [ε], then since ε follows from our initial assumption, [Bew(ε)], there
is a shorter proof of ¬Bew(ε), and so, a shorter proof of ε.

Thus, if we assume that there is a constructive proof of ε with no undis-
charged assumptions, then from that proof, there is a shorter proof of ε with no
undischarged assumptions. Hence, by the least number principle, there can be
no such constructive proof of ε without undischarged assumptions.

We showed that we cannot reach ψ by proving ε because ε cannot be proven
constructively without undischarged assumptions. Are there other ways to prove
ψ? The answer is negative. Recall that ψ is an arbitrary sentence, and so, it
cannot be proven (intuitionistically or classically) without relying on a paradox-
ical sentence. In our setup, we only have one candidate for that job, namely,
ε. Though ε is able to get us ψ classically because it is provable classically, it
cannot do its job constructively because it is not provable constructively.

4 A Possible Objection

One might reformulate Tennant’s conjecture as follows: Not every single paradox
has to be constructivisable; rather, the logico-conceptual resources must admit
of constructive paradoxes, and those paradoxes are not normalizable.9 They
might point out that our choice of ε is a classical equivalent of the provability
Curry sentence Bew(⌜ε⌝) → ψ,10 and the paradoxical proof of provability Curry
is indeed constructivisable. Thus, one might conclude that the logico-conceptual
resources used in our unconstructivisable paradox above admit paradoxes that
are constructivisable as shown with the provability Curry.11

This, however, is undoubtedly an ad hoc! Relying on the fact that ¬Bew(⌜ε⌝)∨
9Tennant suggested this reformulation in a private conversation (5/25/2022).

10See [1] for more on provability Curry.
11Tennant via a private conversation (5/25/2022).
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ψ and Bew(⌜ε⌝) → ψ are classically equivalent as proof that they use the same
logico-conceptual resources is self-defeating. The fact that these two sentences
are not constructively equivalent shows that they do not share the same logico-
conceptual resources. What counts as the same logico-conceptual resources
would depend on the background logic that is being used. In a classical setting,
the provability Curry is equivalent to our initial ε, but in an intuitionistic setting,
the provability Curry and our initial ε are not equivalent. One is paradoxical,
while the other one is not.

In other words, just because ¬Bew(⌜ε⌝) ∨ ψ intuitionistically implies
Bew(⌜ε⌝) → ψ, and the latter is paradoxical in Tennant’s account, we can-
not conclude that ¬Bew(⌜ε⌝) ∨ ψ is likewise paradoxical in conformity with
Tennant’s conjecture. As shown earlier, we absolutely need the other direction
of this implication. Namely, we need Bew(⌜ε⌝) → ψ to intuitionistically imply
¬Bew(⌜ε⌝) ∨ ψ. This implication, sadly, does not hold intuitionistically.

Perhaps what Tennant meant was that the paradoxical proof above relies on
two basic logico-conceptual resources, namely, the partially transparent prov-
ability predicate and a means of self-reference.12 The conjecture, then, simply
implies that there are constructive paradoxes that rely on these two basic re-
sources. If that is the case, then surely that is a much weaker and less interesting
conjecture. It would amount to the claim that intuitionistic logic is afflicted by
self-referential semantic paradoxes once those semantic notions are introduced
to the system; no one would deny this. Moreover, a question remains: why
is IP (or its equivalence) not counted as one of the logical resources that the
paradoxical proof above relies on? If the rules of logic are not part of the logico-
conceptual resources, then that would already assume that there is no way to
set the classical paradoxes apart from constructive ones. Nonetheless, there are
reasons to think that this is not the initial conjecture; Tennant’s challenge was
to “[g]ive an example of a semantic paradox whose associated deductive reason-
ing cannot be constructivized”([8], p.590), and we met this challenge. Altering
this challenge to “show that there are no constructive paradoxes that make
use of the basic resources needed for a paradox” would amount to moving the
goalpost.

In conclusion, we showed a counterexample to Tennant’s conjecture that ev-
ery classical logico-semantic paradox can be constructivized. We showed that
the paradoxical proof generated by ε in NK fits Tennant’s proof-theoretic crite-
rion for logico-semantic paradoxes, yet there are no paradoxical proofs generated
by ε in NJ. Therefore, pace Tennant’s conjecture, there are unconstructivisable
paradoxes.
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